
DOI: https://dx.doi.org/10.4314/gjpas.v29i1.10 

 
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 29, 2023: 83-90 
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579 

www.globaljournalseries.com.ng, Email: globaljournalseries@gmail.com 
HETEROSCEDASTICITY OF UNKNOWN FORM: A COMPARISON 
OF FIVE HETEROSCEDASTICITY-CONSISTENT COVARIANCE 
MATRIX (HCCM) ESTIMATORS 
 

NWANGBURUKA, C., IJOMAH, M. A. AND NWAKUYA M.T 
 

(Received 22 June 2022; Revision Accepted 5 November 2022) 

 

ABSTRACT 
 
Regression model applications frequently involve violations of the homoscedasticity assumption and the 
presence of high leverage points (HLPs). The Heteroscedasticity-Consistent Covariance Matrix (HCCM) 
estimator's impact in the presence of heteroscedasticity of an unknown form was investigated in this study. The 
effectiveness of five variations of HCCM namely White’s estimator (HC0), White-Hinkley (HC1), Mackinnon 
White (HC2), Davison –Mackinnon (HC3), and Cribari-Neto (HC4) were accessed to identify the optimal 
Heteroscedasticity-Consistent Covariance Matrix (HCCM) estimator. In the study a simulated dataset was 
analysed using the Econometric View Software Version 12. The Breush-Pagan Godfery’s test for 
heteroscedasticity was applied and p-value of 0.0123 was obtained indicating presence of heteroscedasticity in 
the model. Applying the HCCM estimators and comparing the Heteroskedasticity-consistent standard errors 
estimates showed that HCO had 124.104, HC1 had 1189.222, HC2 had 1175.282, HC3 had 1106.94 and HC4 
had 1140.707. These results reveal that HC3 and HC4 produced smaller errors compared to HC0, HC1 and 
HC2. The study hence comes to the conclusion that when doing inferential tests using OLS regression, the use 
of HCSE estimator increases the researcher's confidence in the accuracy and potency of those tests. This study 
therefore suggests that to ensure that findings are not affected by heteroscedasticity; researchers should use 
HCCM estimator but precisely HC3 and HC4, as the presented better results in comparison to others. 
 
KEY WORDS: Heteroscedasticity, White (HC0), White-Hinkley (HC1), Mackinnon-White (HC2), Davidson-
Mackinnon (HC3), and Cribari-Neto (HC4) 
 
INTRODUCTION 
 
It is generally known that ordinary least squares 
(OLS) deliver accurate and unbiased estimates of the 
parameters when the linear regression model's 
underlying assumptions are true. Even though the 
OLS estimator maintains its objectivity when the 
errors are heteroscedastic, it becomes inefficient.  
More importantly, the traditional methods for testing 
hypotheses no longer work hence methods that 
compensate for heteroscedasticity are essential for 
careful data exploration for it is widespread in cross-
sectional data. Many statistical techniques weight 
each observation by the inverse of the standard 
deviation of the error to account for 
heteroscedasticity (Greene, 2002). The resulting 
coefficient estimates are accurate and unbiased, and 
the standard errors are also accurately estimated. 
 
 
 
 
 
 
 
 

According to (Weisberg, 1980) “the generalized least 
squares makes it relatively easy to use weights to 
correct for heteroscedasticity when the type and 
degree of heteroscedasticity are known”. Most times, 
when the heteroscedasticity type is unknown, the 
weighting strategy becomes useless. “Making 
variance-stabilizing transformations of the dependent 
variable or altering both sides can be utilised to 
address heteroscedasticity that results from an 
improper functional form” (Carroll and Ruppert, 
1988). “While this strategy can effectively and 
elegantly address the issues brought on by 
heteroscedasticity, nonparametric techniques may be 
required when the results must be interpreted in the 
variables' original scale” (Duan 1983; Carroll and 
Ruppert, 1988). 
Even if its exact form is uncertain, heteroscedasticity 
must be addressed. The most detrimental effects of  
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heteroscedasticity is that it leads to biased and 
inconsistent behaviour in the OLS estimator of the 
parameter covariance matrix (OLSCM), whose 
diagonal elements are used to estimate the standard 
errors of the regression coefficients. Therefore, it is 
against this background that this study tried to find an 
alternative variance estimator that remains consistent 
under heteroscedasticity. 
 
LITERATURE REVIEWS 
Astivia et al (2019) in their work presented a 
comprehensible explanation and illustration 
heteroscedasticity. They clearly showed how to 
detect it through statistical tests and also how to take 
care of it by using heteroskedastic-consistent 
standard errors and the wild bootstrap.  
Vynck and Thas (2017) discovered that the 
conventional method of utilising WLS for dealing with 
heteroscedasticity had significant flaws. Even though 
it accounts for heteroscedasticity by weighting the 
observations in a way that is as appropriate as it is 
possible, the ideal situation in which the variance 
function is known is frequently not known. Agunbiade 
and Adeboye (2012) used the White 
heteroscedasticity and Newey-West test techniques 
to examine the presence of heteroscedasticity. Their 
findings, which show that heteroscedasticity is a 
built-in characteristic of cross-sectional data, were 
published in the journal Statistics in Medicine. It was 
determined that OLS is not appropriate for estimation 
if heteroscedasticity is present in the research data. It 
was also determined that the model fitted using WLS 
is the most appropriate model that is deemed fit for 
proper review of auditor's remuneration in the 
banking industry. In their study on “inference when 
there is heteroscedasticity of unknown form”, Munir 
et al. (2011) discovered through the utilisation of an 
adaptive estimator that the tests that are based on 
these estimators are not as liberal as the tests that 
are based on the OLSEs and the adaptive 
estimators. These weighted HCCMEs demonstrate 
null rejection rates that are relatively low and it has 
been reported that WHC3 performs better than 
WHC2, which performs better than WHC1, which 
performs better than WHC0. WHC0, performs worse 
than WHC3. 
 
METHODOLOGY 
Data used for this study was a simulated replication 
of (Venables and Ripley, 2002) simulation of 237 
statistics students at the University of Adelaide in 
Modern Applied Statistics with S-PLUS, with 11 
predictor variables with pulse rate as the response 
variable. The simulation design was based on a 
number of questions regarding the individual qualities 
of the students. These individual qualities were 
student’s sex, age, writing hand, span of writing 
hand, span of non-writing hand, fold arms, pulse rate 
of the student, clap hands, frequency of exercise,  
 
 
 

how much the student smokes, and height.  Firstly, a 
Diagnostic test (Breush-Pagan Godfrey test) for 
detecting heteroscedasticity was performed using the 
Econometric-View Software (E-views) version 12.0 
before comparison of the Heteroscedasticity-
Consistent Covariance Matrix (HCCM) Estimators. 
 
Breusch-Pagan Godfrey test 
The Breusch-Pagan test was developed in 1979 by 
Trevor Breusch and Adrian Pagan. The Breusch-
Pagan test is employed when it is believed that the 
variance is some function (though not necessarily 
multiplicative) of more than one explanatory variable. 
Considering the following regression model 
                         
     (1) 
Equation (1) can be rewritten as; 

      , where            ,              and 

 ̂               and  

Var (    =   
  

The Breusch-Pagan LM test involves a series of 
intermediate stages in detecting heteroscedasticity. 
First, it implemented the regression of the previous 
equation and the residuals ûi were obtained. 
Subsequently, the auxiliary regression equation is 
established, as the following 

  
                             

   (2) 
where     is a series of variables established to 

determine the variance of the error terms. The next 
step involves setting the null hypothesis of 
homoskedasticity as 
                  

In the case that at least one of the  ’s is different 
from zero and at least one of the Z’s influences the 
variance of the error terms, the null hypothesis is 
rejected. The following step is to compute the 
LM=nR

2
 statistic, where n is the number of 

observations established to determine the auxiliary 
regression and R

2
 is the coefficient of determination. 

The LM-statistic follows the χ
2
 distribution 

characterized by m-1 degrees of freedom. The final 
step assumes to reject the null hypothesis and to 
highlight the presence of heteroscedasticity if LM-
statistical is higher than the critical value OR when 
the p-value obtained is less than the critical level of α 
= 0.05, we reject the null hypothesis which says that 
“There is no heteroscedasticity in the model”. Hence, 
conclude that Heteroscedasticity is present.  
 
Comparison of Heteroscedasticity-consistent 
covariance matrices.  
Since its inception in econometrics (White, 1980), 
heteroscedasticity-consistent covariance matrices 
(HCCMs) have received more attention in the 
literature on statistics and behavioural sciences. 
Simply put, this method adjusts the parameter 
estimates' covariance matrix. The unbiased nature of 
regression coefficients prevents them from being  
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changed or corrected. There are now five categories 
of HCCMs: HC0 – HC4. In general, later variations 
aimed to enhance the original HCCMs. 
 
White (HC0)  
Based on the foundation White's (1980) method, 
HC0 became a popularisation estimator. The formula 

for the HC0 estimator of ∑  ̂ is given as  

                    
            

   (3) 
and the entries on the main diagonal of HC0 are the 
estimated squared standard errors of the regression 
coefficients. Dividing the regression coefficients by 
these standard errors produces a ratio used to derive 
p values for hypothesis testing. “However, HC0 is a 
reliable estimator when the errors are 
heteroskedastic, meaning that the bias gets smaller 
as the sample size grows. Although they are all 
asymptotically identical to HC0, HC1, HC2, and HC3 
have significantly better small sample properties”, 
(Long & Ervin, 2000; MacKinnon & White, 1985).  
 
White-Hinkley (HC1) 
Hinkley (1977) developed the estimator HC1, which 
is only a degree-of-freedom adjustment to HC0. 
Every squared OLS residual for HC1 is compounded 

by n/ (n-p-1). The HC1 estimator of ∑  ̂ is; 

HC1 = 
 

     
                

 ]           

   (4)  
Despite being straightforward, HC1 is rarely 
suggested or employed since it shares many of the 
same finite sample biases as HC0. 
 
Mackinnon-White (HC2) 
The theory of HC2 is similar to HC1, except instead 
of a correction for degree of freedom, the i

th 
squared 

OLS residual is weighted by the inverse of (1-hii), 

where         
       

  

“The "hat" matrix H =            has diagonal 

elements called       which are also referred to as 

leverage values”. (Cribari-Neto 2004). The high 
leverage spots in the X matrix are the main cause of 

the bias. Consequently, the HC2 estimator of ∑  ̂ is 
defined as; 

                 [
  
 

     
]            

    (5) 
 
Davidson-Mackinnon (HC3) 
For historical context, it should be noted that the HC 
methods have close ties to the jackknife approach.  

The existence or absence of high leverage points in 
X does have some bearing on how well HC3 
performs (Kauermann & Carroll, 2001; Wilcox, 2001). 
Furthermore, studies have demonstrated that HC3 
can have a liberal bias in relatively small samples 
(Long & Ervin, 2000).  

The HC3 estimator of ∑  ̂  is defined as  

                 [
  
 

       
 ]            

    (6) 
Notice that HC3 weights each squared OLS residual 

by a factor of 
 

       
  rather than 

 

     
.  

   
Cribari-Neto (HC4) 
The HC4 proposed by Cribari-Neto (2004) was built 
under HC3, and is defined as follows: 

             
  ̂              

   (7) 
where 

 ̂      [
  
 

      
  
]    

Similar to this, Cribari-Neto et al. (2007) suggested a 
different tweak to the exponent (1 – hi) of HC4 to 
determine the degree of maximal leverage.  
 
Wald test 
A parametric statistical test called the Wald test can 
determine whether a group of independent variables 
is considered to be "significant" for a model or not.  
If a variable improves the model in any way, it is 
seen to be "significant." Variables that don't 
contribute to the model's value can be removed 
without the model being significantly affected. The 
Wald Test statistic formula is: 

   
[ ̂   ]

 

      ̂ 
      ̂ [ ̂     ]

 
   

    (8) 

Where  ̂ = Maximum Likelihood Estimator (MLE) 

    ̂) = expected fisher information (evaluated at the 
MLE) 
Basically, the test looks for differences: Θ

0
 – Θ. The 

general steps are: 
1. Find the MLE. 
2. Find the expected Fisher information. 
3. Evaluate the Fisher information at the MLE. 
With the combination of the MLE and Fisher 
information, the Wald test is very complex to work 
and is not usually calculated by hand. Many software 
applications can run the test as in the case of this 
study. 
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RESULTS 
  

Table 1: Test for presence of Heteroscedasticity using Breush-Pagan Godfrey test Heteroskedastidty 
Test: Breusch-Pagan-Godfrey Null hypothesis: Homoskedasticity 
 

F-statistic  
Obs*R-squared  
Scaled explained SS 

2.331532 
22.16362 
1074.836 

Prob. F (10,226) 0.0124  
Prob. Chi-Square (10) 0.0143  
Prob. Chi-Square(10) 0.0000 

Source: E-view 12 output 
 
Table 1 above demonstrated that there was a 
presence of heteroskedasticity in the dataset by 
using the Breush-Pagan Godfrey test. The Prob-Chi-
square value obtained for all ten variables were 
below the critical value of = 0.05. Given this, the "null 

hypothesis," which asserts that the model does not 
contain any heteroscedasticity, is shown to be false, 
which indicates that heteroscedasticity does exist in 
the data.

 
Table 2: OLS regression analysis Estimating Pulse rate using standard error estimates. 
Method: Least Squares 
 

Variable Coefficient Std. Error t-Statistic Prob. 

AGE -0.004655 0.025190 -0.184785 0.8536 

CLAP 0.477972 0.199601 2.394642 0.0175 

EXER 0.008630 0.175477 0.049178 0.9608 

FOLD 0.308323 0.255481 1.206832 0.2288 

HEIGHT 1.018928 0.092233 11.04733 0.0000 

NW.HND 0.068170 0.098641 0.691096 0.4902 

SEX 0.232397 0.388943 0.597510 0.5508 

SMOKE 0.134911 0.191043 0.706181 0.4808 

W_HND -2.682422 0.538150 -4.984525 0.0000 

WR HND -0.371974 0.471016 -0.789727 0.4305 
C -95.11930 25.15933 -3.780677 0.0002 

R-squared 0.952640 Mean dependent var 73.94093 

   Adjusted R-squared 0.950544 S. D. dependent var 10.88211 

S.E. of regression 2.420033 Akaike into criterion 4.650741 

Sum squared resid 1323.582 Schwarz criterion 4.811706 

Log-likelihood -540.1128 Hannan-Quinn criter. 4.715620 
F-statistic 454.5945 Durbin-Watson stat 0.698392 

Prob(F-statistic) 0.000000   ..   

Source: E-view 12 output 
 
Table 2 revealed the OLS regression estimates and 
the estimated standard errors and p values for every 
regression coefficient. Pulse rate is significantly 
related to clap, height and w_hnd with p-values that 
are lower than the critical level of α = 0.05, which 

leads to the rejection of the null hypothesis. This 
agrees with (Berry, 1993) study which revealed that 
the effects of assumption violations in such a 
scenario can move standard errors and p-values in 
unpredictable ways.
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Table 3: White (HC0) analysis Estimating Pulse rate using standard error estimates White (HC0) heteroskedasticity-

consistent standard errors & covariance 

Variable Coefficient Std.Error t-Statistic Prob. 

AGE -0.004655 0.010208 -0.455982 0.6488 

CLAP 0.477972 0.236649 2.019754 0.0446 

EXER 0.008630 0.132496 0.065131 0.9481 

FOLD 0.308323 0.319730 0.964324 0.3359 

HEIGHT 1.018928 0.160266 6.3577 14 0.0000 

NW_HND 0.068 170 0.114769 0.593981 0.5531 
SEX 0.232397 0.560364 0.414725 0.6787 

SMOKE 0.134911 0.128 123 1.052980 0.2935 
W_HND -2.682422 1.458466 -1.839208 0.0672 

WR_HND -0.371974 0.852508 -0.436329 0.6630 
c -95.11930 45.84260 -2.074911 0.0391 

R-squared 0.952640 Mean dependent var 73.94093 

Adjusted R-squared 0.950544 S.D. dependent var 10.88211 

S.E. of regression 2.420033 Akaike info criterion 4.650741 

Sum squared resid 1323.582 Schwarz criterion 4.811706 
Log-likelihood -540.1128 Hannan-Quinn criter. 4.715620 

F-statistic 454.5945 Durbin-Watson stat 0.698392 

Prob(F-statistic) 0.000000 Wald F-statistic 1247.104 

Prob(Wald F-statistic) 0.000000     

Source: E-view 12 output 
 
Table 3 revealed that only clap and height have p-
values that are lower than the critical level of = 0.05, 

indicating that they are significantly related to pulse 
rate. 

 
Table 4: White-Hinkley (HC1) analysis Estimating Pulse rate using standard error estimates White-Hinkley (HC1) 

heteroscedasticity-consistent standard errors & covariance 
     
     
Variable Coefficient Std. Error t-Statistic Prob.  
     
     
AGE -0.004655 0.010454 -0.445275 0.6565 

CLAP 0.477972 0.242340 1.972325 0.0498 

EXER 0.008630 0.135682 0.063601 0.9493 

FOLD 0.308323 0.327418 0.941679 0.3474 

HEIGHT 1.018928 0.164120 6.208420 0.0000 

NW_HND 0.068170 0.117528 0.580033 0.5625 

SEX 0.232397 0.573840 0.404987 0.6859 

SMOKE 0.134911 0.131204 1.028253 0.3049 

W_HND -2.682422 1.493538 -1.796018 0.0738 

WR_HND -0.371974 0.873008 -0.426083 0.6705 

C -95.11930 46.94499 -2.026187 0.0439 
     
     
R-squared 0.952640  Mean dependent var 73.94093 

Adjusted R-squared 0.950544  S.D. dependent var 10.88211 

S.E. of regression 2.420033  Akaike info criterion 4.650741 

Sum squared resid 1323.582  Schwarz criterion 4.811706 

Log-likelihood -540.1128  Hannan-Quinn criter. 4.715620 

F-statistic 454.5945  Durbin-Watson stat 0.698392 

Prob(F-statistic) 0.000000  Wald F-statistic 1189.222 

Prob(Wald F-statistic) 0.000000    
     
     

Source: E-view 12 output 
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Table 4 also revealed that only clap and height have 
p-values that are lower than the critical level of = 

0.05, indicating that they are significantly related to 
pulse rate. 

 
Table 5: MacKinnon-White (HC2) analysis Estimating Pulse rate using standard error estimates 
 

MacKinnon-White (HC2) heteroskedasticity-consistent standard errors & covariance 
 

Variable Coefficient Std.Error t-Statistic Prob. 

AGE -0.004655 0.010829 -0.429839 0.6677 

CLAP 0.477972 0.246311 1.940523 0.0536 
EXER 0.008630 0.137627 0.062702 0.9501 
FOLD 0.308323 0.332879 0.926233 0.3553 
 HEIGHT 1.018928 0.167062 6.099083 0.0000 
NW_HND 0.068 170 0.119465 0.570629 0.5688 
SEX 0.232397 0.583458 0.398310 0.6908 
SMOKE 0.1349 11 0.13326 1 1.012379 0.3124 
W_HND -2.682422 1.520296 -1.764408 0.0790 
WR_HND -0.371974 0.888774 -0.418525 0.6760 
c -95.11930 47.79 109 -1.990314 0.0478 

R-squared 0.952640 Mean dependent var 73.94093 

Adjusted R-squared 0.950544 S.D. dependent var 10.88211 
S.E. of regression 2.420033 Akaike info criterion 4.650741 
Sum squared resid 1323.582 Schwarz criterion 4.811706 
Log-likelihood -540.1128 Hannan-Quinn criter. 4.715620 
F-statistic 454.5945 Durbin-Watson stat 0.698392 
Prob(F-statistic) 0.000000 Wald F-statistic 1175.282 
Prob(Wald F-statistic) 0.000000     

Source: E-view 12 output 
 
Table 5 shows results obtained using HC2, it 
displayed the OLS regression estimates and the 
estimated standard errors and p values for each 

regression coefficient. In these cases, pulse rate is 
significantly related to only height with p-value less 
than the critical level of α = 0.05 

 
Table 6: Davidson-MacKinnon (HC3) analysis Estimating Pulse rate using standard error estimates 

Davidson-MacKinnon (HC3) heteroskedasticity-consistent standard errors & covariance 
 

Variable Coefficient Std.Error t-Statistic Prob. 

AGE -0.004655 0.011566 -0.402455 0.6877 

CLAP 0.477972 0.256394 1.864208 0.0636 
EXER 0.008630 0.142999 0.060347 0.9519 
FOLD 0.308323 0.346595 0.889577 0.3746 
HEIGHT 1.018928 0.174157 5.8506 11 0.0000 
NW_HND 0.068 170 0.124367 0.548137 0.5841 
SEX 0.232397 0.607553 0.382514 0.7024 
SMOKE 0.1349 11 0.138633 0.973150 0.3315 
W_HND -2.682422 1.584775 -1.692620 0.0919 
WR_HND -0.371974 0.926642 -0.401421 0.6885 
c -95.11930 49.82522 -1.909059 0.0575 

R-squared 0.952640 Mean dependent var 73.94093 

Adjusted R-squared 0.950544 S.D. dependent var 10.88211 
S.E. of regression 2.420033 Akaike info criterion 4.650741 
Sum squared resid 1323.582 Schwarz criterion 4.811706 
Log-likelihood -540.1128 Hannan-Quinn criter. 4.715620 
F-statistic 454.5945 Durbin-Watson stat 0.698392 
Prob(F-statistic) 0.000000 Wald F-statistic 1106.794 
Prob(Wald F-statistic) 0.000000   

Source: E-view 12 output 
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Also table 6 results obtained using HC3 equally 
displayed the OLS regression estimates and the 
estimated standard errors and p values for each 

regression coefficient. This case also show that pulse 
rate is significantly related to only height with p-value 
less than the critical level of α = 0.05 

 
Table 7: Cribari-Neto (HC4) analysis Estimating Pulse rate using standard error 
estimates Cribari-Neto (HC4) heteroskedasticity-consistent standard errors & covariance 

 

Variable Coefficient Std.Error t-Statistic Prob. 

AGE -0.004655 0.012815 -0.363235 0.7168 

CLAP 0.477972 0.253447 1.885885 0.0606 
EXER 0.008630 0.141576 0.060953 0.9515 
FOLD 0.308323 0.342538 0.900 114 0.3690 
HEIGHT 1.018928 0.172353 5.9 11855 0.0000 
NW_HND 0.068170 0.122955 0.554431 0.5798 
SEX 0.232397 0.600566 0.386964 0.699 1 
SMOKE 0.1349 11 0.137218 0.983187 0.3266 
W_HND -2.682422 1.566851 -1.711983 0.0883 
WR_HND -0.371974 0.917247 -0.405533 0.6855 
C -95.11930 49.31014 -1.92900 1 0.0550 

R-squared 0.952640 Mean dependent var 73.94093 

Adjusted R-squared 0.950544 S.D.dependent var 10.88211 
S.E. of regression 2.420033 Akaike info criterion 4.650741 
Sum squared resid 1323.582 Schwarz criterion 4.811706 
Log-likelihood -540.1128 Hannan-Quinn criter. 4.715620 
F-statistic 454.5945 Durbin-Watson stat 0.698392 
Prob(F-statistic) 0.000000 Wald F-statistic 1140.707 
Prob(Wald F-statistic) 0.000000     

Source: E-view 12 output 
 
Likewise table 7 presents results obtained using HC4 
andwhich also displayed the OLS regression 
estimates and the estimated standard errors and p 

values for each regression coefficient. In these 
cases, pulse rate is significantly related to only height 
with p-value less than the critical level of α = 0.05 

 
Table 8: Comparison of Heteroskedasticity-consistent standard errors estimates 
 

 FHC0 FHC1 FHC2 FHC3 FHC4 

Wald F- 
Statistic 
 

1247.104 1189.222 1175.282 1106.94 1140.707 

P 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 4.8 revealed results of comparison between 
the different types of Heteroscedasticity-Consistent 
Covariance Matrix (HCCM) estimators. The Wald F-
statistic was used to determine which estimator 
performed better. Results disclosed that HC3 and 
HC4 performed better as they had lower test statistic 
as compared to HC0, HC1 and HC2. This discovery 
is consistent with the studies of (Simsek and Orhan, 
2016) who all revealed that the use of HC3 and HC4 
yielded better results compared to HC0, HC1 and 
HC2. 
 
DISCUSSION AND RESULTS 
The study started by carrying out diagnostic test 
(Breush-Pagan Godfrey test) to check for 
heteroscedasticity. The result revealed presence of 
heteroscedasticity, this led to the application of 
Heteroscedasticity-Consistent Covariance Matrix 
(HCCM) Estimators. When the Ordinary Least 
square was applied as shown in table 1, pulse rate 

was seen to be significantly related to clap, height 
and w_hnd. This agrees with (Berry, 1993) study 
which revealed that the effects of assumption 
violations in such a scenario can move standard 
errors and p-values in unpredictable ways. By 
applying the White heteroskedasticity-consistent 
standard errors & covariance (HC0) and White-
Hinkleyheteroscedasticity-consistent standard errors 
& covariance (HC1) estimators’ results revealed that 
only clap and height significantly related to pulse 
rate. Application of MacKinnon-White 
heteroskedasticity-consistent standard errors & 
covariance (HC2), Davidson-MacKinnon 
heteroskedasticity-consistent standard errors & 
covariance (HC3) and Cribari-Neto 
heteroskedasticity-consistent standard errors & 
covariance (HC4) showed that only height was 
significantly related to pulse rate. The results also 
showed that comparison among the HCCM 
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estimators, the HC3 and HC4 produced better 
results.  
 
CONCLUSION 
In conclusion this study reveals that the researcher's 
confidence in the validity and power of inferential 
tests in OLS regression can be increased by utilising 
an HCSE estimator rather than assuming 
homoskedasticity. It is also concluded that HC3 and 
HC4 performed better as they had lower test statistic 
as compared to HC0, HC1 and HC2. 
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