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ABSTRACT 

 

 The physico-chemical properties of a series of disazo dyes derived from p-aminophenol on polyester and 
nylon 6 substrates are described. It was found that the dyes generally have higher affinities for the polyester fibre than 

for the nylon 6 fibre. The values of ∆µ
o
, ∆H

o
 and ∆S

o
 in the two dye-fibre systems suggest that the hydrogen bonding 

mechanism is operative in the dye-fibre binding forces. 
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INTRODUCTION 
 Dyeing is a process not only of mass transfer 
but also one in which interactions in different degree 
between dye and substrate take place. Thus the 
inclusion of thermodynamic sorption data is essential 
(Venkataraman, 1974; Anna et al., 2007). The 
application of physical chemistry to dyeing process led 
to the concept of “dyeing affinity”. That is the free-energy 
change accompanying dye adsorption process, as a 
measure of the strength of dye-fibre bonding (Bird and 
Boston, 1975; Abrahavt, 1977). In a study involving a 
fabric blend (Kan et al., 1998), the kinetics of dyeing 
process was reported of polypropylene/polyester fibres 
blends using disperse dye C.I. Disperse Blue 56. 
Wherein the dye uptake, dyeing rate constants, diffusion 
coefficients and activation energy of 
Polypropylene/polyethylene terephthalate (PP/PET) 
blend fibres were defined. 

The standard heat of dyeing, ∆H
o 

represents the 
total change in enthalpy of the system during dyeing as 
a result of molecular interactions at any point within the 
system. Both the solution phase and the fibre phase 

contribute to ∆H
o
. And from the values of ∆H

o
, one 

hopes to learn something of the values of the forces of 
attraction between dyes and fibres and the manner in 
which these forces of attraction are influenced by the 

chemical structure of the dyes and the fibre, since ∆H
o
 is 

influenced by every single molecular interaction both in 
the solution and in the fibre phases (Mcgregor, 1967; 
Otutu et al., 2007). Similarly, the standard entropy of 

dyeing ∆S
o
, is a much more subtle aspect of the dyeing 

process that have to do with the ordering or the 
dispersal of molecules within the system. 
 Although, many papers describe the physico-
chemical studies of monoazo dyes and other dye types 
on cellulose, proteins and polyamide fibres and to some 
extent on polyester fibres (Peter, 1975; Otutu, 2006). 
Very few comparable investigations have been made 
with disazo disperse dyes on synthetic polymer-fibres 
(Venkataraman, 1974; Otutu et al., 2008). In this present  
 
 
 
 
 

study, the physico-chemical studies of disazo dyes 
derived from p-aminophenol recently prepared by our 
research group is described. We also described the 
kinetics of the dyes on nylon 6 fibre. In another study 
(Kim et al., 2007), the thermodynamic adsorption 
parameters of 1, 4 – diaminoanthraquinone on 
polyethylene terephthalate using several alkane media 
ranging from pentane to dacane was reported. They 
found that in the range from pentane to decane, as the 
number of carbon atoms in the alkane decreased, the 
standard affinity (-∆µ

0
) increased. Also the diffusion 

coefficient (D) of the dye decreased and the activation 
energy (ED) increased with increasing number of carbon 
atoms in the alkane. 
 
EXPERIMENTAL SECTION 
Preparation of dye dispersion: 
 The previously prepared dyes (Otutu et al, 
2008) were formulated to be applied to PET and nylon 6 
fabrics. The composition of the dye dispersions 
comprised dispersing agent, Diwatex 40P (moderately 

sulphonated Kraft lignin, 20% on the weight of the dye) 
and N, N-dimethylformamide (DMF). The dispersions 
were prepared by dissolving each dye (0.40g) in 8mL of 
DMF and adding dispersing agent to the mark (100mL). 
 
Determination of standard affinity, heat of dyeing 
and entropy of dyeing. 
 Nine tightly closed test-tubes were placed in a 
thermostated dyebath-set at 363 K and 373 K 
respectively. Ten milliliters of dye liquor was placed in 
each test-tube to give 10 percent shade with a liquor 
ratio 80:1. Absorbance readings were taken on a 
camspsec spectrophotometer. 0.04g of polyester 

(terelyene) fabric (100%) sample obtained from 
Multichem (Nigeria) which was not pretreated was 
placed in each test-tube and covered. Timing started 
when the temperature of the dye liquor equilibrated with 
the dyebath and the bath was left to stand for six hours. 
After, the concentration of dye, [C]s, remaining in the  
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dyebaths was measured in a 10mm cell by the 
spectrophotometric method. The dyed samples were 
rinsed thoroughly with deionised water. The above 
procedure was repeated for the dyeing of nylon 6 fabrics 
at 353 K, and 363 K respectively at pH 4, adjusted with 

2% acetic acid.  

 The standard affinity ∆µ
o
, (J/mol) measured at 

363k and 373k was calculated using Eqn 1(Giles, 1974)  
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Where R is the gas constant (8.317 J/mol K), T the 
absolute temperature (K), [C]f the concentration of the 
dye on the fibre at equilibrium (g/kg), [C]s, the 
concentration of dye in the dyebath at equilibrium (g/L). 

 The heat of dyeing ∆H
o
 (J/mol) was calculated in 

accordance with Eqn 2(Bird and Boston, 1975).
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Were T1 and T2 are the absolute temperatures 1 and 2 

and ∆µ
o
1 and ∆µ

o
2 (J/mol) are the standard affinities at 

T1 and T2 respectively. 
 Finally, Eqn 3 was used to find the entropy of 

dyeing, ∆S
o
 (J/mol)  

 

 ∆µ
o
 = ∆H

o
 – T∆S

o
    (3) 

 
Determination of diffusion (Sorption) coefficient and 
Activation energy of diffusion. 
 Nine identical dyebaths (round bottomed flasks) 
were prepared and eleven 0.05g nylon 6 fabric samples 
were used. Dye dispersion was placed in each flask to 
give 20 percent shade at a liquor ratio 20:1. The dyeing 

system was maintained at pH 4.0 using 2% acetic acid. 

 The nylon 6 fabrics were entered into each 
flask. The flasks were placed in a thermostated dyebath 
set at 343 K and 353 K respectively. Timing started 
when the temperature of the dye liquor equilibrated with 
that of the dyebath, and a fabric sample was removed 
from the dyebath at intervals of 10min and the last 
sample was removed after six hours of dyeing. Each 
dyed sample was washed with warm water and allowed 
to dry at room temperature. The absorbances of the 
dyes were measured after striping the dyed fabric 

samples with formic acid at λmax (400nm) in a 10mm 
quartz absorption cell campsec uv/vis 
spectrophotometer. The absorbance at 10min intervals 
were [C]t, and the absorbance after six hours of dyeing 

were [C]∞. All measurements of dye solution were 

conducted at room temperature and graphs of Ct/C∞ 
against t

1/2
 were plotted from where the slopes were 

obtained. The diffusion coefficients (D) were calculated 
using Eqn 4 (Yakubu, 2000). 
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The activation energy of diffusion ED was calculated 
using Eqn 5 
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Note that the difference in the temperatures of study for 
polyester and nylon is due to the type of fibre. For 
example, polyester is more crystalline in structure than 
nylon hence it requires higher temperatures for dyeing to 
take place. 
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Figure 1: Structure of Dyes 

 
 
RESULTS AND DISCUSSION 
 Tables 1 and 2 show the results of 
thermodynamic studies including standard affinity, heat 
of dyeing and entropy of dyeing while figures 2 to 10 
gives the rate curves of Dye I to IX correspondingly. The 
standard affinity of the dye samples decreased in 
magnitude with temperature, indicating that the 
migration of dye from the dyebath to the fibre was not 
enhanced. This is so because in most dye-fibre 
systems, the enthalpy of dyeing is negative. As a result, 
the magnitude of the standard affinity at 373 K was less 
than that at 363 K for the polyester dyeing system and 

also the magnitude of the standard affinity at 363 K was 
less than that at 353 K for the nylon 6 dyeing system. 

The standard heat of dyeing, ∆H
o
, is of practical 

significance because it provides a quantitative 
description of the influence of temperature on dyeing 
equilibrium. The heat of dyeing is regarded as the sum 
of heats of formation of the various bonds, such as 
hydrogen bonds and ionic bonds, holding dye and fibre 

together. A decrease in the value of ∆H
o
 means that 

more dye can be retained in the fibre, that is the 
interaction between dye and fibre is increased. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

NUMERICAL TWO-DIMENSIONAL NATURAL CONVECTION IN AN AIR FILLED SQUARE ENCLOSURE,      211 



 
 

Table 1. Thermodynamic data of dyes I – IX on polyester fabrics 

  ∆ µ
o
(J/mol) at  

Dye 363 K                          373 K 

∆Ηο (J/mol) ∆ S
o
(JK

-1
/mol

-1
) 

I -10953 -10309 -34333 -64 

II -10938 -7833 -280603 -311 

III -11877 -4474 -123671 -740 

IV -10615 -6674 -153668 -394 

V -10740 -3430 -276083 -731 

VI -9007 -8966 -10482 -4 

VII -1049 -8640 -77230 -184 

VIII -9945 -8683 -55854 -126 

IX -7536 -4066 -133500 -347 

 
 

Table 2. Thermodynamic data of dyes I – IX on nylon 6 fabrics 

  ∆µ
o
(J/mol) at 

 

 

Dye 353 K                          363 K 

∆H
o
(J/mol) ∆S

o
(JK

-1
/mol

-1
) 

I -10048 -3803 -230499 -625 

II -10150 -7071 -118839 -308 

III -11523 -7549 -151834 -397 

IV -10446 -8279 -86939 -217 

V -3925 -2370 -58833 -136 

VI -10389 -6625 -72669 -176 

VII -6026 -1823 -154391 -420 

VIII -10259 -8841 -60308 -142 

IX -11044 -5803 -196042 -524 

 
 
 When dye molecules migrate from the solution 
(or dispersion) to the fibre in a dyeing system, they 
become more ordered due to the confinement in the 
solid fibre phase. The results in Table 1 also show that 
the heat evolved on dyeing is quite high for both 
substrates and the dyes which gave decreased enthalpy 
of dyeing were more there compensated for by the 
corresponding increase in entropy. For instance, dye (II) 
in the polyester dye-fibre system gave a decreased 
enthalpy of -9007J/mol but its entropy increased to -
4J/mol.  
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Similarly, in dye (V), the nylon 6 dye-fibre system gave a 
decreased heat of dyeing of -58833J/mol and a 
corresponding increase in entropy of -136 J/mol. This 
tends to corroborate the recent work done on the 
physico-chemical properties of monoazo dyes on 
synthetic-polymer-fibres (Otutu et al., 2007). However,  
 
 
 
 
 

the values of ∆µ
o
 for the PET dye-fibre system are 

higher than those of the nylon 6 dye-fibre system except 
dyes (VI), (VII) and (IX). This suggests that the dyes 
have higher affinities for the polyester fibre than for the 
nylon 6 fibre.  
 The values found for the diffusion coefficient 
(Table 3) on nylon 6 fibre show that the higher the 
temperature, the higher the coefficient of diffusion. This 
indicates that at high temperatures, there is greater 
loosening up of the fibre structure, thus creating more 
spaces for easier diffusion of dye molecules. 
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Activation energy of diffusion (ED)  

 The values found for the activation energy of 
diffusion of each dye sample on nylon 6 fibre are given 
in Table iii. Here the values of ED reflect the amount of 
energy needed to assist the dye molecule in interring the 
fibre so as to overcome the surface barrier of the fibre. A 
small value means that the dye requires relatively little 
energy to overcome the surface barrier before entering 
the fibre while a larger value is the reverse

3
  it was also 

found that dye (I) has the highest value of ED followed 
by dye (VI) and (VII) respectively. These dye molecules 
must have entered the nylon 6 fibre with more difficulty 
than the others. This suggests that certain factors such 
as molecular weight can influence or affect dye diffusion 
and hence activation energy of diffusion. Comparing 
dyes (VI) and (VII) on molecular weight factor, it was 
observed that the latter has smaller value of activation 
energy of diffusion than the former as the molecular 
weight is lower. Similarly, dye (I) has higher activation 
energy of diffusion than dye (II) yet its molecular weight 
is lower. But this is not so when dyes (I) and (VI) are 
compared. For example, dye (I) has the highest 
activation energy of diffusion value of 97559 J/mol

-1
 and 

molecular weight of 351.8 while dye (VI) has a lower ED 
and yet its molecular weight is higher. This suggests that 
other intrinsic properties of the dye molecules such as 
planarity and molecular volume apart from molecular 
weight could be very important in analyzing activation 
energy of diffusion data. These agreed with that 
reported in the literatures (Yakubu, 2000; 
Venkataraman, 1974). 
 
CONCLUSION 
 The dyeing properties of a series of disazo dyes 
were studied thermodynamically and kinetically on PET 
and nylon 6 substrates. In the thermodynamic study, it 
was found that the dyes generally have higher affinity 
values for the polyester fibre than for the nylon 6 fibre. 

On the other hand, there were changes in the ∆H
o
 and 

∆S
o
 in the two dye-fibre systems. The values of the ∆S

o
 

were negative which do not favour dyeing. However, the 

∆H
o
 values were higher which suggests that it is the only 

driving force for dyeing to occur. The values of the ∆µ
o
, 

∆H
o
, and ∆S

o
 and also the presence of the –OH and        

–NH2 in the dye structures indicate that the hydrogen 
bonding mechanism is involved in the dye-fibre binding 
forces. 
 The values of activation energy of diffusion did 
not show any general trend, however, certain intrinsic 
properties of the dye molecules such as planarity and 
molecular volume could be more useful in interpreting 
activation energy of diffusion data for nylon 6 substrate. 
Further work in this area and that of the kinetics of PET 
fibre could prove to yield beneficial results.  
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