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ABSTRACT

In this article, the study of the torsion of cylindrical bars using large singular finite elements method leads to
the resolution of the system of linear equations using MATLAB software. Particularly, the numerical solution of the
problem of beams with regular section shows clearly the precision of the method depending upon the choice of
different collocation points and gives in many cases, the exact solution with a relatively short computation time. The
case of bars with regular polygonal section treated numerically, illustrates the precision of the method. If the number of
sides is more than five, we always observe an exponential decrease in the total error with the number of coefficients
preserved under field, this one reaching a minimal value for each polygon and starts increasing beyond this value.
When the number of sides becomes larger, the solution tends towards the one of the circle that is known.

KEYWORDS: Torsion, collocation, singularities, large elements.

INTRODUCTION

The weak torsion of cylindrical bars leads to the
resolution of an elliptic partial differential equation with
homogeneous Dirichlet boundary conditions. It is
supposed that the torsion occurs without any change in
volume, i.e. a deformation of pure slip.

The case of polygonal bars is extremely delicate
to treat numerically; the border of the studied domain
constitutes a broken line with tops where the external
normal is discontinuous. The solution of such a problem
remains necessarily singular.

When singularities arise, the usual methods of
finite elements or the finite differences give
unsatisfactory results if they are used in their traditional
form. But in improving these methods slightly, this allows
obtaining very good results by taking account, when it is
possible, of the analytical form of the solution (Fix,1969,
p.645-658); (Wait, et al., 1971; p.45-52); (Emery, 1973,
p.344-351); (Strang, et al, 1973); (Whiteman,1975,
p.101). Since this produced good results, it can be
replaced by a more efficient process, i.e. large singular
finite elements method (Tolley, 1977); (Tolley, et al,
1977, p.26) used in solving equations of torsion of bars
with regular polygonal using MATLAB software and
going from the equilateral triangle to the regular polygon
with 100,000 sides.

Method

The equations of the torsion of a thin bar of cross
section  are written (Landau, et al, 1967):

1),(  yxu ),( yx ………………... (1)
0),( yxu ),( yx ………………… (2)

Theses above equations related are two dimensional

problem and the function of constraint u
thus depends only on two variables. While placing a
system of axes of coordinates in the plan of the cross-
section, the only components of the tensor of the
constraints different from zero are:

y
uGxz 
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  2 ……………………………... (3)

x
uGyz 


  2 ……………………………... (4)

Where G is the modulus of rigidity, α the unit torsion
angle, x and y are the Cartesian  coordinates of a point
of  and z the axis forming with x  and y  a direct
orthogonal reference mark.

The resolution of the problem (equations (1) and
(2)) does not have any difficulty as long as the contour S
of the domain does not have any tops. If the domain is a
polygon, the contour is a broken line and it is advisable
to be extremely careful in the treatment of the
singularities. The choice of the calculation algorithm is
then fundamental. Large singular finite elements method
is particularly appropriate in studying torsion of
polygonal bars, this method comprises three steps:

Step 1: Division of the domain.

The polygonal domain   is decomposed into
subdomains i  each containing one (only one) singular
point.  When the domain of the cross-section is a regular
polygon with N sides, there are N subdomains (Fig. 1).
The subdomains are called ‘large singular finite
elements’. The aperture at a top is NN /)2(2  
in the case of a regular polygon with N sides.
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Fig. 1 Division of the domain Fig. 2 Domain of the auxiliary problem

Step 2: Resolution of auxiliary problems

The auxiliary problems are identical; thus this leads to
think of identical solutions in the identical subdomains. If
this is the case, the calculation of a single auxiliary

solution would be enough to determine the solution of
the initial problem. Then, there is a total symmetry of the
physical problem.

For every subdomain *
i solve:

1),(  iii ru      in *
i with  the boundary conditions                           (5)

0),( iii ru        on **
iiS                                                                      (6)

Where domain *
i  contains i completely and where

the boundary *
iS of *

i contains completely *
iS which

is made by the half-right hand sides  limiting support on
the sides as figure 2 indicates it.

The solution of the auxiliary problem (5) and (6) is not
fully given. Indeed, this problem is particular, because
no constraint is put on iu solution to infinite. It is thus
possible to find an infinity of functions which solve the
equations (5) and (6).

That is to say the point angle i  of the polygon to which is linked a local polar coordinates ( ir , i ), (Fig. 3)

Fig. 3: Local system of polar coordinates linked to the field i

An unspecified solution of the problem (5) and (6) is written as the sum of a particular solution of the equation with
second member and the solution of the homogeneous equation:
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where NN /)2(2   and N indicates the number of sides of the regular polygon  and ina are constants and are
the unknown factors of the problem (5) and (6). In practice, it is generally impossible to find the exact analytical
solution (i.e. to solve an infinite system).

This solution is valid for all regular polygons except the square where the particular solution is as follow:
]2cos)(2sin)log[),( 54321

2
iiiiiiiiiiiip rrru                            (8)

Step 3: Connection of auxiliary solutions

To obtain the solution of the initial problem (1) and (2), one must just make a “good choice” of constants ina
involved in various auxiliary problems. It is possible to show (Tolley, 1977) that the relevant choice is made by
expressing the continuity of functions iu and ju and that of their normal derivative all along each segment of the

curve ij  (under the line separating two adjacent elements i and. j ). In practice, one cannot obviously make the

connection iu and ju but only in a limited number of points of ij , and generally approximate solutions are found.

This procedure provides a linear algebraic system, non homogeneous for constants ina . Continuity is imposed, for
example, within the meaning of collocation or least squares. The use of collocation consists in imposing the continuity
of the function and its normal derivative in a certain number of points located along sub-borders separating two
adjacent subdomains i  and .j

With regard to the method of least squares, it consists in minimizing the sum I of the following integrals
defined on each sub-border ij separating two adjacent subdomains.
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 In this expression, s indicates the curvilinear coordinate on the sub-border ij , in and jn respectively indicate the
unit outward normal along ij .

The method provides the exact solution when connection is perfect in all points of sub-borders ij , and it is thus
appropriate to assess the precision of the method by calculating an estimate of connection errors on each one of the
sub-borders ij . An error on a sub-border can be defined as follows:
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)]()[(1 2   where jiL is the length of the segment ij . (10)

The total error is defined as being the sum of the errors of all sub-borders ij balanced by the number K of sub-
borders:
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Application to some regular polygons

If the cross-section  is an unspecified polygon, one
obtains the different subdomains, by lowering from the
centre of the polygon, the perpendiculars to its sides. If
 is a regular polygon with N sides, the various
subdomains are identical. The auxiliary problems are
then identical and the auxiliary solutions are also the
same.

a) Case of the equilateral triangle

The first step of large singular finite elements method
leads to three identical subdomains: the quadrilaterals
1, 2, 3, obtained by lowering the perpendiculars to
the sides, starting from the centre of the triangle.

Fig. 4: Division of the triangular domain Fig 5: Local frames of reference

The three auxiliary problems (step 2) are similar. Equations for the one on subdomain 1 are:
1),( 111  ru in Ω1 (12)

0)0,( 11 ru (13-a)

03/,( 11 ru (13-b)

This auxiliary problem with 1 admits solutions of type (7) and by taking properties of symmetry into account, for a

given index N, coefficients ina  must be equal and coefficients ina  with odd index are different from zero and:
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The connection of auxiliary solutions (step 3) is done by requiring that:
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
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In practice, an approximate solution is obtained if the relations (15) to (17) are true in n points of each sub-border. As
there are two equations to solve at each point of collocation, this allows getting a system of 6n equations, which
makes it possible to find the 6n coefficients ina . Since the order symmetry of the problem is 3, the study can therefore

be limited to the solving of a subsidiary problem in a subdomain 1 . Equations (15) to (17) are reduced then to:

01 
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u

(18)
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out of n points of collocation of the sub-border 12 . This gives a system of n equations for the unknown coefficients

pa1  factor of approximate N order of the solution:
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To get coefficients pa1 , this needs just to minimize the integral dx
x
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  defined all along the sub-border 12 .

In an equilateral triangle with unit side, there is the following relation between 1r  and 1 11 cos2/1 r
with 6/0 1   .

The method of least squares gives: 0/ 1  naI or
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When varying n and p from 1 to N, there is then the linear system to solve to obtain the coefficients pa1
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N

p
npa  


1

1
 (21)

The solving of the system (18) gives the analytical solution; only the first term is different from zero. Therefore, the
exact analytical solution of the torsion of a bar with triangular right cross-section on unit side is as the following one:
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b) Case of a square with unit side.

In case of a square domain, this one has symmetry of revolution of order. It is then advisable to divide   into four
identical sub-domains: 1, 2, 3, 4  first step of the method.

Fig. 6: Division of the square field Fig. 7: auxiliary problem with 1

The four auxiliary problems (step 2) are of the same type and equations concerning the subdomain 1 are as follow:
1),( 111  ru in 1                                                                                            (23)

0)0,( 11 ru                                                                                                                 (24-a)

0)2/,( 11 ru  (24-b)

Such a problem admits the following solution: (Tolley, 1977, p.902-912):
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The connection of subsidiary solutions (step 3) is done while requiring:
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In practice, an approached solution is obtained if relations (26) to (29) are checked in N points of each sub-border ij .
Since there are two equations to satisfy for each point chosen, then a system of equations is obtained, making it
possible to find the N8 coefficients ina .
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Taking account of the properties of symmetry, one may note that coefficients ina  must be equal for a given index n

and only coefficients ina  which are odd n = 2p-1 (p = 1, 2, 3,. .) are different from zero. Then, relations (26) to (29) are
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coefficients pa1 of N-like approximation:
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Similar relations can be obtained for solutions in others sub-fields and the problem is entirely solved.
If the relation (30) is true all over the sub-border 12 , then the exact solution of the problem (1) and (2) could be

obtained in the sub-field 1 , namely Nuu 11 lim .
In solve (30) directly i and p, varying from 1 to N, coefficients obtained present very slight errors, even negligible as for
N>4 and a relatively very short time of calculation.

c) Case of polygonal bars having N sides with N superior or equal to N>5.

Step 1: of the method gives N  identical subdomains i  (Fig. 8)

Fig. 8: Division of the polygonal domain

Auxiliary problems have been identical (step 2) and must be solved:
1),(  iii ru  in the sub-field i (31)
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With boundary conditions
0iu  if 0 ir (32)

0iu  if NN /)2(   ir (33)

For reasons of symmetry, the study is brought back to the half  domain i
The solution of such an equation is always like in (7) i.e.
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where NN /)2(2    and N indicates the number of sides of the regular polygon.

The various coefficients ina  must be equal between them for a given odd index n for same the reasons as above.
The connection of auxiliary solutions (step 3) is done by requiring equality of the functions and like in their normal
derivative along under borders ij  between two contiguous fields i  and j , that  results in the following relations:
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For similar reasons as above mentioned and for N identical fields; the relations of continuity are reduced as follows

(15) to (17): 0
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x
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This relation is valid in N points of the common sub-border between the first sub-fields, getting therefore back to a
system of N equations for N unknown coefficients ina .

The expression (14) is therefore as follows:
2

)2tan(sin])1sin[( 11
1

1
1

1
1


  rra p

N

p
pp

p 




TORSION OF BARS WITH REGULAR POLYGONAL SECTIONS 81



RESULTS AND DISCUSSION

a) For a bar having an equilateral triangle as cross-
section, there is only one coefficient different from zero
which gives the exact solution of the problem. The
layout of the curve of the total error according to the
number of points of collocation on the sub-border 12

shows that it grows beyond the two points of collocation.
It is therefore useless to choose a number of coefficients
superior or equal to two; all the other coefficients being
zero. This solution was found with a very low total error
of calculation (Fig. 8) and a relatively short calculation
time.

Fig. 8: Curve of total error in case of equilateral triangle

b) In the case of the square, one determined the solution
by various modes of collocation. Best results are
obtained in equiangular and equidistant collocations,
followed by Gauss’s collation and poor results are
obtained using Chebyshev’s collocation. The total error

determined by the method of  least squares decreases
exponentially when the number of preserved coefficients
increases, reaches a minimal value with forty
parameters preserved and starts increasing beyond this
value (Fig. 9).

82 OUIGOU MICHEL ZONGO AND SIÉ KAM, ALIOUNE OUEDRAOGO



Fig. 9: Curve of total error in case of the square

c) If the number of sides of the polygonal field is more
than four, equidistant collocation was used and results
obtained are less good than in the previous cases.
Nevertheless, it can be noted the decrease of the total
error with the number of points of collocation. This error
grows when the number of polygon sides increases. It
decreases up to eight sides before starting increasing
for a given number of points of collocation.
The continuity of the function and its normal derivatives
in the meaning of least squares enabled us to note then:
when the number of the polygonal section sides
becomes larger, slopes of various exponentially
decreasing curves of various total errors become almost

parallel. (Fig.10)
-  when the number of sides increases, the total error
increases
- the total error decreases exponentially when the
number of coefficients preserved per sub-field
increases, reaches a minimal value for a number of
coefficients ranging between fifty and eighty, going from
pentagon to decagon (Fig. 11)
- for polygons whose sides range between twenty and
one hundred thousand, the minimal total error is
reached for a number of coefficients less than in the
preceding cases.
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Fig.10: Curves of total error of some regular polygons

Fig.11: Curves of total error in cases of pentagon to decagon

CONCLUSION

We applied the method of large singular finite
elements to the resolution of the problems of torsion of
cylindrical bars of regular polygonal cross-section. This

study gives satisfactory results with a very low total
error.

In the case of a bar with equilateral triangular
section, the exact solution is found with only one
coefficient different from zero in auxiliary solutions.
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For the bar with square section, one compared
the solutions obtained by various modes of collocation.
The best result is obtained in equiangular collocation
and the result is the least using Chebishev’s collocation.

If the cross-section is a regular polygon with a
number of sides more than five, we always observe an
exponential decrease in the total error with the number
of coefficients preserved under field, this one reaching a
minimal value for each polygon and starts increasing
beyond this value. When the number of sides becomes
important, the polygon tends towards the circle with unit
radius and the solution therefore tends towards that of
the torsion of a circular bar which is known.
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