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ABSTRACT

The performances of two full information techniques, Three Stage Least Squares (3SLS) and Full Information
Maximum Likelihood (FIML) of simultaneous equation models with correlated disturbance terms are compared with
the Ordinary Least Squares (OLS) method in small samples. Comparative performance evaluation of the estimators
was done using Average of Estimates, Total Absolute Bias (TAB) of Estimates, Root Mean Squared Error (RMSE)
and Sum of Squared Residuals (RSS) of parameter estimates. The results of the Monte Carlo experiment showed that
OLS is best with large negative or positive correlation, while 3SLS is best with feebly correlated error terms in the case
of replication-based averages. The total absolute biases increase consistently as the sample size increases for OLS
while FIML estimates reveal no distinct pattern. The magnitudes of the estimates yielded by two estimators, OLS and
3SLS, exhibited fairly consistent reaction to changes in magnitudes and direction of correlations of error terms.

KEYWORDS: Disturbance, Simultaneous Equation, Correlation, Structural Parameters, Bias.

1.0 INTRODUCTION The Model
The following two-equation simultaneous model
The single equation estimation methods lead to with a mixture of exactly identified and over identified
estimates that are consistent but, in general, not equations is assumed;
asymptotically efficient. The reason for lack of

asymptotic efficiency is that single equation estimators Y= BoYo + 7 Xy +U,,

do not take into account prior restrictions on the other

equations in the model. This deficiency can be Yo= Loy + VKXo + 73 X5 +Uy
overcome by estimating all equations of the system  where the Y’s are the endogenous variables, X’s are the
simultaneously. predetermined variables and Us are the random

Many studies have revealed that full information disturbance terms, f3's and 's are the parameters.
methods such as 3SLS and FIML have an advantage

over limited information methods like 2SLS and LIML in
large samples. This result obtains because full

information methods utilize the information concerning The following levels of correlation between pairs of

random deviates are assumed,

the contemporaneous disturbance, &,, and the over ) ) )

. v - N . (i) highly negatively correlated (I’, <—0.05)
identifying restrictions arising from other equations, ) . A

given that the simultaneous equation model is correctly (ii) feebly negatively or positively correlated
specified. However, for incorrect specification (improper (_0.05 <r, < +0_05)

inclusion or exclusion of variables), it is not clear which 12

estimator, limited information, full information or ordinary (iii) highly positively correlated (I’gwg2 > +0.05)

least squares, is to be preferred. The choice will depend i
on the form of the misspecification and which equations Other assumptions about the random error are,
are involved. Summers'' (1965) use Monte Carlo U,

studies to study the performance of these estimators E(Ut):

when specification error is present. 2t

A. A. Adepoju, Department of Statistics, University of Ibadan. Ibadan., Nigeria.



102

A. A. ADEPOJU

ull
EU,,, Ul . )=E ulN[
2NxI~1x2N ) — ull u1N
u21
__u2N_
2 - -
o, i=i, t=t
0, i=i, t=t
E(ult ui't'): i '
o 1#I, t=

o, 0 0 |0, 0
0 0 0 0
10 0 o, 0 o),
o, 0 0 |oy, 0
0 0 0 0
10 0 o, 0 Oy

=2 =Q0®I1L,,

where
Q= {O-“ (712} and
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I, is the 2Nx2N identity matrix.
The reduced form equations are,

y][:HHX H+HIZX 2‘+H]3X 3|+V 1t
y21:H21XII+H22X21+H23X31+V 2t

where,
Il = [ B Purnh ﬂzlﬂ/zsﬁ*}
ﬂlzynﬂ* 722ﬂ* 7/23/8*
Vit (ult + oy ),B*
Vy = (ﬂlzun + Uy )ﬂ*
1

ﬁ* (1 - ﬂlzﬂZl )7

Equations (1.2) and (1.3) are subsequently used
in deriving the values of stochastic endogenous
variables, yq Yy from selected values of X, X; X,

assumed values of B, 55,711,727 and assumed

distribution of u; and u,.

The FIML estimator maximizes the likelihood function of
an entire system’s current endogenous variables,
subject to the restrictions placed on the reduced form of

(1.2)
(1.3)

IT
Y, [p F]L }zO, by the over identification of all
k

equations.

The FIML estimator utilizes all information, hence the
term “full”’, whereas the limited estimator uses only that
information particular to the given equation. Naturally,
the FIML estimator possesses all the properties of a
maximum likelihood estimator, that is, consistency,
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asymptotic normality and asymptotic efficiency in that
the asymptotic covariance matrix of the FIML estimator
achieves the asymptotic Cramer-Rao lower bound.

Where there exists no prior information on the variance-
covariance matrix of the structural disturbances, X (for

example, no covariance restrictions of the formoy; = 0),

the 3SLS and FIML estimators, though numerically
distinct in small samples, have the same asymptotic
distribution (Schmidt® (1976)). It follows that 3SLS, is
asymptotically efficient in the presence of normally
distributed errors. In contrast, however, when prior
information concerning X is available, FIML estimator is
asymptotically more efficient than 3SLS (Rothenberg
and Leenders’ (1964)). Finally, FIML estimator is
defined only when all equations in the system are
identified.

1.0 SIMULATION PROCEDURE

Monte Carlo methods constitute a fascinating,

exacting and often indispensable craft with a range of
applications that is already very wide yet far from being
fully explored. The Monte Carlo method provides
heuristic solutions to a variety of mathematical problems
by performing statistical sampling experiments on a
computer.
In econometrics, while asymptotic properties of
estimators obtained by using various econometric
methods are deductive in character, an approach which
is often described as analytical, small sample properties
of such estimators have always been studied from
simulated data referred to as the Monte Carlo studies
(an experimental approach) which is inductive in nature
Nwabueze® (2005). The output of the analytical
approach in the “finite-sample” area is very limited
compared with what has been produced in the way of
asymptotic results. The results of the analytical method
in the finite-sample area are invariably very complex and
exceedingly difficult to interpret which pose a major
problem. In the Monte Carlo approach, findings are
based on reasoning by inference. The use of this
approach is due to the fact that real life observations on
economic variables are in most cases plagued by one or
all of the problems on multicollinearity, non-spherical
disturbances and measurement errors.

The behavior of the system estimators are now
available using Monte Carlo studies. The most important
of these are Summers'' (1965), Cragg® (1967), and
Mosbaek and Wold® (1970). Interestingly, this method

has been excellently reviewed by many authors,
especially Johnston* (1972), Smith® (1973), Intriligator®
(1978) and Sowey'® (1973). This approach is used in
this work.

This approach may be described in broad terms
as follows. The experimenter sets up an artificial system.
Values are generated for the random disturbances for
some specified sample size and using these values,
values are calculated for the endogenous variables
based on the assumptions of this artificial problem at
each sample point. Pretending that the parameters are
unknown and using only the values of the endogenous
and predetermined variables at each sample point,
several estimating techniques are applied in turn to
obtain associated estimates of the parameters. The
process of generating values for the disturbances,
obtaining values for the endogenous variables, and
calculating estimates of the parameters is repeated, or
replicated, a large number of times. The set of estimates
of each parameter by each estimator is then used to
infer properties of the estimators for the given sample
size and for the chosen values of the parameters.

The study uses three sample sizes N=15, 25
and 40 each replicated 50 times. Each set of normal
deviates with the different sample sizes and replications

is then transformed using the upper (P,) triangular
matrix. The procedure was repeated using the lower
triangular matrix ( P'), such that in each case, Q =PP.
Using the upper triangular matrix

szpf=|:811 812:||:Sll O}:{O—n 0'12}
v 0 SyJlS, Sy O, On

to obtain a pair of random disturbances and for the lower
triangular matrix,

Q=PP

s, 0
m=ls, s
12 22

The behaviors of estimators are therefore examined
across these triangular matrices. After estimating the
parameters, the robustness of each estimator to the
inadvertent correlation of the stochastic terms was
examined using; average of estimates, absolute bias of
estimates, root mean square error and sum of squared
residuals of parameter estimates.

where
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Table 1: Summary of Estimators using Average R=50, P,
Estimator Level of EQ1
correlation
ﬂ12(1'5) 7/11(1'2)
N=15 N=25 N=40 N=15 N=25 N=40
oLSs r<-0.05 1.067074 1.070771 1.063577 -0.40953 -0.50417 -0.56386
-0.05<r<0.05 1.033484 1.042028 1.046355 -0.49904 -0.53441 -0.50779
r>0.05 1.013901 1.02698 1.030384 -0.60413 -0.57562 -0.58862
3SLS r<-0.05 1.083419 1.296365 1.435163 -0.47362 0.029132 0.230474
-0.05<r<0.05 1.042502 1.355854 1.43021 -0.53324 0.159156 0.302414
r>0.05 0.989754 1.229802 1.271803 -0.40984 -0.19972 -0.12357
FIML r<-0.05 -1.55879 -4.60894 -0.49344 -2.03921 -4.91175 -1.24092
-0.05<r<0.05 -1.61711 -2.37039 -2.1021 -2.28008 -2.03702 -1.15926
r>0.05 -0.8352 -1.06144 -0.91255 -0.41497 -0.80337 -0.73766
Table 1: Summary of Estimators using Average R=50, P4 (continued)
Level of EQ2
Estimator correlation
” (1.8) 7/22 (0.5) )/23 (2.0)
N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
oLS r<-0.05 0.89569 | 0.90118 | 0.89769 - 0.08016 | 0.13679 | 0.50835 | 0.48881 | 0.40687
3 3 3 0.00314 7 7 6 4
-0.05<r<0.05 | 0.93639 | 0.93599 | 0.92698 | 0.03206 - - 0.61272 | 0.62440 | 0.59301
3 2 0.01435 | 0.00525 2 7
r>0.05 0.94834 | 0.96169 | 0.94834 | 0.05940 - 0.26190 | 0.63842 0.753 0.41139
3 3 2 0.00299 1 7 5
3SLS r<-0.05 0.97595 | 1.13154 | 1.24462 | 0.00926 | 0.14684 | 0.49622 | 0.41031 | 1.06033 | 1.08499
7 9 3 2 8 8 2
-0.05<r<0.05 | 0.99489 | 0.94269 | 1.12331 - 0.34551 | 0.10778 | 1.04167 | 0.41698 | 1.01786
5 5 0.23727 2 4 2
r>0.05 1.30056 | 1.03855 | 1.21632 - - 0.62785 | 1.78297 | 0.87216 | 0.81249
6 6 1 0.07144 | 0.00088 5 7 9
FIML r<-0.05 - - - - - - - - -
0.96486 | 2.77071 | 0.16686 | 0.39955 | 1.64419 | 0.26099 | 0.68349 | 1.76555 | 0.02052
-0.05<r<0.05 - - - - - - - - -
1.28313 | 1.50835 | 1.46402 | 0.85273 | 0.67438 | 0.22465 | 1.28932 | 0.70913 | 0.81512
r>0.05 - - - - - 0.03053 - - -
0.64733 | 0.72131 | 0.61169 | 0.01846 | 0.09378 5 0.18251 | 0.11286 | 0.29474
Table 2: Summary of Estimators using Average R=50, P,
Estimator Level of EQ1
correlation
" (1.5) 7/” (1.2)
N=15 N=25 N=40 N=15 N=25 N=40
oLs r<-0.05 0.992898 1.007177 1.005596 -0.58899 -0.65394 -0.61268
-0.05<r<0.05 1.03872 1.043855 1.046446 -0.50066 -0.53163 -0.57261
r>0.05 1.0644 1.071153 1.077282 -0.45167 -0.50358 -0.47483
3SLS r<-0.05 1.138964 1.257422 1.382585 -0.39606 -0.12574 0.196764
-0.05<r<0.05 1.091362 1.272043 1.405338 -0.42857 -0.08312 0.210843
r>0.05 1.248948 1.481571 1.433504 -0.04207 0.460571 0.307667
FIML r<-0.05 -2.24675 -1.56517 -2.07313 -2.35591 -3.29957 -3.00509
-0.05<r<0.05 -3.76624 -6.44124 -1.57687 -3.62188 -5.85855 -2.09379
r>0.05 -3.80075 -1.10505 -1.05307 -3.17179 -1.12594 -0.34167
Table 2: Summary of Estimators using Average R = 50, P, (Continued)
Level of EQ2
correlation
ﬂZl (1.8) 7/22 (0.5) 723 (2.0)
N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
Estimator
oLS r<-0.05 0.96792 | 0.96679 | 0.919973 | 0.07633 | 0.071831 | 0.137499 | 0.693704 | 0.701117 | 0.499387
- 0.936266 | 0.938178 | 0.923779 | 0.062311 | 0.011683 | 0.131808 | 0.606942 | 0.67296 | 0.478739
0.05<r<0.05
r>0.05 0.907646 | 0.91977 | 0.913413 | -0.02132 | -0.04718 | 0.10778 | 0.571083 | 0.663349 | 0.461893
3SLS r<-0.05 1.173429 | 1.558212 | 1.068858 | -0.4057 0.78732 | 0.233205 | 1.658431 | 1.876514 | 0.689285
-0.05<r<0.05 | 1.668581 | 1.513603 | 1.206698 | 2.308587 | 0.685876 | 0.491424 | 0.617603 | 1.772122 | 0.955078
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r>0.05 1.127006 | 0.950839 | 0.884521 | 0.016592 | 0.067383 | -0.07385 | 1.183495 | 0.596628 | 0.502641
FIML r<-0.05 -1.76366 | -1.49297 | -0.87906 | -0.96703 | -0.49748 | -0.37876 | -1.73279 | -1.03067 | -0.83246
- -2.99361 | -5.18181 | -0.74722 | -1.71173 | -2.08676 | -0.30778 | -3.02344 | -5.33491 | -0.32156
0.05<r<0.05
r>0.05 -2.98186 | -0.64979 | -0.79036 | -1.02985 | -0.34432 | -0.13676 | -2.84699 | -0.03626 | -0.19601
Table 3: Summary of Total Absolute Bias R=50, P,
Level of OLS 3SLS FIML
correlation N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
r<-0.05 4.941557 4.961139 5.058924 4.994664 3.335791 2.508514 | 12.645898 | 22.70113 9.182728
-0.05<r<0.05 4.88493 4.946335 4.946682 6.691437 3.779803 3.018422 | 14.322373 | 14.299279 | 12.765143
r>0.05 4.944047 4.836939 4.936597 3.407983 4.060074 3.450798 9.098455 9.792754 9.526034
Table 4: Summary of Total Absolute Bias R=50, P,
Level of OLS 3SLS FIML
correlation N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
r<-0.05 4.858138 4.907023 5.050227 3.830927 2.220908 3.429303 | 16.066133 | 14.885862 | 14.168504
-0.05<r<0.05 | 4.856425 4.864958 4.991839 | 5.359608 2.210336 2.73062 22.617801 | 31.903266 | 12.047216
r>0.05 4.929852 4.896483 4.914466 3.466025 3.443008 3.94552 20.831248 | 10.261373 | 9.517872
Table 5: Summary of Estimators using Root Mean Square Error R=50, P,
Estimator Level of EQ1
correlation
1.5 1.2
ﬂlz( ) 7/11( )
N=15 N=25 N=40 N=15 N=25 N=40
OLS r<-0.05 0.436156 0.431532 0.437016 1.62725 1.717513 1.766868
-0.05<r<0.05 0.467685 0.458839 0.454077 1.712024 1.742782 1.710205
r>0.05 0.491549 0.47391 0.469965 1.8375 1.78329 1.791164
3SLS r<-0.05 0.809737 0.342553 0.546158 2.432383 1.397053 1.632861
-0.05<r<0.05 0.708987 0.584134 0.478117 2.012958 1.873058 1.422934
r>0.05 0.953527 0.609297 0.471323 2.031971 2.068709 1.641591
FIML r<-0.05 4.610025 9.772582 2.398144 6.264157 11.52345 3.128115
-0.05<r<0.05 7.99254 6.476522 4.782457 10.47733 5.782321 3.21884
r>0.05 2.486464 3.111921 2.918378 1.851861 2.693205 2.598102
Table 5: Summary of Estimators using Root Mean Square Error R=50, P4 (continued)
Level of EQ2
Estimato correlation
r 1821(1'8) 7/22 (0.5) 723 (2.0)
N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
OLS r<-0.05 0.90552 0.89962 0.90252 0.70126 0.54722 0.43359 1.57697 1.54299 1.61150
1 9 9 3 1 9 3 7
- 0.86375 | 0.86411 0.87312 0.62253 1.60600 0.56012 1.46225 1.43659 1.42830
0.05<r<0.0 9 6 7 5 7 6 6 1 1
5
r>0.05 0.85711 0.83852 0.85181 0.58444 0.57740 0.32696 1.48406 1.27960 1.60844
2 9 7 7 5 8 6
3SLS r<-0.05 1.28677 1.04272 1.51538 1.60038 1.52198 | 2.29374 3.56752 2.64613 3.06893
5 2 2 4 9 9 1 5
- 1.17223 1.8286 1.02171 1.85341 2.02085 0.98687 3.99424 | 4.55724 2.72383
0.05<r<0.0 7 6 5 2 5 3 1 2
5
r>0.05 2.00650 1.06009 1.02140 1.99529 1.69107 | 2.03809 6.52847 2.36978 2.18759
4 3 5 4 6 3 9
FIML r<-0.05 3.41604 7.18922 2.22517 1.60380 | 4.61801 1.21946 3.47206 5.62756 2.11689
7 6 7 8 3 1 7 8
- 7.10255 | 5.45487 | 4.13702 | 4.16893 3.57313 1.13353 9.37822 | 4.66970 3.76264
0.05<r<0.0 1 6 6 4 1 1 1 7
5
r>0.05 2.57813 | 2.99622 2.7794 0.59975 0.77844 0.53376 2.50586 2.65070 2.73452
1 9 7 2 5 2 5
Table 6: Summary of Estimators using Root Mean Square Error R=50, P,
Estimator Level of EQ1
correlation
1.5 1.2
ﬂlz( ) 7/11( )
N=15 N=25 N=40 N=15 N=25 N=40
r<-0.05 0.510122 0.494626 0.501262 1.81861 1.862027 1.81824
-0.05<r<0.05 0.46242 0.456944 0.454163 1.714671 1.738476 1.776118
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r>0.05 0.440366 0.430319 0.423331 1.667882 1.710873 1.678407
3SLS r<-0.05 0.605028 0.675491 0.748272 2.121374 2.186761 2.136393
-0.05<r<0.05 1.218544 0.61113 0.473233 3.623711 2.062664 1.468751
r>0.05 0.57849 0.518955 0.375886 1.814418 1.600259 1.265556
FIML r<-0.05 6.109593 6.743089 5.832326 5.124391 7.467952 6.575807
-0.05<r<0.05 10.61125 16.28581 4.148964 11.802 17.38281 4.989155
r>0.05 9.730886 3.049391 2.95474 8.309207 3.412404 1.872224
Table 6: Summary of Estimators using Root Mean Square Error R=50, P, (continued)
Level of EQ2
Estimator | correlation 18 05 20
21(') 7/22(') 7/23(')
N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40
OLS R<-0.05 0.832829 | 0.833769 | 0.899442 | 0.637005 | 0.57612 | 0.459278 | 1.373695 | 1.354464 | 1.533501
- 0.86398 | 0.861902 | 0.876361 | 0.57803 | 0.571873 | 0.418968 | 1.442819 | 1.360709 | 1.537516
0.05<r<0.05
r>0.05 0.894405 | 0.880426 | 0.886701 | 0.642272 | 0.606852 | 0.435069 | 1.514568 | 1.362601 | 1.555075
3SLS R<-0.05 1.694989 | 2.379137 | 1.127651 3.0698 2.197369 | 1.178233 | 4.036605 | 6.737785 | 2.776149
- 5.632721 | 1.295517 | 1.110134 | 11.1051 | 3.852231 | 1.503287 | 13.75275 | 4.833901 | 2.78772
0.05<r<0.05
r>0.05 1.225078 | 1.148319 | 1.083567 | 2.633028 | 1.437763 | 1.226975 | 3.262547 | 2.661511 | 1.996823
FIML r<-0.05 5.638482 | 5.638683 | 4.562609 | 3.606066 | 3.417611 | 2333067 | 7.162911 | 5.380956 | 4.560933
- 9.115358 | 14.04307 | 3.39546 | 6.555847 | 7.772889 | 1.629755 | 10.22504 | 16.02082 | 2.778681
0.05<r<0.05
r>0.05 8.230567 | 2.807013 | 2.877896 | 3.422276 | 2.124536 | 1.187865 | 9.410859 | 2.50089 | 2.403147
Table 7: Summary of Sum of Squared Residuals for Three Correlation Levels R=50, P4
Estimator Level of EQ1 EQ2
correlation
N=15 N=25 N=40 N=15 N=25 N=40
OoLS r<-0.05 8.519252 14.19056 22.9875 5.652294 9.582751 16.77818
-0.05<r<0.05 7.872591 13.48918 22.01066 5.293851 9.039257 15.69381
r>0.05 7.976691 11.86255 19.50978 5.506655 7.679018 14.58404
3SLS r<-0.05 52.23134 31.7618 129.0425 100.7806 133.8592 700.6628
-0.05<r<0.05 28.26443 89.056 134.4355 75.10572 547.6233 216.7182
r>0.05 37.30773 81.22743 96.78534 545.47 128.758 270.4573
FIML r<-0.05 1648.747 15698.51 1369.229 878.4006 9469.272 874.2625
-0.05<r<0.05 7087.641 8074.355 7036.368 6076.905 5769.992 4840.792
r>0.05 685.7844 1859.201 2800.426 555.1461 1465.665 2029.094
Table 8: Summary of Sum of Squared Residuals for Three Correlation Levels R=50, P,
Estimator Level of EQ1 EQ2
correlation
N=15 N=25 N=40 N=15 N=25 N=40
OLS r<-0.05 8.138315 14.0019 21.92372 5.932354 9.971365 16.92984
-0.05<r<0.05 7.629978 13.73168 21.76534 5.294499 9.180186 16.11784
r>0.05 8.45091 11.76171 19.15493 5.629083 7.617836 13.30717
3SLS r<-0.05 31.65482 83.26091 203.0776 266.5712 983.7893 233.0846
-0.05<r<0.05 146.3053 79.31666 124.7349 3638.535 353.7829 345.611
r>0.05 46.27148 100.0351 111.6931 150.4811 144.4524 138.6418
FIML r<-0.05 4018.641 8884.87 10138.66 3108.333 5480.683 6191.815
-0.05<r<0.05 13077.01 51373.8 5114.238 10195.22 41057.14 3128.517
r>0.05 12450.62 1785.939 2811.317 9531.924 1248.937 2149.904
4.0 RESULTS/DISCUSSION triangular matrices (P4 and P;). The results of the

Tables 1-8 are used to summarize the relative
performances of the three estimators using, average of
estimates, total absolute bias (TAB), root mean square
error (RMSE) and sum of squared residuals (RSS). The
three levels of correlation coefficients used are given in
the tables using three different sample sizes. This
experiment is performed using the upper and lower

experiment reveal that on the basis of TAB criterion, the
3SLS method shows asymptotic behavior (the total
absolute biases decrease with increased sample size)
under P4 while the other two estimators, OLS and FIML
exhibit no such pattern. For both equations and
irrespective of whether P, or P, is used, OLS RSS
estimates increased consistently as sample size
increased making it inferior to the other estimators.
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Judging the performance of the estimators by RMSE
shows that as the correlation coefficient changes
through the three critical levels, OLS RMSE estimates
increase consistently for equation 1 and decrease
consistently for equation 2 under P4, the reverse is the
case for P,. However, under P4, FIML is remarkably best
in the open-ended intervals and remarkably poor at the
closed interval

2.0 CONCLUSION

The magnitudes of the estimates yielded by two
estimators, OLS and 3SLS exhibited fairly consistent
reaction to changes in magnitudes and direction of
correlations of error terms. The results of this study
show that the performances of the estimators vary with
the correlation interval with OLS ranking best especially
in the open-ended intervals. The results also reveal that
choice of triangular matrix upper (P4) or lower (P,) as
well as the identifiability status of the equations are
factors to be reckoned with. Consequently, the
interaction of these factors: correlation levels of error
term, identifiability status of the equations and the use of
P, or P, have not facilitated a conclusive ranking of the
estimators using our own definition of ‘best’ estimators.

REFERENCES

Adejumobi, A. A., 2006. Robustness of Simultaneous
Estimation Techniques To over-identification
and Correlated Random Deviates. PhD Thesis,
Unpublished, University of Ibadan.

Cragg, J., 1967. On the Relative Small-sample

Properties of Several Structural-Equation

Estimators. Econometrica, 35: 89-110.

Intriligator, M. D., 1978. Econometric models,
Techniques and Applications.” Prentice-Hall,
Englewood Cliffs, N.J., 189.

Johnston, J., 1972. Econometric Methods. 2nd ed. New
York: McGraw Hill.

Mosbaek, E. and Wold, H., 1970. Interdependent
Systems: Structure and Estimation. North-
Holland, Amsterdam.

Nwabueze, J. C., 2005. Performances of Estimators of
Linear Models with Auto correlated Error Terms
when the Independent Variable is Normal.
Journal of the Nigerian Association of
Mathematical Physics. 9: 379 — 384.

Rothenberg, T. and Leenders, C., 1964. Efficient
Estimation of Simultaneous Equation Systems.
Econometrica, 406-425.

Schmidt, P., 1976. Econometrics. New York: Marcel
Dekker.ss

Smith, V., 1973. Monte Carlo Methods. D. C. Health,
Lexington Mass.

Sowey, E., 1973. A Classified Bibliography of Monte
Carlo Studies in Econometrics. Journal of
Econometrics, 1: 377- 395.

Summers, R., 1965. A Capital Intensive Approach to the
Small Sample  Properties of  Various
simultaneous Equation sEstimators.
Econometrica, 33: 1-41.



