
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 17, NO.1 2011: 93-98
COPYRIGHT© BACHODU SCIENSE CO. LTD PRINTED IN NIGERIA ISSN 118-0579

www.globaljournalseries.com, Email: info@globaljournalseries.com

LESSONS AND CHALLENGES FROM SOFTWARE QUALITY
ASSESSMENT: THE CASE OF SPACE SYSTEMS SOFTWARE.

 MONICA AGU AND FRANCIS BAKPO

 (Received 17 February 2010; Revision Accepted 13 July 2010)

ABSTRACT

 Software development activities have continued to be plagued by a number of problems even with the
availability of so many esoteric software technologies and paradigms such as object oriented development, etc.
Several studies can be traced back to the software processes adopted. Other contributing factors include lack of
knowledge of available systems standards, tools and techniques employed by system practitioners. This paper
presents lessons and challenges gained over the last 10 years of experience as software system administrator as well
as lecturers in the computer science department. Over this period of time, we have managed a number of in-house
and purchased project software amongst them are banking, airtime billing, human resource, result computation etc.
We discussed these lessons and challenges across two measurable characteristics namely quality of design (life cycle
stages) and quality of conformance. Finally, we also recommended the lessons and challenges from software quality
management for space system software.

KEYWORDS: Software, Software Quality ,Quality Standard, Characteristics, Assessment, Challanges, lessons

1. INTRODUCTION

 As software becomes a more critical component
in systems, concerns about software quality are
increasing. Consequently, a number of organizations
have developed quality standards that are specific to
software or that can be applied to software. One of
these organizations is the International Organization for
Standardization (ISO) which has developed standards
for quality management and assurance. Software
quality assessment is a field which has come into
greater focus as the global drive for systemic quality
assurance continues to gather momentum. There is a
general consensus within the field on the elements
needed to measure the quality of a software product.
 There is no generally accepted and widely held
definition of software quality. Some people seem to have
their own definition which supports their particular point
of view and which relates to the issues and concerns
that they see as important. In Fitzpatrick et al (2004)
software quality is an abstract concept and it is
perceived and interpreted differently based on one’s
personal views and interest. Software quality can be
defined as the features and characteristics of a software
product that bear on its ability to satisfy stated and
implied needs (SO/IEC-9126). To resolve this
ambiguity, ISO/IEC-9126 (International Organization for
Standardization 2001) provided a framework for the
evaluation of software quality defining six software
quality attributes, and these attributes are often referred
to as quality characteristics. This focuses on the
characteristics of a product relative to current needs
requirement. Georgios et al (2007), ANSI Standard (
ANSI/ASQCA3/1978) gave the definition of quality as
“The totality of features and characteristics of a product
or service that bear on its ability to satisfy stated or
implied needs.”

Software is a critical core industry that is essential to
national interests in science, technology, etc. It is in
several places at the same time in today’s society and
coexists with hardware in our medical systems, financial
and communication, etc. The software in a modern
financial system consists of code that helps to control
the transfer rate of information/data across the globe. In
this and other applications, issues concerned with
improving the quality and productivity of the software
development process are of paramount importance. It is
therefore very important to address relevant and
pressing problem of software development.
The aim of this work is to discuss the challenges
associated with software quality assessment in relation
to our practical experience over the years of teaching
and programming. The paper also discusses the lessons
that can be learnt from these challenges. In doing so
the ISO standard for software quality assessment was
also discussed. We hope that this paper will be of
immense help to software developers/users when
assessing the software developed.
In this paper the quality of the software design is
discussed putting into consideration the software life
cycle. The life cycle is shown in fig.1 and comprises the
following stages:

• Understanding the problem,
 Analyzing the problem (input, processing,
 output required to solve the process.)

• Developing an algorithm

• Coding the algorithm

• Testing the programme

• Debuging the programme

• Implementation

• Documenting -

93

M. Agu, Department of Computer Science, University of Nigeria, Nsukka, Nigeria

F. Bakpo, Department of Computer Science, University of Nigeria, Nsukka, Nigeria

IMPLEMENTATION
ANALYZE PROBLEM

ALGORITHM DEVELOPMENT

SOFTWARE

LIFE CYCLE

UNDERSTAND

PROBLEM

DEBUGGING PROGRAM

DOCUMENTING

TESTING

PROGRAMME

CODING

Fig1: Software life cycle

User

Problem
Definition

Requirements

Implementation

Design

Model

Testing

Analysis

Design

Requirement

Model

Analysis
Model

Coding

Fig. 2: Phases in software system development

 According to (Boehm 1978) the first step of the
software life cycle is the generation of system
requirements whereby functionality, interactions and
performance of the software product are specified in
numerous documents. Software development has many
phases. These phases include requirement engineering
architecture, design, implementation, testing, software
deployment and maintenance as shown in fig. 2.
In our today’s changing environment and also to survive
and grow in this environment, organizations must be
adaptable and ready for change. With ever-changing

requirement from users and hardware models appearing
and disappearing at breakneck speeds as well as
software updates from commercial vendors bombarding
organizations, applications must be postured for growth
and evolution (Robert and Stephen 1998). In addition as
software undergoes maintenance and enhancement, it
becomes brittle, complex and susceptible to errors.
The quality assessment process produces clear and
objective risk rating of the overall quality of the software
products evaluated. These ratings comprise risk drivers
and risk mitigators inherent in the system artifacts under

94 MONICA AGU AND FRANCIS BAKPO

evaluation. The question arises, how should quality of
software be defined? The definition depends on an
individual point of view and it relates to issues and
concerns that the person sees as important Robert and
Stephen (1998). This can be defined in such a way that
a quality system minimizes its lifecycle risks. Software
systems are expected to be modified overtime and
therefore should support ease of modification and
evolution. We think of systems that minimize the risk of
introducing errors during the development and
maintenance phases of the system. With this definition
we explore the types of issues that we will have to
examine in order to obtain a measure of system quality.

2.0 Characteristics of software quality
 Collaborating ISO/IEC-9126 which is an
extension of the previous work done by McCall (1977),
Beohm (1978), we define a set of characteristics for
measuring a software quality to include:
(i) Functionality: This is defined as the essential purpose
of any product or service and the more function it has
the more complex it becomes to define its functionality.
In designing software, functionality can be expressed as
a totality of its essential functions. Some essential
attributes of functionality include:

• Suitability. This refers to the appropriateness of
 the functions of the software

• Accurateness. This refers to the correctness of
 the functions. If the software is suitable to
 handle the function, it should have this second
 attribute.

• Interoperability. This concerns the ability of the
 software component to interact with other
 components or systems since a software
 system cannot function in isolation.

• Compliance. The software has to be compliant
 to the performance of the functions for which it
 was designed.

• Security. Security refers to the authorized
 access of the software functions.

(ii). Reliability: This is the next characteristics for

measuring software quality.It defines the capability of
the system to maintain its service provision. The
reliability is related to maturity, fault telorance and
recoverability. Maturity of the software concerns the
frequency of its failure while fault tolerance explains the
ability of the software to withstand/recover from
component or environmental failure. Recoverability is
concerned with being able to bring back a failed system

(iii) Usability: This refers to the ease of use for a given

function. It has three sub characteristics which explain
the usability of the software and they include the
understandability of the software and that determines
the ease with which the system functions can be
understood, learn ability which concerns the learning
effort for different users and operability the ease of being
operated by a given user in a given environment.

(iv) Efficiency: This concerns system resources when
providing the required functionality. This is in respect of
disk space, memory, etc. and is measured by time
behavior and resource behavior. Time behavior
characterizes response time for a given throughput and

Resource behavior characterizes resources used
namely memory usage, CPU, etc.

(v) Maintainability: This addresses ability to identify

and fix a fault within a software component and it is a
measure under the following

• Analyzability. This is the ability to identify the
root cause of a failure within the software

• Changeability. This takes care of the amount of
effort to change a system.

• Stability. This is the effort needed to verify a
system change.

• Adaptability. This is the ability of the system to
change to new specifications or operating
environments.

(vi) Portability: It refers to how well the software can
adopt to changes in its environment or with its
requirements. The following are sub characteristics of
portability

• Installability. The effort required to get it installed

• Conformance. This is similar to compliance in
functionability which addresses how capable the
software can be compliant.

• Replaceability. This talks of the plug and place
aspects of software components and how easy
it is to exchange a given software component
within a specified environment.

As in Robert and Lawrence (1996) the main areas for
quality of the software were identified as follows:
Maintainability. This ranges from architectural design
issues to implementation and documentation. Here we
look at the ease of locating and fixing software failures
and making minor modifications.

Evaluability. This is concerned with the ease of changing
software to accommodate changes in requirements.
This deals with the questions of how difficult it is to
change the capabilities of the system. A lot determines
the systems evaluability and these include, how simple
the design is, good control of errors, accurate
informative documentation.

Portability: This concerns when the system may need
to migrate or upgraded
 to another hardware platform or when operating
system changes.
Descriptiveness: This refers to both the external printed
material about the system and the source code resident
documentation. What matters is that the documentation
is adequate to support the maintenance, porting and
enhancement activities that will occur through the
systems life.
 Having defined the areas, the quality of these areas are
measured based on the factors. Each of the factors is
considered to measure the quality of those areas while
using some set of attributes. To measure the quality
factor these attributes are distinct measurable questions
that address the various ways the concept of the factor
may be implemented in the code.
As in Robert and Lawrence (1996), Robert and Mary
(1996) the analysis of a structure for software quality
assessment was done originally by B. Boehm and
associates and incorporated by McCall and others in
1978. This structure involved quality attributes related to

LESSONS AND CHALLENGES FROM SOFTWARE QUALITY ASSESSMENT: 95

quality factors which was decomposed into quality
criteria which lead to quality measurement. In his work
he designed a quality profile model in which the
functions that determine quality factors and merit indices
can either be formulated using an algorithm or statistic.
What composes these functions can be derived from
theoretical understanding of relationship between
measurement parameters and the derived properties of
the system. One good example of these quality factors
in software is the degree of structuredness of some
code. Therefore a quality attributed for a comparable
program property would be a Boolean value which
indicates whether or not all structures in a program are
consistent with some standards and this standard

represents the ISO for 2001 which defined six software
quality attributes. The quality factors are concerned with
defining the quality of given software. This quality must
surely have to do with both structure of the system and
perceived performance in achieving its objectives.
Based on this the subject i.e. and the objective measure
are used to capture all the important issues which
surrounds the quality of a system, where the subjective
quality factor is one that has little or no theoretical
support while the objective parameters express some
essential qualitative aspect. Having looked at the
different quality factors and different quality areas, fig 3
shows a mapping of the quality areas with respect to the
quality factors.

Fig 3: Quality Areas to Quality Factors Map.
Source: Robert A. Martin and Lawrence H. Shafer (1996)

From fig 3. It can be seen that self descriptiveness and
documentation contributes to all the four quality areas.
Having described the factors that are used to assess the
quality of the software, we now discuss the challenges
we are faced with.

3.0 Challenges of software quality assessment.
 Challenges of software quality assessment
bother on the sub characteristics of the non-functional

components. Evaluation of quality in use is partly
affected by the user’s knowledge and experience
Georgios gousious et al (2007). These challenges of
software quality assessment embrace the following:

 Security: this is a nonfunctional requirement and it
needs to be addressed in every software project. A
badly written software may be functional but subject to
buffer overflow attacks. Here the software designed is

Maintainability

Consistency Design Simplicity

Self-Descriptiveness

Modularity

Anomaly Control

Documentation

Evolvability

Anomaly Control

Design Simplicity

Modularity Self-Descriptiveness

Documentation

Portability

Documentation
Modularity

Independence
Self-Descriptiveness

Descriptiveness

Documentation Self-Descriptiveness

96 MONICA AGU AND FRANCIS BAKPO

not considered because what matters is the functionality
of it.

Designing: This is a major factor for software quality

when proven design principles are adhered to. This
allows a software system to evolve as it makes
modifications to be cheaper. Therefore by evaluating the
quality of the design of a system one can estimate its
overall quality.

Reliability: Nobody thinks of the failure of the software.

However when a software is not able to withstand or
recover from failures it becomes unreliable.
Usability: This concerns the ease/difficulty of learning
how to use the software by different users. In some
cases the software users are not able to operate the
software. Here, it does not have a good user interface
design. In our situation as long as the experts know how
to use it then the problem is solved.

Maintainability: A number of questions are raised.
Systems are designed but can they be easily
maintained? If it has a problem, can the root cause of
the problem be identified and if not is it advisable to
have software that cannot be maintained? Again what
effort is required for the system to be changed? The
software bought or developed does it adapt to this
situation? How stable is the system in respect to
changes to the system? What efforts do we need to
verify the change to new specifications? In our
situations, software bought/designed by our students
have not had the facilities of testing this characteristics
which are necessary to certify the quality of the software

Efficiency: When we think of this nobody bothers about
the through put/ turnaround time of the system which is
one of the attributes that measures efficiency. The
interest is always on the functional characteristics of the
system.

Portability: In this the efforts needed to install the system
is a problem. Another problem is the ease/difficulty of
changing a given component of the software within a
specified environment. We are confronted with all these
challenges when dealing with softwares bought and
those developed by our students. One of the greatest
challenges is not having the facilities to assess software
bought or developed. Unfortunately when people buy a
piece of software, they only look at the functionality
aspect of it. Once it is able to solve their problem, the
other non functional aspects which they are not aware of
are not taken into consideration. Consequently, the
software is discarded as soon as problem arises. A
badly-written, software may be functional but subject to
buffer overflow attacks.

4. Lessons
The lessons gathered include the following:
1. Mature process help ensure consistent quality of
 products
2. Assessment of the quality of the products that
 the process produces provides more accurate
 analysis of the organization’s capability.
3. Ignoring the quality of the products developed
 by a process leads to an incomplete

 understanding of the risk that a development
 effort presents.
 4. Ignoring product quality can also result in the
 misallocation of resources in process
 improvement and planning.

A method for evaluating the quality of software products
is based on the ISO standard for product evaluation.
This product assessment focused on software quality
assessment standard of four quality areas and these
include the following, maintainability, portability,
evaluability and descriptiveness. As in Robert and
Stephen (1998) their experience shows that processed
product assessments produce a more accurate
understanding of software development organizations
capabilities instead of using the standard SCE that uses
process Matura.
 Assessment of product quality can identify
deficiencies that will increase the risk of using the
product as the basis for further development. Problems
with product quality can also provide an indication of
lack of commitment to disciplined development practices
and rigorous process enforcement.

CONCLUSION
 Using the ISO/IEC-9126 we have been able to
identify the major characteristics used to assess the
quality of software. The same standard should also be
applied to assess that of the space system software.
Since the space system software is a complex and
complicated one, all characteristics must be evaluated
and must be correct. Consequently for space system
software a more serious effort must be made to enforce
this standards. This is because once those standards
are not enforced it can cause a disaster. From the
paper a lot of challenges based on the non functionality
characteristics of the standard are highlighted. The
benefits of using the standards were also discussed. It
was observed that a lot of challenges were based on our
ignorance of those characteristics. Also we were
handicapped because the facilities needed to assess
our developed software were not available. Our interest
was based on only the functionality of the system which
did not actually tell us how good the software developed
was and when those standards are to be put in place.

REFERENCES

ANSI Standard (ANSI/ASQCA3/1978)

Boëhm, B., 1978. “Characteristics of software quality”,
 1, of TRW series on software technology,
 North-Holland, Amsterdam, Netherlands.

Fitzpatrick, Ronan; Smith, Peter; and O'Shea, Brendan,
2004. "Software quality challenges.". Proceedings of the
 Second Workshop on Software Quality at the
 26th. International Conference on Software
 Engineering (ICSE 2004), Edinburgh, Scotland.
 Published by IEEE.
 http://arrow.dit.ie/scschcomcon/5/

Georgios Gousios, Vassilios Karakoidas, Konstantinos
Stroggylos, Panagiotis Louridas, Vasileios Vlachos and
Diomidis Spinellis, 2007. Software quality assessment of
 open source softtware.

LESSONS AND CHALLENGES FROM SOFTWARE QUALITY ASSESSMENT: 97

 http://www.dmst.aueb.gr/dds/pubs/conf /2007-
 PCI-SQOOSS/html/GKSL07htm

ISO/IEC 9126-1, 2001. International Standard Software
 engineering – Product quality – Part 1: Quality
 model, International Organisation for
 Standardisation, Genève, Switzerland

 ISO/IEC-9126 Software Quality characteristics.
 http://www.sqa.net/iso9126.html

McCall, J., Richards, P. and Walters, G., 1977. “Factors
 in software quality”, Vol I-III, Rome Aid Defence
 Centre, Italy.

Robert A. Martin and Andrey E. Taub, 1998. Improving
 software quality norms within military systems.
 http://www.mitre.org/work/tech_papers/tech_pap
 ers_98/martin_software_quality/

Robert A. Martin and Lawrence H. Shafer, 1996.
 Providing a framework for effective software
 quality assessment: Making a science of risk
 assessment. Paper presented at the 6th annual
 internal symposium of INCOSE “Systems
 Engineering”: Practices and Tools.
 http://www.mitre.org/work/tech_transfer/pdf/risk
 assessment.pdf

Robert A. Martin and Mary T. Drozd, 1996. Using
 Product Quality Assessment to Broaden the
 Evaluation of Software Engineering Capability.
 Paper presented at the 1996 Software
 Engineering Process Group Conference.
 “Broadening the Perspective for the Next
 Century”.
 http://www.mitre.org/work/tech_papers/pdf/se
 capability.pdf

Robert A. Martin and Stephen A. Morrison, 1998.
 Managing software quality throughout the
 lifecycle.
 http://www.mitre.org/work/tech_papers/tech_pap
 ers_98/martin_software_quality/
 martin_software_quality_paper.pdf

98 MONICA AGU AND FRANCIS BAKPO

