
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 17, NO .4, 2011: 503-508
COPYRIGHT© BACHUDO SCIENCES CO. LTD PRINTED IN NIGERIA IS SN 1118-0579

www.globaljournalseries.com , Email: info@globaljournalseries.com

SOFTWARE RELIABILITY: FAILURES, CONSEQUENCES AND
IMPROVEMENT

 A. E. OKWONG AND E. E. UMOH

 (Received 16 July 2009; Revision Accepted 11 May 2010)

ABSTRACT

 Software reliability is one of a number of aspects of computer software which can be taken into consideration
when determining the quality of the software. Software reliability is an important factor affecting system performance.
It differs from hardware reliability in that it reflects the design perfection rather than manufacturing perfection. The high
complexity of software is the major contributing factor of software reliability processes. Software reliability is not a
function of time, but it is believed that some modeling technique for software reliability is reaching propensity, by
carefully selecting the appropriate model for a particular situation. Measurement of software reliability is still in its
infancy. No good quantitative model has been developed to represent software reliability without excessive damage.
With software embedded into many electronic devices, software failure has caused more inconveniences and losses.
Software errors have caused human death. The causes are ranged from poorly designed user interfaces to direct
programming errors. This work tends to draw attention on the standards to be adopted for software reliability.

KEYWORDS: Software Reliability, Hardware Reliability, Bathtub Curve, Model, Metrics

INTRODUCTION
 With the advent of the computer age, computers
as well as the software running in them are playing a
vital role in our daily lives. But we may not have been
familiar and noticed that appliances such as washing
machines, televisions and watches are having their
analog and mechanical parts being replaced by Central
Processing Units (CPUs) and software. The computer
industry has improved tremendously in software
development, processes control, software control
systems in terms of compact design, flexibility, handling
risk feature thereby reducing cost (Osuagwu, 2008).
 The idea of people about software is that
software never breaks, unlike mechanical parts such as
bolts and levers or electronic parts such as transistors,
capacitors. Meaning that, software will stay as long as
there is no problem in the hardware that changes the
storage content or data path. Software does not age,
rust, wear out, deform or crack. There is no
environmental constraint for software to operate as long
as the hardware processors it run can operate (Jianlao,
1996).
 In a nutshell, software has no shape, colour or
material mass. It can not be seen or touched, but it has
a physical existence and is crucial to system
functionality. Therefore, the functionalities affect
environmental changes with series of tragedies (Ho-
Won Jung et al 2004).
 Software reliability unlike many other software
quality factors, can be measured directly and estimated
using historical and developmental data. Software
reliability is defined in statistical terms as “the probability
of failure-free operation of a computer program in a
specified environment for a specific time”. Software
reliability problems can always be traced to errors in
design or implementation (Jianao, 1996).

Significance of the Study
This paper intends to complete the following:
(i) To enable software developers have a full
 knowledge of project management in terms of
 software development.
(ii) To estimate cost, time and energy required in
 software development
(iii) To produce quality and reliable software.

Software Concepts
Definition: Software reliability is defined as the
probability of failure during software operation for a
specified period of time in a specified environment.
Although software reliability is defined as a probabilistic
function and comes with a notion of time, we must note
that, it is different from traditional hardware reliability.
Hardware components may rust or wear out with time
and usage, but software will not rust or wear out during
its life cycle. Software will not change over time unless
intentionally changed or upgraded.
 Software reliability is an important factor in
software quality, performance, together with
functionality, usage, maintainability and documentation
(Stephen, 1998). Software reliability is hard to achieve,
because the complexity becomes too high. While any
system with a high degree of complexity, including
software will be hard to reach a certain level of reliability.
System developers tend to push complexity into the
software layer with the rapid growth of software
reliability. We see the complexity inversely related to
software reliability; it is directly related to other factors in
software quality, especially functionality, capability, etc.
Therefore, this factor adds more to complexity of
software.
 Software reliability is one of a number of
aspects of computer software which can be taken into

503

A. E. Okwong , Department of Computer Science, Cross River University of Technology, Calabar
E. E. Umoh, Department of Computer Science, Cross River University of Technology, Calabar

consideration when determining the quality of the
software. Although the term ‘quality’ could connote a
subjective as in qualitative-evaluation. Software
reliability is generally meant to be measured using some
objective criteria called metrics. With software
embedded into many devices today, software failure has
caused more than inconveniences and tragedies.
(Keene, 2005).

The Goal of Software Reliability
 The need for a means to objectively determine
software quality comes from the desire to apply the
technique of contemporary engineering principles to the
development of software. That desire is a result of the
common observation by lay person and specialists,
computer software does not work the way it ought to. In
other words, software is seen to exhibit undesirable
behaviour up to and including outright failure.
 Since software reliability is one of the most
important aspects of software quality, reliability
engineering approaches are practices in software field
as well; Software Reliability Engineering (SRE) is the
qualitative study of the operational behaviour of software
based systems with respect to user requirements
concerning reliability. (Keene, 2005).

STANDARD AVAILABLE TOOLS, TECHNIQUES AND
METRICS
Software Reliability Models
 A proliferation of software reliability models have
emerged as people try to understand the characteristics
of how and why software fails, and try to quantify
software reliability. Over 200 models have been
developed since early 1970s, but how to quantify
software reliability still remains largely unsolved. As
many models as there are, many more emerging, none
of the models can capture a satisfying amount of the
complexity of software, constraints and assumptions
have to be made for the quantifying process. Therefore,
there is no single model that can be used in all
situations. One model may work well for a set of certain
software, but may be completely off track for other kinds
of problems.
 Most software models contain the following
parts: assumption, factors and mathematical function
that relate the reliability with the factors. The
mathematical function is usually higher exponential or
logarithmic functions. Software modeling techniques can
be divided into two sub-categories: prediction modeling
and estimation modeling. These kinds of modeling
techniques are based on observing and accumulating
failure data and analyzing same with statistical
inference.

Table 1: Difference between Software Reliability Prediction Model and Software Reliability Estimation Models.

ISSUES PREDICTION MODELS ESTIMATION MODELS
Data Reference Uses historical data Uses data from current software

development effort
When Used in Development
Life Cycle

Usually made prior to
development or test phases;
can be used as early as
concept phase.

Usually made later in life cycle (after some
data have been collected); not typically
used in concept or development phase

Time Frame Predict reliability at some
future time`

Estimation reliability at either present or
some future time.

 Some of the representative prediction models
include: Musis Execution Time Model, Putman’s Model,
ROME Laboratory Model, etc. Using prediction models,
software reliability can be predicted early in the
development phase and enhancements can be initiated
to improve reliability. Representative estimation models
include Exponential Distribution Model, Webull
Distribution Model, Thompson and Chelsen’s Model,
Cocomo II and Cocom III Models, etc. (Reliability
Analysis Center, 2001). Most software reliability models
ignore the software development process and focus on
the results-the observed faults and / or failures. By doing
so, complexity is reduced and abstraction is achieved.
However, the models tend to specialize to be applied to
only a portion of the situation and a certain class of
problem. (Neuman, 1995).

Software Reliability Metrics
 Measurement of quantities is common in other
engineering fields, but not in software engineering.
Although, it is frustrating to measured software reliability,
the quest never ceased, until now, we still do not have a
good way of measuring software reliability. Measuring
software reliability remains a difficult problem because
we do not have a good understanding of the nature of
software. There is no clear definition to what aspects are

related to software reliability. We can not find a suitable
and convenience way to measure software reliability,
and most of these aspects related to software reliability.
Even the most obvious, such as software size have no
uniform definition.

Although, software can not be measured directly, the
current practice of software reliability measurement can
be categorized into the following:
- Function Metrics
- Function Point Metrics
- Test Coverage metrics
- Project Management Metric
- Process Metrics
- Fault and Failure metrics

Product Metrics- software is thought to be reflective of
complexity, development effort and reliability. Lines of
Code (LOC), or LOC in Thousand (KLOC), are institutive
initial approach to measuring software size. But there is
not a standard way of counting. Typically, source code is
use (SLOC, KLOC) and comments and other non-
executable statements are not counted. The advents of
new technologies of code reuse and code generation
techniques also cast doubt on this simple method.

 504 E. O. UKEM AND E.O. ONOYOM-ITA

Function Point Metrics- This is a method of measuring
the functionality of a proposed software development
based upon a count of inputs, outputs master files,
inquiries and interfaces. This method can be used to
estimate the size of a software system as soon as the
functions can be identified. It is a measure of the
functional complexity of the program. It measures
functionality delivered to the user and is independent of
the programming language.

Test Coverage Metrics- This is a way of estimating
fault and reliability by performing tests on software
products, based on the assumption that software
reliability is a function of the portion of software that has
been successfully verified or tested.

Project Management Metrics- It is of important to note
that good management can result in better product.
Research has demonstrated that a relationship exist
between the development process and the ability to
complete projects on time and within the desired quality
objectives. Costs increase when a developer uses
inadequate processes, risk management process,
configuration management process etc.
Process Metrics- Based on the assumption that the
quality of the product is a direct function of process,
process metrics can be used to estimate, monitor and
improve the reliability and quality of software, ISO - 9000
certification is a reference book for standard. (Michael,
1995).

Fault and Failure Metrics- The goal of collecting fault
and failure metrics is to be able to determine when the
software is approaching failure-free execution. Summary
can be made, and observation made during testing
(before delivery) and the failures (Problems).

The Effect of Software Failure and Consequences
Software failures may be due to errors, ambiguities,
oversight or misrepresentation of the specification that
the software is supposed to satisfy, carelessness or
incompetence in writing codes, inadequate testing,
incorrect or unexpected usage of the software or other
unforeseen problems. (Musa et al, 1997). When
comparing between software reliability and hardware
reliability, hardware faults are mostly physical faults,
while software faults are design faults which are difficult
to visualize, classify, detect and correct (Michael, 1995).
A partial list of the distinct characteristics of software
compared to hardware is listed below:

* Failure Cause: Software defects are mainly design
defects.
* Wear-Out: Software does not have energy related
wear-out phase. Errors can occur without warning.
* Repairable System concept: Periodic results can
help fire software problems.
* Time Dependency and Life Cycle: Software reliability
is not a function of operational time.
* Environmental Factors: Do not affect software
reliability, except it might affect program inputs.
* Reliability Prediction: Software reliability can not be
predicted from any physical basis, since it depends
completely on human factors in design.

* Redundancy: can not improve software reliability if the
identical software components are used.
* Interference: Software interference are purely
conceptual than visual.
* Failure Rate Motivators: Usually not predictable from
analysis of separate statements.
* Built with Standard Components : Well understood
and extensively tested standard parts will help improve
maintainability and reliability. Strictly speaking, there are
no standard parts for software except some standard
logic structures.

As software permeates to every aspect of our daily life,
software related problems and the quality of software
can cause serious problems. The defects in software are
significantly different than those in hardware and other
components of the system. No matter how hard we try,
defect-free software can not be guaranteed. The defects
in software have lead to the following.
- The therac 25 accident-This event will always
be remembered in history, a computer controlled
radiation-therapy machine in the year 1986 caused by
the software not being able to detect a race condition,
alert that it is dangerous to abandon our old but well
understood mechanical safety control and surrender our
lives completely to software controlled safety
mechanisms. (Nancy, 1993).
- Software can make decision, but can just be as
unreliable as human beings. The British
Destroyer Shellfield was sunk because the radar system
identified an incoming missile as friendly. The defense
system matured to the point that it was now mistaken
the rising moon for incoming missile, but gas-field fire,
descending space junk, etc, were also examples
that can be misidentified as incoming missile by the
defense system. (Lin, 1995).
- Software can also have small unnoticeable
errors on drifts that can culminate into disaster. On
February 25, 1991 during the Gulf war, the chopping
error that missed 0000095 second in precision in every
10th of a second accumulating for 10 hours made the
patriot missile fail to interpret a scud missile. 28 lives
were lost. [http://www.math.psu.edu].
- Trying to fix problems may not make the
software more reliable; on the countrary, new problems
may arise. In 1991, after changing three lines of code in
a signaling program which contains millions of lines of
code, the local telephone system in California and along
the Eastern Seaboard came to a stop. [Lions, 1996].
- After the success of Adriane 40 Welert, the
maiden flight of Adriane 5 went into flame caused as a
result of software failure. [ISO, 2001].

There are more disastrous stories to tell, with a very big
question as to whether software is reliable at all. And
also, whether we should use software in safety
embedded applications.

The Bathtub Curve for Hardware Reliability
 Over time, hardware exhibits the failure
characteristics shown in figure 1, known as bathtub
curve, Period A, B and C stands for burn-in phase, use
life phase and end of life phase.

SOFTWARE RELIABILITY: FAILURES, CONSEQUENCES AND IM PROVEMENT 505

Figure 1: Bathtub Curve for Hardware Reliability

 Software reliability however does not show the
same characteristics similar as hardware. A possible
curve shown in figure 2 is obtained if we project software
reliability on the same axes. There are two major
differences between hardware and software curves. One
difference is that in the cast phase, software does not
have an increasing failure rate as hardware does. In this
phase software is approaching obsolesce; there are

motivation for any upgrade or changes to the software.
Therefore, the failure rate will not change. The second
difference is that in the useful life phase, software will
experience a drastic increase in failure rate each time an
upgrade is made. The failure rate levels off gradually,
partly because of the defects found and period after
upgrade.

Figure 2: Bathtub Curve for Software Reliability

 The relationship between key concepts in
hardware reliability and their applicability to software has
been a topic of discourse. Although an irrefutable link is
yet to be established (Rock, 1990).
Let us consider a few key concepts that apply to both
system elements.
If we consider a computer-based system, a simple
measure of reliability is mean –time-between-failure
(MTBF), where

MTBF = MTTF + MTTR

Where MTTF and MTTR are mean-time-to-failure and
mean-to-repair respectively

 Many researches agree that MTBF is a far more
useful measure than defects/KHX or defects/FP. Stated
simply an end user is more concerned and not with the
total error count. Because each error contained within a
program does not have the same failure rate, the total
error count provides little indication of the reliability of
the system (Keene, 2005).
 Software engineering practitioners have often
asked the question “when are we done testing? Musa
and Ackerman suggest a response that is based on
statistical criteria we cannot be absolutely certain that
the software will never fail, but retire to a theoretically
sound and experimentally validated statistical model.

A
Burn in

B
Useful Life

C
Wear Out

Time

a

F
ai

lu
re

 R
at

e

Time

C
Obsolence

B

Useful Life

A
Test/Debug

F
ai

lu
re

 R
at

e

a

U
pg

ra
de

U
pg

ra
de

U
pg

ra
de

 506 E. O. UKEM AND E.O. ONOYOM-ITA

We have done sufficient testing to say with 95 percent
confidence that the probability of 1000 CPU hang of
failure free operation in a probabilistically defined
environment is at least 0.995” (Musa, 1989).
 Using statistical modeling and software theory
models of software failures (uncovered during testing)
as a function of execution time can be developed. A
version of the failure model, called Logarithmic Poisson
Execution Time Model takes the form.

F(t) = (1/p) In [Io pt + 1] - - - 1

Where f(t) = Cumulative number of failures
that are expected to occur once the software has been
tested for a certain amount of execution time, t.
 Io = the initial software failure
intensity (failure per time unit) at the beginning of
testing.

 P = the exponential reduction in
failure intensity as errors are uncovered and repairs are
made.
The instantaneous failure intensity I(t) can be derived by
taking the derivation of f(t)

 I(t) = Io / (Io pt +I) - - 2

Using the relationship noted in equation 2: testing can
predict the drop-off of errors as testing progress. The
actual error intensity can be plotted against the
predicated cure (Fig 3). If the actual data gathered
during testing and the Logarithmic Poisson Excursion
time model can be used to predict total testing time
required to achieve an acceptable low failure intensity.

Figure 3: Logarithmic Poisson Excursion-time Model Graph

Prospects for Future improvements

•••• Good engineering methods can largely improve
 software reliability
•••• Before the development and use of software
 products, testing, verification and validation are
 necessary steps to accomplish.
•••• Software testing is heavily used to trigger, locate
 and remove software defects.
•••• Various analysis tools such as trend analysis,
 fault-free analysis, orthogonal defects
 classification and formal methods, etc,
 can be used to reduce the possibility of defects
 before release.
•••• Filed data can be gathered and analyzed to
 study the behaviour of software defects.

CONCLUSION
, Software reliability is a key part in software
quality. Software reliability is hard to achieve. The

difficulty of the problem stems from insufficient
understanding of software reliability and in general
characteristics of software. Until now, there is no way of
determining defect-free software.
 As more software is embedded into systems, we
must be sure that they do not cause disaster. If care is
not taken, software reliability can be reliability bottleneck
of the entire system but is not an easy task. Software
reliability can be measured using the following,
modeling, measurement and improvement of using
software engineering principles or field.
 Software reliability modeling has matured to the
point that meaningful result can be obtained by applying
suitable models to the problem. There exist many
models, but no single one can be adjudged as being
right to solve the complexity problem. Software reliability
is far from reality and can not be directly measured.
 Therefore, ensuring software reliability is not an
easy task, but as hard as the problem may be,

E
xe

cu
tio

n
tim

e

t

Execution time t

Predicted failure intensity, l(t)

Failure intensity as a
function of execution

time

SOFTWARE RELIABILITY: FAILURES, CONSEQUENCES AND IM PROVEMENT 507

promising progresses are still being made toward more
reliable software.

REFERENCES

How Patroit Missile Failed to Intercept a seud Missile,
 retrieved from
 http://www.math.psu.edu/dna/455.F96/disasters.
 html.

Ho-Won Jung, seung-Gweon Kim, and Sin Chung,
 Measuring Software Product Quality: A
 Survey of ISO/IEC 9126.
 http://doi.ieeecomputerciety.org/10.1109/MS.20
 04.1331309). IEEE Software, 21(5): 10-1,
 September/october 2004.

International Organization for Standardization, Software
 Engineering, and Prudent Quality –Part 1:
 Quality Model (ISO, Geneva Standard, ISO/IEC
 9126-1:2001(E)).

Jianlao, P., 1996, System Software Reliability, -
 Depended Embedded System, Carnegie
 Meusn University, 18-849b Reviewed from
 jpan@cmn.elu.

Keene, S. J., 2005. Comparing Hardware and Software
 Reliability, Reviewed from 14(4) 5, 7, 21pp.

Lin, H., 1995. Scientific American, Shielfield hiccups
 caused by software, 253 (6): 48p.

Lions, J., 1996. Ariane 5 Flight 501 Failure, European
 Space, Paris, retrieved from
 ttp://www.egrin.esa.it/htd.cs/tide/press96/ariane
 5rep.html.

Michael, R. L., 1995. Handbook of Software
 Engineering, Mcgraw –Hill Publishing, ISBN 0-
 07-039400-8 received from
 http:11portal.research.bell
 labs.com/org/ssr/book/reliability.introduction.htm
 l

Musa, J. D. and Ackerman, A. F., 1989. “Qualifying
 Software Validation: When to stop Testing”?
 IEEF Software, May 19-27.

Musa J. D., Anthony, I. and Okumotto, K., 1997.
 Software Reliability Measurement:
 Measurement, Prediction. Application, Mcgraw-
 Hill Book Company, ISBN 0-07-044093-X.

Nancy, L. and Turnes, C. S., 1993. Reprinted from “An
 investigation of the Thernc-5 Accident “IEEE
 Computer, Vol. 26 pp18-41.

Neuman, P., 1995. Computer Related Risks, Addison-
 Wesly, 38p.

Osuagwu, O., 2008. A Pragmatic and Technical
 Perspectives, 58p

Reliability Analysis Center, 2010. Introduction to
 Software Reliability, A state f Art Review
 Reliability Analysis Center (RAC), reviewed from
 http://rome.iitri.com/RAC.

Robert, L. Glass, 2001. Building Quality Structure,
 Prentice Hall, Upper Saddle River, NJ.

Rook, J., 1990. Software Reliability Handbook, Elsevier.

Stephen, H. K., 1998. Metrics and Models in Software
 Quality Engineering, Addison – Wesly, Boston,
 MA second Edition.

 508 E. O. UKEM AND E.O. ONOYOM-ITA

