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ABSTRACT 

 
In this work, we present data envelopment analysis modeling approach for network data envelopment analysis 
where addition of efficiency is assumed for sub units or stages. The approach is applied under both constant 
return to scale and variable return to scale assumptions. We looked at the general multi stage processes classified 
as serial, parallel and non-immediate flow processes. The overall efficiency is expressed as a weighted sum of 
the efficiencies of the individual stages. We observe the more general problem of an open multistage process 
where some output from a given stage may leave the system while others become inputs to the next stage. We 
finally apply our approach to the numerical example. 
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INTRODUCTION 
 
Data Envelopment Analysis (DEA) is a methodology 
that is based on the application of linear programming 
approach for evaluating the performance of a set of 
peer entities called Decision-Making Units (DMUs), 
which convert multiple inputs into multiple outputs. 
Data envelopment analysis have seen a great variety 
of applications in evaluating the performances of 
many different kinds of entities engaged in many 
different activities in many different contexts in many 
countries. From beginning DEA technique, this 
approach has been widely used in many real-world 
problems and applications [Emrouznejad and Yang, 
(2018); Liu et al., (2013); Peykani, Farzipoor Saen, et 
al., (2021)]. Network DEA models consider systems 
that have a network structure in which system inputs, 
after passing several intermediate interactions, are 
transformed into intermediate productions and finally 
leave the system as output products. However, many 
realworld cases do not necessarily conform to this 
network structure, which is related to the system 
outputs during multiple time periods or the same 
dynamic impacts. These structures cannot handle 
dynamic impacts. Therefore, this paper presents a 
novel structure that can consider the dynamic impacts 
and influences of sub-units on each other at various 
time periods.  
 
 
 
 
 
 
 

Besides, two models based on slack variables are 
proposed which can consider dynamic effects and 
calculate the efficiency of such networks. Salehzadeh 
et al. (2024). According to the work of Chen et al. 
(2009) and Cook et al. (2010), the derivation of a radial 
measure of efficiency can be decomposed into a 
convex combination of radial measures for the 
individual components that make up the DMU. We 
note that in these two work, the weights used for 
individual stage’s efficiency aggregation are variables, 
and not imposed exogenously. Chen et al. (2009) 
presented a methodology for representing overall 
radial efficiency of a DMU as an additive weighted 
average of the radial efficiencies of the individual 
stages or components that make up the DMU. While 
the approach of Chen et al. (2009) can be extended to 
DMUs that have more than two stages, such an 
extension requires that the multi-stage processes 
share the unique feature that all outputs from any 
stage represent the only inputs to the next stage. In 
other words, except for the first stage, all other stages 
do not have their own independent inputs (and/or 
outputs), that enter (exit) the process at that point. 
While these closed systems do exist, the more 
prevalent case is where each stage is open, that is it 
has its own inputs (and/or outputs) in addition to the 
intermediate measures (that exist in-between two 
stages).  
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Such open multistage structures are relatively 
common, particularly in processing industries. This 
study starts with the approach of Chen et al (2009) 
where a simple two-stage network process is studied. 
We then present the work of Cook et al (2010) where 
additive efficiency decomposition approach is applied 
to general network structures. Examining open serial 
systems, we then present a model for measuring the 
overall radial efficiency of the general serial multi-
stage process, and show that this measure can be 
decomposed into radial measures of efficiency for the 
components or stages making up the overall process. 
Farhadet al. (2024) used additive efficiencey 
decomposition forkidney allocation problem 
undermedical andlogistical uncertainty. Motivated by 
the work of Atul, et al. (2024) on paralel network 
envelopment analysis and Wade and Joe (2014) who 
presented a model for measuring the overall radial 
efficiency of the general serial multistage process, and 
show that this measure can be decomposed into radial 
measures of efficiency for the components or stages 
making up the overall process, the model is extended 
to structures with more complex multistage processes. 
Ming-miin and 1. Li-Hsueh (2014) illustrated that in 
order to conform to real operational situations, the 
construction of a DEA model should consider and 
match the internal operational characteristics of 
decision-making units. Some DEA application models  
 
 

 
 
 
based on the multi-activity frame work or network 
structure are provided to describe the internal 
structure of financial institutions and hotels. These 
models provide managerial insight into the sources of 
inefficiency within an organization. 
2. preliminaries 
Definition 2.1. DEA Efficiency: the performance of 
DMU0 is fully (100%) efficient if and only if both 

(1) θ∗ = 1 and 

(2) all slack  

where θ∗ is the optimal efficiency score 
Definition 2.2. Relative Efficiency: a DMU is said to 
be rated as fully (100%) efficient on the basis of 
available evidence if and only if the performance of 
other DMUs does not show that some of it input or 
output can be improved without worsening some of its 
other inputs or outputs. let yrj(r = 1,...,s) be the output 
levels secured by DMUj and xij the levels of input (i = 

1, ..., m) it uses, ∀i. 
Definition 2.3. Decision Making Units (DMU) refer to 
any entity that is to be evaluated in terms of its ability 
to convert inputs to outputs. 
Definition 2.4. Efficiency (Extended Pareto - 
Koopmans Definition): full (100%) efficiency is 
attained by any decision making units if and only if non 
of it input or output can be improved without worsening 
some of its other input or output. 
Slack Based Measure of Efficiency: this is formulated 
as

  (2.1) 

subject to 
xo = Xλ + S− yo = Y λ − S+ λ ≥ 0,S− ≥ 0,S+ ≥ o. 
let an optimal solution of (SBMin) be (Pin,λ∗,S−∗,S+∗) then we have the relationship  

where, x, y are input and output respectively, s is a slack variable andλ is the weight. 
Theorem 2.1. The equality Pin∗

 = θCCR∗
 holds if and only if the input-oriented CCR model has zero inputslacks for 

every optimal solution. 
Remark: the strict inequality Pin∗

 < θCCR∗
 if and only if the CCR solution reveals an input mix efficiency. 

 
From A Fractional To A Linear Program. We now replace the fractional program formulated as: 

  (2.2) 

subject to 

 
where µ is the weight associated with output and ν is the weight associated with input. 
Model (2.2) is equivalent to the following linear programming after the CharnesCooper(1962) transformation. 
maxθ = µ1y1o + ··· + µsyso (2.3) 
µ,ν 
subject to 
ν1x1o + ··· + νmxmo = 1 
µ1y1j + µ2y2j + ··· + µsysj ≤ ν1x1j + ν2x2j + ··· + νmxmj (j = 1,2,··· ,n) ν1,ν2,··· ,νm ≥ 0 
µ1,µ2,··· ,µm ≥ 0 
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Theorem 2.2. The fractional program (2.2) is 
equivalent to linear program (2.3). 
Proof. Under the nonzero assumption of ν and x > 0, 
the denominator of the constraint of (2.2) is positive 
for every j, and hence we obtain (2.2) by multiplying 
both sides of the first constraint by the denominator. 
Next we note that a fractional number is invariant 
under multiplication of both numerator and 
denominator by the same nonzero number. After 
making this multiplication, we set the denominator of 
(2.2) equal to 1, more of it to a constraint , as is done 
on the first constraint of (2.3)and maximize the 
numerator, resulting in (LP). Let an optimal solution of 

LP be (ν = ν∗,µ = µ∗) and the optimal objective value 

θ∗. The solution (ν = ν∗,µ = µ∗) is also optimal for FP, 
since the above transformation is reversible under the 
assumption above. FP and LP therefor have the same 

optimal objective value θ∗. Wade and Joe (2014) 
Also, the measures of efficiencies presented are unit 
invariant, i. e., they are independent of the unit of 
measurement used in the sense that multiplication of 
each output by a constant αi > 0 , i = 1,2,··· ,m and 
each input by a constant βr > 0,r = 1,2,··· ,s does not 
change the result. Precisely, we have 

(units Invariant) Max θ = θ∗ in equation (2.2) and (2.3) 
are independent of the unit in which the input and 

output are measured provided these units are the 
same for every decision making units. 
 
MAIN RESULTS 
ADDITION OF SMALLER PART’S EFFICIENCY IN 
NETWORK PROCESSES 
In data envelopment analysis original settings, only 
the inputs supplied to the system and the outputs 
produced from it are considered, neglecting the 
operations and interrelations of the processes within 
the system. The system is thus called a black-box 
system, and the associated model a black-box one. 
Usually a production system is composed of several 
interrelated processes. When the internal structure is 
considered, one faces a network system. Comparing 
the black-box system with the network system, it is 
noted that, for each DMU j, the sum of the exogenous 
inputs of all processes is equal to the inputs of the 
system, and the sum of the exogenous outputs of all 
processes is equal to the outputs of the system. 
Moreover, the sum of the intermediate products used 
by all processes is equal to the sum of the 
intermediate products produced by all processes; that 
is, all intermediate products are produced and 
consumed within the system. Several models for 
measuring the efficiency of a network system have 
been developed.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADDITION OF TWO STAGE UNDER CONSTANT RETURN TO SCALE. Suppose we have n DMUs, and that 
each DMUj(j = 1,2,...,n) has m inputs to the first stage, xij(i = 1,2,...,m), and D outputs from this stage, zdj,(d = 
1,2,...,D). These D outputs then become the inputs to the second stage, and are referred to as intermediate 
measures. The outputs from the second stage are denoted yrj,(r = 1,2,...,s) and γ is the weight associated with 
intermediate output. Based upon the Constant return to scale model (Charnes et al. 1978), the (Constant return 
to scale efficiency scores for DMUjo in the first and second stages can be calculated in the following two Constant 
return to scale equations (3.1) and (3.2), respectively: 

  (3.1) 
subject to 
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Figure 1. Two stage process 
γdA,νi ≥ 0 

  (3.2) 

subject to 

 
The overall CRS efficiency score can be calculated from the following CRS equation below 

  (3.3) 

subject to 

 
D 
Given the inputs to the first stage xij, that stage yields the optimal intermediate measure P γizdj which is 
d=1 then used as the (aggregated) input in the second stage. Thus, it is assumed that γd

A = γd
B = γd and the overall 

efficiency of a DMU is given by: 

  (3.4) 

subject to 

 
The objective function of equation (3.4) is that the overall efficiency is the product of the efficiencies of the two 
stages, i.e., 

 
The key and rational assumption is that the value of the outputs from the first stage is reasonably the value when 
they assume the additional role as inputs to the second stage, that is γd

A = γd
B. Without this assumption, 

D D 
(1) equation (3.4) becomes a non linear program, as the terms P γd

Azdo and P γd
Bzdo cannot be canceled 

d=1 d=1 
in the objective function. 
 
 
 
 

472                                 J. O. USHIE, J. A. ABUCHU, J. O. ACHUOBI AND L. B. AKAEGBU 



 

 
 
 
(2) solving equation (3.4) is equivalent to applying the constant return to scale model to stages 1 and 2 
independently, and then taking the geometric mean of the two CCR efficiency scores. 
For the purpose of general two stage modeling processes, and specifically to allow for variables return to scale 
settings, rather than combine the stages in a multiplicative (geometric) manner as in Kao and hwang (2008) and 
liang et al (2008), we use a weighted additive (arithmetic mean) approach. 
The multiplicative and additive models are two different but equally valid ways of aggregating the components of 
a two stage process. Thus, overall efficiency of two stage process is 

, (3.5) 

where w1 and w2 are user-specified weights such that w1 +w2 = 1. These weights are not optimization variables, 
but rather are functions of the optimization variables. Thus, overall efficiency of the process is by solving the 
following problem: 

  (3.6) 

subject to 

. 

It is obvious that equation (3.6) cannot be turned into a linear program using the usual Charnes and Cooper 
(1962) transformation. For instance, if we let 

 , and set πd
1 = t1.γd,w1 = t1.νi,µr = t2.ur,πd

2 = t2.γd then the transformation 

πd
1 = t1.γd, and πd

2 = t2.γd imply a linear relationship between πd
1 and πd

2 , namely, 

 . Then, equation (3.6) becomes 

  (3.7) 

subject to 
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which is a non linear program. Letting P νixijo + P γdzdjo the total size of (amount of resources consumed 
i=1 d=1 m D 
by) the two stage process, and P νixijo and P γdzdjo, the sizes of the stages 1 and 2 respectively, we define 

i 

. (3.8) 
Then, the objective function of equation (3.6) becomes 

. (3.9) 

Under constant return to scale case, equation (3.6) becomes 

  (3.10) 

subject to 

 
s D 
X X 
µryrjo + πdzdjo 
r=1 d=1 γd,ur,νi ≥ 0, j = 1,2,...,n. 
Using the Charnes- Cooper transformation, equation (3.10) is equivalent to 
s D 
maxXµryrjo + Xπdzdjo (3.11) 
r=1 d=1 subject to 
D m 
X X 
πdzij − wixij ≤ 0 
d=1 i=1 s D 
X X 
µryrj − πdzdj ≤ 0 
r=1 d=1 m D 
Xwixijo + X πdzdjo = 1 
i=1 d=1 
πd,µr,wi ≥ 0, j = 1,2,...,n 
 
When the optimal solution of equation (3.11) is obtained, we can calculate the efficiency of the two individual 
stages. However, equation (3.11) can have alternative optimal solutions. As a result, the decomposition of the 
overall efficiency defined in (3.5) may not be unique. Therefore we follow Kao and Hwangs (2008) approach to 
find a set of multipliers which produces the largest first (or second) stage efficiency score while maintaining the 
overall efficiency score. The following procedure is therefore proposed. Given the overall efficiency obtained from 
(3.11) (denoted as θo), we calculate either the first stage’s efficiency (θj

1) or the second stage’s efficiency (θj
2) 

first, and then derive from that the efficiency of the other stage. In case the first stage is to be given pre-emptive 
priority, the following model determines its efficiency ( ), while maintaining the overall efficiency score at θo 

calculated from equation (3.11). 

  (3.12) 
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subject to 

 
or equivalently, 
D 
θo1∗ = maxXπdzdjo (3.13) 
d=1 
subject to 

 
The efficiency for the second stage is then calculated as 

 
where  and  represent optimal weights obtained from model (3.11) by way of (3.8). Note that here we use 

 to indicate that the efficiency of the first stage is given the pre-emptive priority and is optimized first. In 

this case, the resulting second stage efficiency score is denoted as . In case the second stage is to be given 

pre-emptive priority, the following model determines the second stage’s efficiency ( ) while maintaining the 

overall efficiency score at θo calculated from equation (3.11). 

  (3.14) 
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subject to 

 
or equivalently, 
s 
θo2∗ = maxXµdyrjo (3.15) 
r=1 
subject to 
D m 
X X 
πdzij − wixij ≤ 0 
d=1 i=1 s D 
X X 
µryrj − πdzdj ≤ 0 
r=1 d=1 
D s m 
X X X 
πdzijo + µryrjo − θo wixijo = θo 
d=1 i=1 i=1 
D 
X 
πdzdjo = 1 d=1 πd,µr,wi ≥ 0, j = 1,2,...,n 

and the efficiency for the first stage is calculated as  

similarly, we use (*) in to indicate that second stage is given pre-emptive priority in terms of its efficiency being 

optimized first. In this case, the resulting first stage efficiency score is denoted as θo
1. Finally, note that if 

, then this indicates that we have a unique efficiency decomposition. 

3.2. ADDITION OF TWO STAGE UNDER VARIABLES RETURN TO SCALE. The variables return to Scale 
efficiency scores for the two stages can be determined by the following variables return to Scale efficiency models 
Banker et al. (1984) 

  (3.16) 

subject to 

 
and 

  (3.17) 
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subject to 

 
The approach of Kao and Hwang (2008) and Liang et al. (2008) cannot be extended to the variables return to 
scale assumption, because  cannot be converted into a linear form under the condition of , due to 

the free variable UA in the numerator of . On the other hand, using Wade and Joe (2014) approach, we have 

the variables return to scale overall efficiency as using the weights defined under the constant return to scale 
assumption 

  (3.18) 

subject to 

 
γd,νi,ur ≥ 0 UA,UBfree of sign 
This is an input-oriented model. If we use output-oriented variables return to scale models, the weights will be 
defined as 

 

and equation (3.18) is equivalent to the following linear programming program 
s D 
maxXµdyrjo + U1 + Xπdzijo + U2 (3.19) 
r=1 d=1 subject to 
D m 
Xπdzij − Xwixij + U 1 ≤ 0 
d=1 i=1 s D 
Xµryrj − Xπdzdj + U 2 ≤ 0 
r=1 d=1 m D 
X X 
wixijo + πdzijo = 1 
i=1 d=1 
πd,µr,wi ≥ 0, j = 1,2,...,n U1,U2free in sign 
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Once we obtain the overall efficiency, models similar to (3.13) and (3.15) can be developed to determine the 
efficiency of each stage. Specifically, assuming pre-emptive priority for stage 1, the following model determines 
that stage’s efficiency ( ), while maintaining the overall efficiency score at Qo calculated from model (3.19). 

D 

Q1o∗ = maxXπdzdjo + U1   (3.20) 
d=1 
subject to 
D m 
Xπdzij + U 1 − Xwixij ≤ 0 
d=1 i=1 s D 
X X 
µryrj − πdzdj ≤ 0 
r=1 d=1 
D s 
(1 − Qo)Xπdzijo + Xµryrjo + U1 + U2 = Qo 
d=1 i=1 

 
Figure 2. Serial multistage process 

 free in sign 

Similarly, if stage 2 is to be given pre-emptive priority, the following model determines the efficiency (Qj
2∗) for that 

stage, while maintaining the overall efficiency score at Qo calculated from equation (3.4). 

  (3.21) 

subject to 

 
πd,µr,wi ≥ 0, j = 1,2,...,n, U1,U2 free in sign 
Once the efficiency score for one of the stages is calculated using (3.5) or (3.6), the score for the other stage can 
be derived in the similar manner as in the constant return to scale case. 
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ADDITION OF GENERAL MULTISTAGE PROCESSES 
Serial Processes. considering the H-stage process, we denote the input vector to stage 1 by zo. The output 
vectors from stage h (h = 1, ... , H) take two forms, namely zh

1 and zh
2. Here, zp

1 represents output that leaves the 
process at this stage and is not passed on as input to the next stage. The vector  represents the amount of 

output that becomes input to the next (h+1) stage. These types of intermediate measures are called links in Tone 
and Tsutsui (2009). In addition, there is the provision for new inputs zp

3 to enter the process at the beginning of 
stage h + 1. Specifically, when h = 2, 3, ..., we define 
1 zhr

j1 the rth component (r = 1;...;Rp) of the Rp-dimensional output vector for DMUj flowing from stage h, that leaves 
the process at that stage, and is not passed on as an input to stage h + 1. 

 the kth component (k = 1;...;Sh) of the Sh-dimensional output vector for DMUj flowing from stage 

h, and is passed on as a portion of the inputs to stage h + 1. 
 the ith component (i = 1;...;Ih) of the Ih-dimensional input vector for DMUj at the stage h + 1 , 

that enters the process at the beginning of that stage. 
In the last stage H, all the outputs are viewed as zhr

j1, as they leave the process. We denote the multipliers 
(weights) for the above factors as 
1 uhr is the multiplier for the output component zhr

j1 flowing from stage h. 

2 γhk is the multiplier for the output component  at stage h, and is as well the multiplier for that same 

component as it becomes an input to stage h + 1. 
3 νpi is the multiplier for the input component zhi

j3 entering the process at the beginning of stage h + 1. 
Therefore, when h = 2,3,..., the efficiency ratio for DMUj (for a given set of multipliers) would be expressed as 
follows: 

  (4.1) 

! 
Here, there are no outputs flowing into stage 1. The efficiency measure for stage 1 of the process (namely, h = 
1) , for DMUj becomes 

  (4.2) 

where zoi
j are the only inputs to the first stage represented by the input vector zo. We claim that the overall 

efficiency measure of the multistage process can reasonably be represented as a convex linear combination of 
the h (stage-level) measures, namely 
H H 
θ = Xwhθh where Xwh = 1 
h=1 h=1 
The weights wp are intended to represent the relative importance or contribution of the performances of individual 
stages h to the overall performance of the entire process. One reasonable choice for weights wp is the proportion 
of total resources for the process that are devoted to stage h, and reflecting the relative size of that stage. To be 
more specific, 

 
represents the total size of or total amount of resources consumed by the entire process, and we define the wh to 
be the proportion of the total input used at the hth stage. We then have 

  (4.3) 

. (4.4) 
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Thus, we can write the overall efficiency θ in the form 

. (4.5) 

We then set out to optimize the overall efficiency θ of the multistage process, subject to the restrictions that the 
individual measures θh must not exceed unity, or in the linear programming format, after making the usual Charnes 
and Cooper transformation, 

! 

(4.6) 
subject to 

 Io  Ih  X   o X X o2 X o3 
ν  oizoi +  γh−1kzp−1k + νh−1izh−  = 1 
i=1 h=2 k=1 i=1 
 R1 s1 ! Io 
X j1 X j2 X j 
u1rz1r + γ1kz1k ≤ νoizoi 
r=1 k=1 i=1 
  

uhrzhr + γhkzhk ≤  γh−1kzp−1k + νh−1izh−1i  ∀j 
r=1 k=1 k=1 i=1 uhr,γhr,νhi,νoi ≥ 0. 
Remarks: 
• we should impose the restriction that the overall efficiency scores for each j should not exceed unity, but 
since these are redundant, this is unnecessary. 
• more so, that the wh, as defined above, are variables related to the inputs and the intermediate measures. 
By virtue of the optimization process, it can turn out that some wh = 0 at optimality. To overcome this problem, 
one can impose bounding restrictions wh > c, where c is a selected constant. 
4.2. Parallel Processes. The model in the previous section to handle such strict serial processes is easily 
adapted to more general network structures. Specifically, the efficiency ratio for an overall process can be 
expressed as the weighted average of the efficiencies of the individual components. The efficiency of any given 
component is the ratio of the total output to the total input corresponding to that component. Again, the weight wh 

to be applied to any component p is expressed as wh = (component p input)/(total input across all components). 
There is no convenient way to represent a network structure that would lend itself to a generic mathematical 
representation analogous to equation (4.6) above. The sequencing of activities and the source of inputs and 
outputs for any given component will differ from one type of process to another. However, as a simple illustration, 
consider the following two examples of network structures. 
Consider the process with an initial input vector zo enters component 1. Three output vectors exit this component, 
that is  leaves the process,  is passed on as an input to component 2, and  as an input to component 3. 

Additional inputs  and  enter components 2 and 3 respectively, from outside the process. Components 2 and 

3 have  and , respectively as output vectors which are passed on as inputs to component 4, where a final 

output vector  is the result. Then we have the following Efficiencies Component 1 efficiency ratio:  
 

Component 2 efficiency ratio:   

Component 3 efficiency ratio:   Component 4 efficiency ratio:   

The total (weighted) input across all components is given by the sum of the denominators of θ1 through θ4, namely 
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Figure 3. Parallel multistage process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. General multistage process 
 
Thus, we now express the wh as 
w1 = νozo/I w2 = (γ12z12 + ν1z14)/I w3 = (γ13z13 + ν2z15)/I w4 = (γ21z21 + γ31z31)/I 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Non Immediate Successor Flow 
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Table 1: Data set in Tone and Tsutsui (2009) 
 

DMU stage 1 stage 2  stage 3  intermediate 
measure 

 

 input 1 input 2 output 2 input 3 output3 link12 link23 

 (X1) (X2) (y1) (x3) (y3) (z1) (z2) 

A 0.838 0.277 0.879 0.962 0.337 0.894 0.362 

B 1.233 0.132 0.538 0.443 0.18 0.678 0.188 

C 0.321 0.045 0.911 0.842 0.198 0.836 0.207 

D 1.483 0.111 0.57 0.467 0.491 0.869 0.16 

E 1.592 0.208 0.086 1.073 0.372 0.693 0.407 

F 0.79 0.139 0.722 0.545 0.253 0.966 0.269 

G 0.451 0.075 0.509 0.366 0.241 0.647 0.257 

H 0.408 0.074 0.619 0.229 0.097 0.756 0.103 

I 1.864 0.061 1.023 0.691 0.38 1.191 0.402 

J 1.222 0.149 0.769 0.337 0.178 0.792 0.187 

therefore, the overall network efficiency ratio is given by 

  (4.7) 

and one then proceeds, as in (4.6) above, to derive the efficiency of each DMU and its components. 
4.3. Non Immediate Successor Flows. In the previous example all flows of outputs from a stage or component 
either leave the process entirely or enter as an input to an immediate successor stage. In non immediate 
successor flow, the same is true except that there is more than one immediate successor of stage 1. 
Consider Figure 5, here, the inputs to stage 3 are of three types, namely outputs from stage 2, inputs coming 
from outside the process, and outputs from a previous, but not immediately previous stage. Again the above 
rationale for deriving weights wh can be applied and a model equivalent to (4.6) solved to determine the 
decomposition of an overall efficiency score into scores for each of the components in the process. 
5. Application 
We finally apply our approach to the numerical example used in W.D.Cook and J. Zhu (2014). Table 1 provides 
the data. We have two intermediate measures or outputs flow from one stage to the other. Table 2 reports the 
results. In this case, if we do not impose a lower bound for the wp(p = 1, 2, 3), we have some wp = 1 at optimality 
(for DMUs B, D, I and J). Therefore, we impose wp > 0.1 (p = 1, 2, 3) in model (4.6). Because our approach is 
different from Tone and Tsutsuis (2009) and our choice of weights introduces restrictions on the multipliers, our 
results are different from theirs. 
 

Table 2: result on three- stage process 
 

DMU overall stage 
1 

stage 
2 

stage 
3 

w1 w2 w3 

A 0.579 0.410 0.646 0.971 0.46 0.41 0.13 

B 0.386 0.211 0.339 0.414 0.10 0.10 0.80 

C 1.000 1.000 1.000 0.999 0.42 0.48 0.10 

D 0.917 0.225 0.942 1.000 0.10 0.10 0.80 

E 0.478 0.167 0.501 0.953 0.36 0.42 0.22 

F 0.598 0.470 0.656 0.984 0.51 0.37 0.11 

G 0.762 0.551 0.717 0.983 0.24 0.44 0.32 

H 0.675 0.711 0.599 0.843 0.46 0.44 0.10 

I 0.922 0.245 1.000 0.990 0.10 0.64 0.26 

J 0.476 0.249 0.423 0.511 0.10 0.10 0.80 

 
CONCLUSION 
Original studies in DEA view systems as a whole, 
ignoring the performance of their component 
processes in calculating the relative efficiency of a set 
of production systems. The deficiencies are, firstly, 
that the efficiency score may not properly represent 
the aggregate performance of the processes of a 
system.  

Secondly, it does not show which process causes the 
low efficiency of an inefficient system. The existing 
models in network DEA partially improve these 
deficiencies. Since, in terms of the multipliers used, 
each process is independent, a mathematical 
relationship between the process efficiencies of the 
system and component processes at the same time is 
not revealed.  
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In order to identify the source of inefficiency, one can 
calculate the efficiency of each process 
independently. By introducing dummy processes, this 
paper transforms a network system into a series 
system, where each stage in the series is a parallel 
structure composed of a set of processes. Based on 
the series and parallel relationships in which the 
processes are connected, the efficiency, or 
inefficiency, of the system is decomposed into those 
of the component processes. Specifically, in the series 
structure the system efficiency is the product of the 
process efficiencies and for the parallel structure the 
inefficiency slack of the system is the sum of the 
inefficiency slacks of the component processes. Thus, 
the decisive process causing the low efficiency of the 
system can be identified. A difficulty frequently 
encountered in real world applications of DEA is that 
the number of DMUs that are available is usually 
limited. A small sample size often produces results 
which are misleading. Moreover, it produces a 
relatively large proportion of efficient DMUs which 
makes the subsequent rankings difficult. 
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