
Akaninyene D. Antia, Department of Physics, University of Uyo, Uyo, Nigeria 
Eno E. Ituen, Department of Physics, University of Uyo, Uyo, Nigeria 

Eno E. Ituen, Department of Physics, University of Uyo, Uyo, Nigeria 

Akpan N. Ikot, Department of Physics, University of Uyo, Uyo, Nigeria  

Louis E. Akpabio, Department of Physics, University of Uyo, Uyo, Nigeria 

Eno J. Ibanga, Department of Physics, University of Uyo, Uyo, Nigeria 

 

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL 16, NO. 4 2010: 461- 467 
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA. ISSN 1118-0579 

www.globaljournalseries.com; Email: info@globaljournalseries.com 

QUANTUM THEORY OF DAMPED HARMONIC OSCILLATOR 

AKANINYENE D. ANTIA, ENO E. ITUEN, AKPAN N. IKOT, LOUIS E. AKPABIO AND ENO J. 

               IBANGA 

(Received 7 June 2009; Revision Accepted 2,
 
February 2010) 

 
 

ABSTRACT 

 The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and 
modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two 
models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle.  
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I INTRODUCTION  
 The aim of this paper is to evaluate the damped 
harmonic oscillator. The damping is here considered in 
the frame of Caldirola-Kanai model (Caldirola, 1941 and 
Kanai, 1948) and the recently developed model (Ikot et 
al, 2008). However, the problem of quantum oscillator 
with time-varying frequency had been solved (Um et al, 
1987). The Hamiltonian of this model is usually 
quadratic in co-ordinates and momentum operators (Ikot 
et al, 2008).  
 The quantum calculation is applied because it 
will give the information about the particle at  

intermediate levels (discrete energy and wave function 
can be determined at a particular point in time) unlike 
the mechanic or statistical mechanic that will give a 

continuum result (say from -∞ to ∞ without telling us 
what happen to the particle in between the two 
boundaries). Our main goals will be to construct two 
Lagrangians for this simple damped system and use the 
constructed Lagrangians to evaluate the equation of 
motion for the damped Harmonic oscillators, and also 
evaluate the minimum uncertainty relation for under 
damped regime in each case of Lagrangian. 

 

II. REVIEW OF CALDIROLA-KANAI OSCILLATOR 

 The Caldirola-Kanai oscillator with a variable mass 9 has Hamiltonian of the form (Caldirola, 1941, Kanai, 
1948 and Kim et al, 2003). 
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or in the form (Caldirola, 1941, Kanai, 1948, and Um and Yeon, 2002).  
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where m is the mass of the oscillator, γ  is the damping coefficient, q̂  and p̂  are the co-ordinate and momentum 

operators and w(t) is time-dependent frequency of the oscillator. The Lagrangian associated with equation (1) and 
equation (2) are given as:  
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respectively. The equation of motion for the classical co-ordinate q and momentum p of Equation (3) and Equation (4) 
are of the forms  
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The time-dependent Schrödinger Wave Equation (SWE) describing this system is given as:  
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The wave function and energy eigen value of equation (1) can be obtained as:  
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respectively.  

And for equation (2), the corresponding wave function and energy eigen value is given as:  
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respectively.  

 

III. Harmonic Oscillator With Pulsating Mass An Dmodified Caldirola-Kanai Oscillator   
 In this section we are going to construct two Lagrangians and use in evaluating the equation of motion for the 
damped Harmonic Oscillators and the uncertainty relation for the two models will be obtained.  
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A. HARMONIC OSCILLATOR WITH PULSATING MASS  

 We write the time-dependent Hamiltonian with time varying frequency as:  
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using equations (7) and (12) we have the wave function of this oscillator as  
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The lagrangian of equation (12) becomes:  
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and its equation of motion for the classical co-ordinate q and momentum p takes the form  
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The solution of Equation (12) is  
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We summarized the general solution of Equation (15) for the over damped (OD), critically damped (CD) and under-

damped (UD) as:  
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respectively.  

 

B. Modified Caldirola-Kanai Oscillator  

 We write the modified Caldirola-Kanai mode as:  
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and the Lagrangian of this modified oscillator is:  
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and its equation of motion takes the form:  

        

The solution of equation (22) is  
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Substituting equation (22) into equation (21) results:  
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substituting equation (20) into equation (7) we have the wave function as  
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We can now summarized the general solution of Equation (22) for the over damped (OD), critically damped (CD) and 

under-damped (UD) as 
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IV. Investigation Of The Under-Damped (Ud) Oscillator For The Two Models Constructed  
A. The Under Damped Oscillation Of Harmonic Oscillator With Pulsating Mass.  

 We consider the quantum damped oscillator with time-dependent varying frequency given by equation (16). 

Subjecting Equation (16) to continuity condition (Man’ko, unpublished), q(0)=1 and ,)0( Ω= iq&  we obtain the arbitrary 

constant A and B as:  
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where  
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 An invariant operator for the general time-dependent oscillator whose eigen function is an exact quantum 
state up to a time-dependent phase factor had been introduced by Lewis and Risendeld (Lewis and Riesendeld, 
1969).  
Following Lewis and Risendeld, we can now introduce a pair of operators first order in both position and momentum 
operators (Kim et al , 2003 and Kim and Page, 2001). 
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where )(tε in equation (32) must satisfies the classical damped equation of equation (15).  

 The operator in equation (32) and its Hermitian conjugate satisfy at any time t the boson commutation relation, 

and )(tε  must also satisfy the Wronskian condition (Kim, 2004) 

  [ ] )34(ˆ)()()(2
ln

2

iqttte

t
Cosh

d

d

=− ∗∗ εεεε
γ

β
β

&  

The number operator defined by (Ikot et al, 2008)  

    )35()(ˆ)(ˆ)(ˆ tatatN +=  

also satisfies equation (28), such that each number state  
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The quantum dispersion coordination is obtained as (Ikot et al, unpublished). 
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where )(tm′ is the reduced mass of the oscillator, which is defined as (Ikot et al, unpublished). 
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and β  is a variable parameter that takes values 1,2,3,E;n. By setting 1=β equation (39) is obtained.  

The generalized uncertainty relation has the value:  
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Equation (41) is a generalized uncertainty relation and it satisfies the Heisenberg uncertainty relation. The product of   
equations (38) and (39) gives a generalized Heisenberg relation which reduces to the exact when the damping 
coefficient γ  is set to zero. 

  
B. Under Damped Oscillation of Modified Caldirol-Kanai Oscillator  
 Considering the quantum damped oscillator equation of equation (30) and imposing the boundary conditions 
we obtain the arbitrary constants A and B as:  
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By using the same procedure as in part A, we have the uncertainty in the co-ordinate as:  
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and the dispersion of momentum by setting the variable parameter β  to unity takes the form:  
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Equation (48) obeys basic quantum principle and when the damping term is set to zero it will return to the exact 
solution of time independent harmonic oscillator which is already known. 
 
V. CONCLUSION  
 We have evaluated within the frame of 
Caldirola-Kanai model the damped harmonic oscillator in 
the  under-damped   regime.   Here,   we   obtained   the 
uncertainty relation for the under damped oscillator for 
the two models constructed and the results obtained 
satisfy the basic quantum principle (Heisenberg 
uncertainty principle). In this work, we restricted 
ourselves to the investigation of under damped 
oscillation. However, there is need for further 
investigation of the oscillation of over damped and 
critically damped oscillators.   
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