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ABSTRACT 
Through this paper, we present n

+
-p-p

+
 solar cell. Mathematical relations describing the generated carriers’ density are 

expressed, using among others a new approach involving both junction and back surface recombination velocities in a 
3D modelling study. 
Based on the normalized carriers’ density versus the base depth and operating an open circuit voltage, we study the 
space-charge layer thickness (Z) versus various parameters such as the grain size (g) and the grain boundaries 
recombination velocity (Sgb). Hence, the relationship between Z and the diffusion capacitance show that  junction in 
the  n

+
-p-p

+
 solar cell, when the columnar orientation is considered, is characterized by the plane capacitor properties. 

 
PACS: 73.50.Pz 
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INTRODUCTION 

 The characterization of the space charge layer 
was first developed by Shockley in 1949 
 (Shockley, 1949). As Chockley’s method is accurate for 
reverse and zero bias only,  others researches(Liou and 
al., 1988, pp1571-34), (Chawla and al., 1971), (Liou and 
al.,1988, pp.1249-1253), taking in account of  free 
carriers in  space-charge layer of the p/n junction, 
developed a model for the space-charge layer thickness 
and the capacitance for all voltage and improved this 
method. 
 In high-frequency C-V characteristic (Rabbani 
and al., 1981, pp.661-664), (Jakubowski and al., 1981, 
pp.985-987) of both MIS and MOS capacitor, the Fermi 
potential, the substrate doping and the bulk generation 
lifetime in semiconductors can be determined. Exploiting 
the phase-sensitive LBIS analysis (Pernau and al.,2002, 
pp.442-445) authors show that the phase shift 
introduced by the solar cell depends on carriers lifetime, 
carriers diffusion velocity time decay and impedance 
incorporated in the solar cell itself. The capacitance 
method is also a useful procedure for the determination  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the diffusion length in the Se-CdO photovoltaic cells 
(Champness and al., 1991 pp538-542.) Using a new 
approach involving both the junction recombination 
velocity (SFu) and the back surface recombination velocity 
(Sbu) in a 3D model study of a polycrystalline silicon 
bifacial solar cell (Diallo and al., 2008, pp 2003-211), we 
study the space-charge layer thickness and the 
capacitance. Within the first section basic theory is 
presented while the results related to the influence of 
grain size (g), grain boundary recombination velocity 

(Sgb) and wavelength ( λ ) are presented along the 
second part of this paper. 
  
Theory 
As an n

+
-p-p

+
 polycrystalline solar cell is made up by 

many small individual grains, grain boundary effects are 
important: among others grain boundaries act as 
electron-hole traps.  
Regarding the physical process simulation, we can 
consider the fibrously oriented columnar grain as shown 
below in figure1 in a 3D while in the figure 2, the bifacial 
solar cell is in a planar configuration. 
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Figure 1: Isolated grain 

 

 

 
Figure 2: bifacial solar cell. 

 
 

 
 
 
Using this isolated grain (figure 1), we made calculation to studying the variation of the main parameters, for instance: 

grain size ( g ), grain boundaries recombination velocity( Sgb ) and wavelength( λ ). 
Studying the influence of the grain size and the excess minority carriers density, some authors (Diallo and al., 2008, 
pp 2003-211), showed that the number of excess minority carriers increases and decreases respectively with the grain 
size( g) and the grain boundary recombination velocity( Sgb); they (Diallo and al., 2008, pp 2003-211), also proved 
that  central areas of each grain, contrary to the corner, aren’t affected by the recombination occurring at the  
interfaces’ level.  
Theses two parameters (g; Sgb) influence the photocurrent (Iph) and the photo-voltage (Uph) (Diallo and al., 2008, pp 
2003-211).  In fact both Iph and Uph decrease when the grain size decreases and increase when the grain boundary 
recombination velocity increases. 
 
Considering the emitter as a dead (non active) area, the excess minority carrier distribution in the base, seen as a 
greater contribution to the photo-conversion, is derived from solving the continuity’ equation:  
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 where D is  excess minority carriers diffusion constant while  L is the diffusion length. 
The following three cases of illumination have been considered: the front illumination, the rear side illumination and 
the simultaneous illumination. The electron-hole pairs generation rate is expressed as follows (Sissoko and al., 1998, 
pp.1856-1859). 

( )z))(Hαexp(z)αexp(R)(1Iα(z)G 0u −⋅−⋅+⋅−⋅⋅−⋅⋅= γε  (2) 

The subscript u indicates how the solar cell is illuminated: front side u=fr (ε=1 and γ=0), rear side u=re (ε=0 and γ=1) or 
simultaneous illumination u=d (ε=1 and γ=1). 
α is the absorption coefficient of light for a wavelength λ  , I0 is the incident photon flux (Green and al., 1995, p.189-
92) 
The general solution of the continuity equation (Equation 1) is given as (DUGAS, 1994, pp.71-88). 

∑∑
∞ ∞

⋅⋅⋅⋅=
k j

jkju )ccos(y)ccos(x(z)Zz)y,(x,
k

δ  
(3) 

The factors ck and cj are eigen values and depend on grain size and grain boundaries’ recombination velocity only. 
Inserting the (Equation 3) into (Equation 1) and replacing the expression generation by its value and taking into 
account of the fact that cos(ckx) and cos(cjx) are orthogonal functions, we obtain a general expression for Zkj(z).This 
expression contains two constants derived using interfaces’ boundary conditions while  the factors ck and cj in 
(Equation 3) are determined using the grain boundaries’condtions. 
The boundary conditions at the n

+
-p interface (z=0) are: 
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SFu is the junction recombination velocity (Diallo and al., 2008, pp 2003-211) and represents the sum of two 

terms: juu SfSf0SF += . Sfj is the external load related to the current flow and j defines the operating point of the cell 

(Diallo and al., 2008, pp 2003-211). Sf0u is defined as the intrinsic junction recombination velocity related to the  
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shunt resistance, an internal load of the solar cell due to losses at the junction level. For each illumination mode, the 
intrinsic junction recombination velocity is calculated through the derivation of the photocurrent.  
Therefore the expression of Sf0u varies depending on illumination scenario (Diallo and al., 2008, pp 2003-211). 
At the back side of the bifacial solar cell, we use the boundary condition for z=H: 
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(9) 

 
Sbu is the back surface recombination velocity. It quantifies the rate at which excess minority carriers are lost at the 
back surface of the cell (Diallo and al., 2008, pp 2003-211).The derivation of the photocurrent, associated to SFu, 
provides for different illumination modes the expression of Sbu.  
A contact level of two grains in the direction (Ox) and (Oy), boundary conditions are: 
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The resolution of above two equations gives transcended equations allowing the determination of the factors ck and 
cj. 
The capacitance of the solar cell is presented as follows: 
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q is the elementary electron charge, VT is the thermal voltage and 
Nb

n
m

2

i
0 =  with Nb the base doping density and ni 

intrinsic carriers density. 
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RESULTS AND DISCUSSIONS 
 
3.1 Normalized carriers’ density versus base depth for different values of SFu 

We have in figures 3, 4 and 5 the curves of normalized carriers density versus base depth when the solar cell is in its 

open circuit voltage (Sfj=0) or short circuit photocurrent mode (SFav→∞). Figure.3 represents the normalized carriers 
density when cmz 005.00 << for the front side illumination mode. For rear side and simultaneous illumination modes 

we have figure 4 and 5 with the open circuit and short circuit operating points. 

 

 

Figure.3: Normalized carriers density versus 
base depth when the solar cell is illuminated by 
front side. 

 

Figure.4: Normalized carriers density versus 

base depth for the rear side illumination mode 
of the solar cell. 

 

 

Figure.5: Normalized carriers density versus base depth when the solar cell is simultaneously illuminated both front 
and rear sides 

We find different characteristics’ regions when solar cell is illuminated: 

For the front side illumination, curves of open and short circuit exhibit two regions in the base depth. The first region 
closed to the junction with a positive slope which increases as SFav is higher and corresponds to minority carriers 
collection region. This is an additive space-charge region Z0,av to initial diffusion depletion layer. We find also the 
extension of this region width with the increasing of the junction recombination velocity SFav. 

When the solar is illuminated by the rear side contrary to the front side, the maxima points of the excess minority 
carriers density are in the back side of the solar cell and are independent of the operating point. Like the front side, we 
have two regions: the first region corresponds to carriers recombined in the bulk and those collected at the junction. 
The second region refers to carriers which are lost at the back surface of the photovoltaic solar cell. 

The double sided illumination mode gives three regions. The collection region is the first region closed to the junction, 
the second and third region correspond respectively of the recombination in the bulk and the back of the solar cell. 
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As the junction depth varies only for front and simultaneous illumination modes (for the rear side illumination, the 
variation is neglected), we determine extension region width Z0,u. Hence we calculate for different values of junction 
recombination velocity the photovoltage, the excess minority carries density and the capacitance corresponding to 
different values Z0, u.  

The following figures 6 and 7 are the plots for inverse capacitance 
1

,0

−
uC versus space-charge layer extension Z0,u when 

the bifacial solar cell is illuminated respectively in case of  front side mode and simultaneously both front and rear 
sides. 

 

Figure.6: 1

fr0,C− versus space-charge 

layer extension thickness. 
 

 

Figure.7: 1

fr0,C− versus space-charge 

layer extension thickness. 
 

 
 The inverse capacitance versus extension region is a straight line. As shown by some authors (Sissoko and 
al., 1998, pp1852-1855) for the single crystal, when grain size, junction recombination velocity and wavelength are 
fixed values, the diffusion capacitance resulting from contribution of the free charge carriers for a solar cell in real 
operating point can be considered as a plane capacitor.  
 
3.2 Extension region width for each grain size (g), grain boundaries recombination velocity (Sgb) and 

wavelength ( λλλλ ). 
 As we above proved that diffusion capacitance in real operating of the solar cells is a plane capacitance, we 
assume that free carriers at the junction are responsible of efficiency in semiconductors devices. Hence, we use the 
figure 8 to draw an equivalent circuit where the capacitance ( Z0,u ) represent the solar cell  in series with the load 
charge. 

 
Figure.8: Equivalent circuit of an ideal photovoltaic cell with an externally applied load. 

 
We conclude also that the capacitance Cu associated to 
the whole minority carriers collection layer is reduced to 
the Shockley’s model (Shockley, 1949) when the 
photovoltage is constant. 
Using one normalized carrier density versus base depth 
for one grain size, we determine the constant 

photovoltage λ)Sb,SF,Sgb,g,,(zV u0,u .  

 
 
 
 
 
 
 
 
 

 
With such a fixed value of voltage, we solved the 
following (Equation 13) for each grain size, grain 
boundaries’ recombination velocity and wavelength; 
then the corresponding extension region Z0,u  is obtained 
when  other parameters are fixed. 
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Solar capacitance in open circuit voltage is then calculated using values of Z0,u  through the relation: 
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 where S=1cm
2
 and the dielectric constant 112

0 F.cm108.8512ε
−⋅⋅=⋅= rεε .  

 

In fact 12ε r = is the relative dielectric constant of the semiconductor and
112

0 cmF108.85ε
−⋅⋅=  is the permittivity for 

the vacuum. 
Results are presented below in   tables 1 to 4 for the front size and both front side and rear side illumination modes. 
 

 

 

Table.1: Values of characteristic parameters of the junction when g varies and the solar cell is illuminated in 
case of front side mode. 

g 

(µm) 
Z0,fr 
(µm) 

Vfr 
( Z0,fr) 

EZCE,fr 
( V.m

-1
) 

C0,fr 
(nF.cm

-2
) 

)cm(10

δ       

311

fr

−⋅
 

20 25,12 0.57 V 22691 42.27 1.50 

23 18,56 0.57 V 30711 57.21 2.03 

26 16,49 0.57 V 34566 64.40 2.29 

29 15,18 0.57 V 37549 69.96 2.49 

32 14,22 0.57 V 40084 74.68 2.66 

35 13,46 0.57 V 42347 78.90 2.81 

38 12,84 0.57 V 44392 82.71 2.94 

41 12,32 0.57 V 46266 86.20 3.07 

44 11,86 0.57 V 48060 89.54 3.19 

 
 
 
 
 

Table.2: Values of characteristic parameters of the junction when g varies and the solar cell is illuminated in 
case of both front and rear side mode. 

g 

(µm) 
Z0,d 
(µm) 

Vd 
( Z0,d) 

EZCE,d 
( V.m

-1
) 

C0,d 
(nF.cm

-2
) 

)cm(10

δ       

311

d

−⋅
 

32 21.55 0.57V 17225 49.28 1.14 

35 18.65 0.57V 26450 56.94 1.75 

38 16.87 0.57V 30563 62.95 2.02 

41 15.61 0.57V 33787 68.03 2.24 

47 14.63 0.57V 36515 72.59 2.42 

50 13.83 0.57V 38961 76.78 2.58 

53 12.57 0.57V 41214 84.48 2.73 

56 12.03 0.57V 45346 88.13 3.00 
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Table.3: Values of characteristic parameters of the junction when Sgb varies and the solar cell is in the mode 
of illuminated front side. 

Sgb 
(cm.s

-1
) 

Z0,fr 
(µm) 

Vfr 
( Z0,fr) 

EZCE,fr 
( V.m

-1
) 

C0,fr 
(nF.cm

-2
) 

)cm(10

δ       

311

fr

−⋅
 

158 10.80 0.57 V 52777 98,33 3.50 

200 11.13 0.57 V 51212 95,41 3.39 

251 11.55 0.57 V 49350 91,94 3.27 

316 12.10 0.57 V 47107 87,76 3.12 

398 12.82 0.57 V 44461 82,83 2.95 

501 13.80 0.57 V 41304 76,95 2.74 

630 15.22 0.57 V 37450 69,77 2.48 

794 17.51 0.57 V 32552 60,65 2.16 

1000 25.42 0.57 V 22423 41,77 1.48 

 

 
 
Table.4: Values of characteristic parameters of the junction when Sgb varies and the solar cell is illuminated in both 

front and rear side. 
 

Sgb 
(cm.s

-1
) 

Z0,d 
(µm) 

Vd 
(Volt) 

EZCE,d 
(V.m

-1
) 

Cd 
(nF.cm

-2
) 

)cm(10

δ       

311

d

−⋅
 

158 10.93 0.57 51150 97.16 3.46 

200 11.35 0.57 50220 93.58 3.33 

251 11.89 0.57 47939 89.31 3.18 

316 12.59 0.57 45274 84.35 3.00 

398 13.53 0.57 42128 78.49 2.79 

501 14.83 0.57 38435 71.61 2.55 

630 16.72 0.57 34090 63.51 2.26 

794 19.91 0.57 28628 53.34 1.90 

1000 33.09 0.57 17225 32.09 1.14 

 

 
 The solar cell’s diffusion capacitance increases 
with the grain size and decreases with the grain 
boundaries recombination velocity or the wavelength. 
Compared to such a behavior of the capacitance, 
instead the variation of the space charge layer is not 
affecting the voltage: while the junction width is 
increasing or deceasing, the photovoltage is constant.  
For the junction’s solar cell in illumination the resulting 

electric field EZCE,u (

u0,

u

uZCE,
Z

V
E = ) is different from the  

 
 

intrinsic electric field E0 of any p-n junction: it increases 
with the grain size ,and when the grain boundary 
recombination velocity or the wavelength increases, the 
electric field  decreases. 
 In figures 9 to 12, we present inverse diffusion 
capacitance with extension region of the junction for the 
front and the simultaneous illumination modes. In 
Figures 9 and 10 grain size is varying. The effect of 
grain boundary recombination velocity when the grain 
size and the wavelength are fixed values is shown in 
figures 11 and 12. 
 

 

 

 

 

 

 

 

 

 

 



476               S. MBODJI, B. MBOW, F. I. BARRO AND G. SISSOKO  

Analysing these figures, we note that inverse diffusion capacitance 
1
u0,C

−
 with extension region of the junction u0,Z is a 

straight line as shown by other authors (Sissoko and al., 1998, pp1852-1855).The junction of the solar is then 
considered as a plane capacitor. 

 

Figure .9: 
1

fr0,C−
front side illumination mode 

versus space-charge layer extension thickness; 

 

 
Figure.10: 

1
d0,C

−
double side illumination 

versus space charge layer extension thickness 
Z0,d 

 

 

Figure.11: 
1

fr0,C−
front side illumination mode 

versus space-charge layer extension thickness;  

 
 

Figure.12: 
1
d0,C

−
 double side illumination versus 

space charge layer extension thickness Z0,d  
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CONCLUTION 

 Based on the behavior of  normalized minority 
carriers’ density versus the base depth of a solar cell 
under different illumination modes, the inverse of solar 
cell’s diffusion capacitance and the extension layer 
thickness of the junction were simulated and the minority 
carriers’ collection layer can be finally considered as 
plane capacitor in case of  columnar orientation . 
 The effects of junction recombination velocity, 
illumination modes, wavelength, grain size and grain 
boundaries recombination velocity on the diffusion 
capacitance were shown. For instance the diffusion 
capacitance increases with grain size (g) and decreases 
when grain boundary recombination velocity (Sgb) 
increases. 
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