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ABSTRACT 

 
The determination of the spatial grain size distribution of a sintered metal from the size distribution estimated from a 
sample obtained in the section plane is a stereological problem. This problem is discussed with reference to 
homothetic particles (cubes of two different sizes) and to a system of three types of grains (fine and coarse cubes and 
coarse triangular prism). Two models are developed to solve the problem, one taking into account the size of the 
grains and section profiles only and one that includes shape considerations. The models are tested with simple and 
artificial examples, as well as with simulated data. 
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1. INTRODUCTION 
 
Sintered metals are very useful for many practical purposes, for example in the top of drills and saws to cut 
stoneware. Sintering, in general, is the formation conglomerate from different materials to form a new material with 
different properties. One goal might be to increase the density and strength of the material. It is important to know the 
distribution of grains in the sintered metal because the properties of the sintered metal largely depend on it. 
 
The purpose of this study is to determine the spatial grain size distribution of a sintered metal. Since it is not possible 
to determine the distribution in the volume, it is usually estimated by examining a number of cross sections. This way 
of reasoning is called stereology.   Imagine a sintered metal tube which consists of grains of different sizes and 
shapes. Assume that this tube is cut arbitrarily and that on the cross-section, well-shaped domains (section profiles) 
can be distinguished with a microscope (see Figure 1.1).  The two-dimensional section profiles vary in size and shape 
and from this information one can estimate the grain size distribution in the volume. 
 
Consider a situation where the sintered metal consists of two kinds of grains – fine and coarse. Let all the fine grains 
be cubed shaped with diameter ,75.0 mμ and let the coarse grains be either cubes or triangular prisms with 
dimensions mμ24× . By diameter, we mean the largest distance of all the cross-sections. The problem is approached 
by determining the section profile distribution in a cross-section and relating it to possible grain distributions in the 
volume. 
 
The main difficulty is that the ratio of small and large section profiles in the area might differ from the ratio of fine and 
coarse grains in the volume because coarse grains might appear as small section profiles after cutting.  In this case, 
the probabilities of obtaining a certain section profile when cutting a certain type of grains will play a crucial role. 
 
In this paper, we develop a linear model to compare the quantities on a given cross-section to the quantities in a given 
volume. At first, two different types of grains (coarse and fine cubes) are considered.  Secondly, the model is extended 
for three types of grains including coarse triangular prisms. The model is then checked with a simple and artificial 
example, as well as with simulated data. 
 
2. MODELLING THE PROBLEM 
 
This work is based on the assumptions of homogeneity and isotropy in the volume.  Homogeneity in the volume 
means that the ratio of the volume occupied by fine grains to that occupied by coarse grains is constant in every 
control volume that is large compared to the grain size. Isotropy means that the grains do not have any preferred 
orientation. These assumptions are absolutely necessary to ensure that the information on the cross-section is 
meaningful. 
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2.1  NOTATIONS 1 
 

• U:  Typical size of a grain in the volume (e.g. maximal diameter, edge length) 
• S:   Size of a section profile in the area (maximal diameter) 
• d : Critical size to distinguish between fine and coarse grains respectively  between small and large section 

profiles 
• Fϑ :  Intensity of fine grains, i.e. the mean number of grains with size dU ≤ per unit volume 

• Cϑ :  Intensity of coarse grains, i.e. the mean number of grains with size dU >  per unit volume 

• Fθ : Planar intensity of fine grains, i.e. the mean number of section profiles per  
                    unit area which stem from grains of size ,dU ≤   

i.e. Fgrains) (fine ϑθ ×=UF  

•  Cθ :   Planar intensity of coarse grains, i.e. the mean number of section profiles per unit area which stem from 

grains of size ,dU >  i.e. CC U ϑθ ×= grains) (coarse  

• Sy :   Intensity of small section profiles, i.e. the mean number of section profiles with size dS ≤  per unit area 

• Ly  :    Intensity of large section profiles, i.e. the mean number of section profiles with size dS >  per unit 
area 

• SFp  : ( )dUdSP ≤≤= : Probability that a section profile is small under the condition that the 
corresponding intersected grain is fine 

• ( )dUdSPpLF ≤>=: :  Probability that a section profile is large under the condition that the 
corresponding intersected grain is fine 

• )|(: dUdSPPSC >≤= :  Probability that a section profile is small under the condition that the 
corresponding intersected grain is coarse 

• )|(: dUdSPPLC >>= :  Probability that a section profile is large under the condition that the 
corresponding intersected grain is coarse  

Any quantity with ‘^’denotes an estimate or an approximation for the specific quantity.  
 
2.2 FIRST MODEL 
 
To get a first idea of the problem, a two-dimensional case is considered, where a cross-section is a straight line.  
Here, the idea of classifying the section profiles with respect to size and using probabilities of getting small or large 
section profiles from a certain particle is developed.  It was quickly realized that the extension to the three-dimensional 
case does not cause many difficulties and that was why the description of the first model was started directly with the 
three-dimensional case. 
 
For simplification in the first model, a distinction between only fine and only coarse grains was looked at, with the 
intensities Fϑ  and Cϑ  respectively.  Also, the section profiles on the cross-section were classified with respect to size 

only, which gives the intensities Sy  and Ly  of small and large section profiles respectively. 
 
A section profile is considered to be small when its maximum diameter S is smaller than or equal to ,d which is the 

maximum diameter of a fine grain.  Instead of the intensity vector ( )CF ϑϑ ,  of which the components are respectively 

the mean number of fine and the mean number of coarse grains per unit volume, the planar intensity vector ( )CF θθ ,  

which is easier to handle because it has the same dimensions as the intensities of the section profiles ),( LS yy  was 
used. 
 
In the most general case of an arbitrary cut through a structure with an isotropic grain distribution, a typical length of a 
certain type of grain is its rotation average b  or the mean breadth 
    

∑
=

=
k

ii
i

lb
14

1 γ
π

 

where k is the number of edges, il  the length of the ith edge and iγ  the angle between the surface normal of the two 

faces touching the ith edge. For example, for a cube of edge length l, lb 23= . As a motivation for the definition of 



 

 

θ , one can think of a cube with edge length 1 (see Figure 2.1), which is discretized in 3N  cubic elements.  Each 
element comprises of an arbitrary oriented smaller cube of the same size, in which case the number of grains in the 
unit volume 3N=ϑ .  In one layer of unit area with thickness N1  there are 2N  grains.  The number of section 

profiles in a cut through one layer also depends on the ratio between the mean breadth b  of the particles and the 
layer thickness N1  (certainly the discretization has to fulfill bN ≥1 ) because the cut might not go through a grain.  
This yields 
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As already mentioned this is the way to compute the planar intensity in the most general isotropic case. All the 
following examples are special non-isotropic cases,  the typical length has been calibrated to other quantities (edge 
length, diameter).  
 
The large section profiles stem certainly from coarse grains, but the small section profile may be part of either a fine or 
a coarse particle. That is the reason why the intensity of small section profiles Sy  is the sum of the planar intensity of 

fine grains Fθ , multiplied by the probability SFP  to get a small section profile from a fine grain, plus the planar 

intensity of the coarse grains Cθ , multiplied by the probability SCP  to cut a coarse grain in such a way that the section 

profile is small. Likewise, the equation for Ly  is obtained. Thus we have 
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This system of two linear equations can be written as a vector on the left hand side, and a matrix-vector multiplication 
on the right hand side, hence  
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    .θPy =  

 

The sum of each column of the above matrix sums up to one: certainly, the probability LFp  to cut a fine grain in such 

a way that the section profile is large equals zero, whereas the probability SFp , to cut a fine grain so that the section 
profile is small equals one. Similarly, in the second column, the probabilities to cut a coarse grain in such a way that 
the section profile is either small SCp  or large LCp  sum up to one, that is 1=+ LCSC pp . Such a matrix is known as 
a probability matrix. For a general description of the continuous stereological problem see Nippe and Ohser (1997) 
and Nippe and Ohser (1999). 
 
Nowadays, there are techniques to measure the quantities Sy  and Ly  in the area. The by far more difficult task to 
determine the probabilities can be approached by computer simulation (see Section 3). If the probability matrix is 
invertible, we can compute estimates for the unknown quantities in the volume.  
 
Example 1  
As an illustration of the first model, let us consider a very simple, but non-isotropic example, where a structure 
consisting only of fine and coarse cubes (where the diameter D of the coarse cubes is approximately three times that 
of the fine cubes, d i.e. dD 3≈  and the volume of the structure is 8 cubic units) is cut vertically. In this case, it is 
convenient to calculate the planar intensities as the product of the edge lengths (1 for the coarse cube and 31  for the 
fine cube) and the intensities 
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From the section profiles on the cross-section, we can compute the intensities 
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Since it is impossible to obtain a large section profile from a fine grain, 0=LFP  whereas 1=SFP . Because the 

structure is cut vertically, it is not possible to get a small section profile which stems from a coarse grain. So 0=SCP  

and 1=LCP . Hence, the equations for the estimates )ˆ,ˆ( CF θθ  of the unknown quantities ),( CF θθ  read as follows: 
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One immediately sees that the estimates are in fact exact in this case. 
 
2.3 NOTATIONS 2 
In addition to the notations introduced before, we need the following: 
 

• :c
Cϑ Intensity of coarse cubes, i.e. the mean number of cubes with size dU > per unit volume 

• tp
Cϑ : Intensity of coarse triangular prisms, i.e. the mean number of triangular prisms with size dU > per unit 

volume 
• c

Cθ  :  Planar intensity of coarse cubes, i.e. the mean number of section profiles per unit area which stem from 

cubes with size ,dU > i.e. CC U ϑθ ×= )cube coarse(   

•  tp
Cθ : Planar intensity of coarse triangular prisms, i.e. the mean number of section profiles per unit area which 

stem from triangular prisms with size ,dU > i.e. CC U ϑθ ×= )prismr  triangulacoarse(   

• Sny : Intensity of small n-noded section profiles, i.e. the mean number of n-noded section profiles with size 
dS ≤ per unit area, 6,5,4,3=n  

• Lny : Intensity of large n-noded section profiles, i.e. the mean number of n-noded section profiles with size 
dS > per unit area, 6,5,4,3=n  

• 
nSFP =: P ( ndS ,≤  corner nodes dU ≤ ):  Probability that a section profile is small and has n  corner 

nodes under the condition that the corresponding intersected grain is fine.   
• 

nLFP : ( ):nodescorner   , dUndSP ≤>= Probability that a section profile is large and has n corner nodes 

under the condition that the corresponding intersected grain is fine 
• ( )( ):cube nodescorner  ,: dUndSPPc

SCn
>≤= Probability that a section profile is small and has n corner 

nodes under the condition that the corresponding intersected grain is a coarse cube 
• ( )( ):cube  nodescorner    ,: dUndSPPc

LCn
>>= Probability that a section profile is large and has n corner 

nodes under the condition that the corresponding intersected grain is a coarse cube 
• ( )( ):prism triangular  nodecorner   ,: dUsndSPPtp

SCn >≤=  Probability that a section profile is small and 
has n corner nodes under the condition that the corresponding intersected grain is a coarse triangular 
prism 



 

 

•  ( )( ):prism triangular nodescorner   ,: dUndSPPtp
LCn >>=  Probability that a section profile is large and 

has n corner nodes under the condition that the corresponding intersected grain is a coarse triangular prism 
 
Any quantity with a ‘^’ denotes an estimate or an approximation for the specific quantity. 
 
2.4 SECOND MODEL 
 
The second model is an extension of the first model and not only size classifies a particle or a section profile but also 
the shape. Hence, the planar intensity vector is extended by a third component. To be precise, the planar intensity of 
the coarse grains is divided into c

C
θ  for coarse cubes and tp

C
θ  for triangular prisms. 

Cutting a triangular prism arbitrarily may result in section profiles with 3 to 5 nodes, the cubes can produce additionally 
six-noded section profiles. Classifying the section profiles with respect to size and shape results in the intensities of 
small and large n-noded section profiles 

LnSn
yy   and   , where { }6 ,5 ,4 ,3∈n . Also, the probability matrix has to be 

extended. First of all it has a third column for the probabilities to get certain section profiles from the triangular prism 
and secondly it has eight rows now. On each row, there are probabilities to get one of the eight types of section 
profiles from the three types of grains. 
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To solve this over-determined system of equations one needs to use a generalized inverse. 
 
Example 2 
To illustrate the second model, a very simple artificial example as shown in Figure 2.3 is considered. In this structure 
of volume 27 cubic units (see Figure 2.3 a), a cube with diameter D is either occupied by one coarse cube or by 
twenty-seven fine cubes or by two coarse triangular prisms and the intensities take the values 
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After multiplying each component with the edge length of the corresponding grain, we get 
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After a vertical cut, one only observes four-noded small section profiles with the intensity ( ) 9934 ⋅=Sy . The large 

section profiles are either triangles or squares with the intensities ( ) 9233 ⋅=Ly  and 934 =Ly  respectively. 
Because in this case of vertical cutting, the fine cubes can produce only small four-noded section profiles, the only 
probability in the first column of the probability matrix that is non-zero is 4SFP  and thus 14 =SFP . Likewise, the only 

type of section profile we get from the coarse cubes is a large square, so 1
4
=c

LC
p  and the only type of section profile 

from the triangular prisms is a large triangle, so 1
3
=tp

LC
p . All the other entries in the probability matrix are zeros. 

Hence the equations for the estimates of the planar intensities read  
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and one can immediately see that the estimates 
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equal the real quantities ( )tp
C

c
CF θθθ ,, . 

3 SIMULATION OF THE PROBABILITIES  
 
The task of determining the probabilities of getting different types of section profiles from a cube or triangular prism 
was approached by computer simulation. The method used was based on the following steps: 

1. Construction of a particle (cube or triangular prism) of size a 
2. Random rotation of this particle using “Euler angles” 
3. Generation of the section profiles by intersecting the rotated particle with randomly chosen planes 
4. Classification of the section profiles with respect to size and shape and storing the information 
5. Calculation of the probabilities using the stored information 

Steps 2, 3 and 4 are repeated for a large number of times and from the stored information of the section profiles the 
required probabilities were calculated. The flow chart in Figure 3.1 gives a better idea of the simulation procedure. A 
more detailed discussion of the steps is presented as follows: 
The representation of a particle centered at the origin by its n corner nodes ( ), , ,

iii
zyx  ,,,3 ,2 ,1 ni K=  in Cartesian 

coordinates in the subroutine of the simulation program is self-explanatory. The coordinates ) ,  ,( iii zyx ′′′ , 

,,,3 ,2 ,1 ni K= of the rotated particle by the Euler angles ( )ϕϑψ ,,  are obtained from 
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where the Euler angles are random variables. Multiplying this combination of matrices with a coordinate vector 
performs first a rotation around the z-axis by the angleψ , secondly a rotation around the recently obtained new x-axis 
by the angle ϑ  and finally a rotation around the new z-axis byϕ . The requirement for isotropy is fulfilled by using the 
following conditions: 
1. The random angles ϕϑψ  , ,  are independent of each other 

2. The points ( )ϕϑ,,1  given in spherical polar coordinates are uniformly distributed on the unit sphere whenever 
(a) ϕ  is uniformly distributed on the interval )2,0[ π  and  
(b) ϑξ cos=  is uniformly distributed on [-1,1] 
3. The angles ψ  are uniformly distributed  on )2,0[ π  
Such a random rotation of a given particle can be performed by the simulation programs. From each rotated particle a 
series of section profiles is generated by intersecting it with planes. These planes are parallel to the x-y-plane and the 
z-coordinate is chosen randomly in ( )maxmin z ,z , where ( )

maxmin
zz  is the minimum (maximum) z-coordinate of the 



 

 

rotated particle. This procedure ensures that a real section profile is generated, whereas the intersection set of an 
arbitrary plane with a non-rotated particle might be empty. 
 
Cutting a cube (or triangular prism) arbitrarily might result in section profiles with 3 to 6 (3 to 5) corner nodes. The 
number of corner nodes and the size, which is the largest distance between two corner nodes, are stored for each 
section profile. 
 
The probability of obtaining an n-gon (or an n- noded section profile) with size S smaller (or larger) than d (which is the 
critical size) is the number of that type of section profiles divided by the total number of section profiles that has been 
classified. Figure 3.2 and Figure 3.3 show the frequency distribution of n-gons of a cube and a triangular prism of size 
1, where a total of 100,000 section profiles have been classified. With these simulation results, it is easy to calculate 
the desired probabilities.  For example, the probability of obtaining a triangular section profile which is smaller than 0.3 
from the triangular prism is calculated as follows:  
One integrates over the * curve from 0 to 0.3 and divides this by the total number of section profiles that have been 
classified. The following tables show the probabilities of getting an n-gon from a cube, respective a regular triangular 
prism of size 1. 
 
Table 3.1: Probability of getting an n-gon with size dS ≤  from a cube of size 1. 

 

  d 3=n  4=n  5=n  6=n  { }6,5,4,3∈n  

0.1 0.0382 0.0000 0.0000 0.0000 0.0382 

0.2 0.0767 0.0000 0.0000 0.0000 0.0767 

0.3 0.1151 0.0000 0.0000 0.0000 0.1151 

0.4 0.1535 0.0000 0.0000 0.0000 0.1535 

0.5 0.1914 0.0000 0.0000 0.0000 0.1914 

0.6 0.2291 0.0276 0.0000 0.0000 0.2567 

0.7 0.2531 0.1475 0.0000 0.0000 0.4006 

0.8 0.2615 0.2728 0.0000 0.0000 0.5343 

0.9 0.2616 0.4815 0.1538 0.0294 0.9264 

1.0 0.2616 0.5161 0.1818 0.0404 1.0000 
 
Table 3.2:  Probability of getting an n-gon with size dS ≤  from a rectangular prism of size 1. 

  D 3=n  4=n  5=n  { }5,4,3∈n  

0.1 0.0473 0.0000 0.0000 0.0473 

0.2 0.0927 0.0000 0.0000 0.0927 

0.3 0.1383 0.0000 0.0000 0.1383 

0.4 0.1848 0.0000 0.0000 0.1848 

0.5 0.2318 0.0000 0.0000 0.2318 

0.6 0.2775 0.0000 0.0000 0.2775 

0.7 0.3241 0.0000 0.0000 0.3241 

0.8 0.4233 0.2225 0.0000 0.6458 

0.9 0.4595 0.3716 0.0224 0.8536 

1.0 0.4695 0.4453 0.0852 1.0000 
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4 EVALUATION OF MODELS USING SIMULATED DATA 
4.1 SIMULATION TO GET DATA 

 
Because of lack of realistic data, a simulation of arbitrary cuts through the two different structures of grains that was 
carried out. In both structures of Figure 4.1, the intensities of each type of grain, respective planar intensities can be 
easily computed: 
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The structure is rotated randomly and then cut by planes that are parallel to the x-y-plane. Each time the total area of 
intersection and the number of section profiles of each type (classification with respect to size as in first model or with 
respect to size and shape as in second model with critical size 577.03/3 ≈=d ) are stored. The section profile 
intensities can be calculated from this information. 

 
4.2 EVALUATION OF THE MODELS 

 
Using the simulated probabilities, as explained in the previous section, the two models can be checked 
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for the estimates of the planar intensities results in 
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Now, considering the second model on structure (a), from the simulation, 
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Solving the equations using Pinv with default settings in MATLAB, gives 
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The second model which uses more detailed information about the section profiles gives much better values for Fθ̂ . 
This is clear because looking at the frequency distribution of section profiles on a simulated cross-section in Figure 4.2 
and Figure 4.3 and paying attention to the different scaling, one can see that much more information about the fine 
grains has been used. 
 
Up to this point, the evaluation of the models has been done using the 4×4×4 structure in Figure 4.1 (a). Simulating 
cross-sections of a 6×6×6 structure did not show any significant difference. A simulation of cuts through a larger 
structure was not possible because of the limit of computer memory. 
 
Considering the second model on structure (b), then from the simulation, 
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and 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000.0040.0000.0
090.0182.0000.0
451.0516.0000.0
000.0131.0000.0
285.0000.0040.0
000.0000.0182.0
000.0000.0516.0
174.0131.0262.0

ˆˆˆ
ˆˆˆ
ˆˆˆ
ˆˆˆ
ˆˆˆ
ˆˆˆ
ˆˆˆ
ˆˆˆ

ˆ

666

555

444

333

666

555

444

333

tp
LC

c
LCLF

tp
LC

c
LCLF

tp
LC

c
LCLF

tp
LC

c
LCLF

tp
SC

c
SCSF

tp
SC

c
SCSF

tp
SC

c
SCSF

tp
SC

c
SCSF

PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

P  

can be calculated. 
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where the relative error is given by 
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Unfortunately, the models could not be tested with realistic data; however, with the results from the simulations and 
the errors in a range below 30%, one can say that the models seem to work quite well for this ill-posed problem. It 
should be noted however that the examples considered are of non-isotropic grain distributions where the general 
typical length, the rotation average, b  has been calibrated to other quantities (edge length, diameter). 
 
5. CONCLUSION 
 
It could be said finally that the models do express a relationship between the quantities on the cross-section and the 
quantities in the volume under the assumptions of homogeneity and isotropy. An extension of the second model to 
different kinds of grains is possible because every kind of grain is treated separately. It was however not possible to 
check the models in more detail due to lack of realistic data for the section profiles and the quantities in the volume. 
Sources of error might be from the use of estimates or approximations. Also the strong homogeneity and anisotropy 
that might occur in reality will cause problems. 
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Figure 1.1: Cross-section examination 

 
Figure 2.1: Unit volume, discretized into N3 cubic elements, each containing an arbitrary 

oriented cube 

 
Figure 2.2: (a) A cube of diameter 3=D is occupied by one coarse cube or by 27 fine cubes.   
  (b) A cross-section 
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Figure 2.3: (a) A cube of diameter 3=D  is either occupied by one coarse cube 
or by 27 fine cubes or by two triangular prisms. 

      (b) A cross-section 

 
Figure 3.1: A flow chart of the simulation procedure 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2: A frequency distribution of n-gons for a cube of size 1. 

 
Figure 3.3: A frequency distribution of n-gons for a regular 

triangular prism of size 1. 

 
Figure 4.1: (a) A given cube of volume 64 cubic units with a diameter 

3=D , is either occupied by one coarse cube or by 27 fine cubes. 
     (b) A given cube of volume 27 cubic units with a diameter 

3=D , is either occupied by one coarse cube or by 27 fine cubes or by 2 coarse triangular prisms. 
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Figure 4.2: A frequency distribution of section profiles on simulated cross-section (from 

coarse grains). 

 
Figure 4.3: A frequency distribution of section profiles on simulated cross-section (from fine grains). 


