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ABSTRACT 

 
 Keplerian velocity laws imply the existence of velocity shear and shear viscosity within an accretion disk. Due 
to this viscosity, angular momentum is transferred from the faster moving inner regions to the slower-moving outer 
regions of the disk. Here we have formulated a model for calculating the magnitude of angular momentum transfer in a 
steady-state accretion disk using only two parameters; the transport coefficient of vorticity,ω and the rate of change of 
angular velocity with radial distance, dRd /Ω . With this model, the mass accretion rate in an accretion disk , can be 
determined without necessarily making use of the observed value of the luminosity of the accreting system. 
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1. INTRODUCTION  
 An accretion disk is a material-gas disk found 
around numerous types of astrophysical objects ranging 
from protostars to massive black hole candidates at the 
center of galaxies. The disk structure is formed by 
material falling into a gravitational source at their 
centers. Depending on the system, the material gas is 
pulled into the accretion disk from either the interstellar 
medium or from another star. This gas undergoes a 
differential rotation, with the inner portions completing an 
orbit faster than the outer portions. 
 One basic idea behind the accretion disk theory 
is that viscosity in the gas disk converts the free energy 
of differential rotation into thermal energy which is then 
radiated away. As this potential energy is released, the 
gas slowly spirals inwards into the central object.  
 The shear viscosity associated with differential 
rotation of the disk is generally accepted as the cause of 
transportation of angular momentum to outer portion of 
the accretion disk. In this work we derived an expression 
to determine the magnitude of angular momentum 
transferred during the accretion process and use it to 
formulate an equation for the mass accretion rate, 
making use of the transport coefficient of vorticity 
(kinematic viscosity),ν  and change of angular velocity 

with radial distance ( )drdΩ . 
 The motivation for this work stems from the fact 
that one can analytically determine the total energy 
emitted (i.e. its luminosity) from a disk from the rate of 
viscous dissipation.  
 
2. The energy minimization model 
 To illustrate the basic issues involved in disk 
accretion we consider an idealized situation with two 
bodies orbiting a central point M. Suppose that masses 
m1  and m2 are in circular Keplerian orbits around the 

central mass M>> m1 , m2 (see Figure 1). The total  
 
 
 
 

energy, E, and angular momentum , of this system are  
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where r1  and r2  are the radial coordinates of the bodies 
with respect to the central mass. Now suppose that the 
orbits are perturbed by small amounts while 
conserving . Then the relation between the 
perturbations is 
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and the corresponding change in E, in terms of  change 
∆ r1  of the first body is  
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Suppose we wish to reduce the energy E of the system 
(e.g. because it is radiating). If r1> r2  we can reduce the 

energy of the system if ∆ r1>0, i.e. moving body 1 
further away from the center. If body 1 is originally closer 
to the center, then the energy can be reduced by a 
negative displacement, i.e. moving body 1 closer in. 
Thus energy can be reduced while conserving orbital 
angular momentum by moving the initially closer body in 
and moving the initially outer body further out. This is the 
basic action of the accretion disk; energy is released as 
material both accretes and spreads to larger distances. 
If mass can be transferred between bodies, as shown by 
Lynden-Bell and Pringle (1974), then the system’s 
energy can be minimized by transferring mass from the 
outer body to the inner body. 
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This process needs a way to connect different particles 
in the disk, and one way of visualizing this is to consider 
two neighbouring annuli of width  on both sides of a 

surface r = constant as shown schematically in Figure 1. 
The particles in the annuli rub against each other while 
undergoing differential rotation. If there is friction 
between adjacent annuli, the resulting torques will 

attempt to bring the two annuli into co-rotation.  A net 
torque will then be exerted on the outer annulus, so that 
it spins up and gains angular momentum. Thus, the 
torque or transport of angular momentum is caused by 
the exchange of parcels of particles between each 
annulus, which bring differing angular momenta to the 
annuli to which they are transferred.  

 
 
 

 
                 

M 
 
 
 

Figure 1: Schematic angular momentum transfer between two annuli in a disk undergoing differential rotation. 
 
3. Calculation of angular momentum transfer in 
terms of coefficient of vorticity (kinematic viscos ity) 
 In gaseous accretion disks, because the 
material diffuses in both directions at all radii, the 
kinematics of the system is more complicated than as 
modeled above. Various models of angular momentum 
transfer have been formulated (Balbus and Hawley, 
1991; 2002). Here we have formulated the magnitude of 
angular momentum transfer in terms of kinematic 
viscosity, using the picture of a viscous torque g, which 
supposes that the gas exhibits small random or turbulent 
motions which cause radial mixing. This means that 
material between adjacent annuli will be exchanged, and 
since the material originating in the two annuli will have 
different specific angular momentum, this will cause a 
transfer of angular momentum. 
 In this model we assumed that, turbulent 
elements of the gas moving at a typical turbulent 
random velocity  travel a mean free path ℓ before 

mixing with other materials on the other side of   r = 
constant. Because the chaotic motion takes place in an 
equilibrium flow, this process cannot result in the net 
transfer of any matter between the two annuli, so that 
mass crosses the r = constant surface at equal rates in 
both directions (Bradshaw, 1971; Shakura and Sunyaev, 
1973). This mass is of the order , per unit arc 

length, where  is the mass density. And as earlier 

stated, since the two mass fluxes nonetheless carry 
different angular momenta, there is transport of angular 
momentum due to the chaotic process. A net torque or 
angular momentum transfer is thus produced at r, by the 
differing angular momenta of the two streams of 
material; one from material originating at r - ℓ/2 and 

moving outward across r to mix with annular material 
centered at r+ ℓ/2; and the other starting at r + ℓ/2 and 
moving inward across r to mix with the inner annulus at r 
- ℓ/2 (see Figure 1). This turbulent exchange drives the 
accretion mechanism envisioned by Lynden-Bell and 
Pringle (1974). Similar treatment is given by Hartmann 
(1998). 
 Noting that in this kinematic viscosity model, no 
net angular momentum is transported unless there is 
shearing orbital motion (i.e. d drΩ / ≠ 0), the net 
angular momentum flux can be calculated by 
considering that material originating at r - ℓ/2 which is 
diffusing outwards has (as seen by a co-rotating 
observer), an orbital velocity u, so that   

 
( ) ( ) ( )u r r rl l l− = − −2 2 2Ω

 
   = ( )[ ]r rl l d

dr− −2 2Ω Ω( ) ,  5 

where we have approximated the difference in angular 
velocities to first order using a Taylor series.  
Thus the net angular momentum flux per unit length 
through r = constant in the inward direction is 
   6 

A similar expression 
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dr+ = + +2 2 2Ω Ω( ) ,  7     

  
and 
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applies to the material at r + ℓ/2 for the orbital velocity, 
and angular momentum in the outward direction, 
respectively. The inner material diffuses outwards at a 
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speed  and the outer material diffuses inwards at  
across r. The net radial motion of material in the 
accretion disk is assumed to be small compared to the 
turbulent motion .  

We then integrate over the z-direction to 
average over disk structure perpendicular to the disk 
plane. Because this chaotic motion takes place in 
equilibrium flow, to first order, the process cannot result 
in any net transfer of mass between the two rings. 
Therefore, the mass crosses the surface r = constant at 
equal rates in both directions, of the order Σ  per unit 

arc length for a disk with mass density per unit 

area ∫
+∞

∞
=Σ

_
dzρ .This gives the net outward transfer of 

angular momentum across r per unit length according to 
a co-rotating observer at r to be 

 

Σ       9 

where we have assumed that ℓ is small compared to the 
scale over which Ω varies significantly. The product  

is reminiscent of the transport coefficient of vorticity, (or 
kinematic viscosity)ν , (defined as  ), so that 

we can write   
      10 

The torque exerted by the inner annulus on the outer 
annulus gives the net outward angular momentum flux. 
With this result for the total outward angular momentum 
we can find the total torque, g of the inner annulus on 

the outer annulus simply by multiplying by 2π r to have  

  dr
drrrg ΩΣ−= 22)( νπ   11 

Note that a negative gradient of angular velocity, i.e. 
Ω decreasing outward leads to a positive outward flux of 
angular momentum. 
 
4. Formulation of the mass accretion rate in 
terms of vorticity 
 We start by writing down the fluid equation for a 
thin disk in cylindrical coordinates. We expect uθ  to be 

the main component of velocity with small radial flow, ur  

caused by the effect of viscosity. If we put uz = 0  

and∂ ∂θ = 0, then the continuity equation and the θ -

component of the Navier-Stokes equation for viscous 
fluid flow (Nakayama,and Boucher, (1999) in cylindrical 
geometry are 
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 Note that we are using the Navier-Stokes 
equation obtained by assuming that the coefficient of 
viscosity µ , is constant.  And the equation as given here 

is only valid when ρνµ = , is constant, which is not the 
case in an accretion disk. So we figure out the 
appropriate expression for viscous stress from first 
principles. In order for us to ignore the contribution of the 

pressure gradient in the radial force balance, we have 
supposed that the orbital speed Ωr , much exceeds the 

isothermal sound speed mkTc =2  in the midplane of 
the disk. Since the disk has a characteristic vertical 

height Ω= cH  we see that the approximation 

cr >>Ω  holds to the extent that the disk is partially thin 
i.e. rH << . 

Integrating eqns (12 and 13) over z and 

writing ∫
∞

∞−
=Σ dzρ  for surface density, we have the 

final form of both the continuity equation given by 
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and a preliminary expression for the momentum 
conservation given by  
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where we have neglected the variation of ru  and θu  

with z (since, although ρ varies with z, we do not expect 

the components of velocity to vary very much). 
We now add together, the equation of continuity 

(eqn. 14) multiplied by r uθ  and the Navier-Stokes 

equation (15) multiplied by r. Using the angular 

velocity, ruθ=Ω , this gives the angular momentum 

equation in standard conservation form: 
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 Here rdrr π22ΩΣ  is the angular momentum 
associated with an annular ring from between r and r + 
dr, and the second term on the left hand side is the 

divergence of angular momentum flux rr nur ˆ2ΩΣ , due 
to radial flow. The right hand side is the sources-sink 
term for angular momentum, which in this case is the 
viscous torque.  
 If we were to multiply eqn. 16 by 2πrdr , then 
we get an equation telling us how the angular 
momentum of the annulus changes and we can write the 
net torque as  

rπ2 Gdr = g (r) – g(r+dr), 17 
recalling that we defined g as the viscous torque in eqn. 
11. Hence,  
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Finally, by using the relation for viscous torque 
we can eliminate G from the angular momentum 
conservation equation to obtain 

 

( ) ( ) 






 ΩΣ
∂
∂=ΩΣ

∂
∂+ΩΣ

∂
∂

dr

d
r

rr
ur

r
r

t r
332 1

2

1 ν . 19 

 We now consider the possibility of a steady disk, 
which means that we have to look for time-independent 
solutions of mass and momentum conservation. Putting 
the time derivative terms equal to zero, the mass and 
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momentum conservation (eqns. 12 and 13) can be 
integrated to give 
  1Cur r =Σ    20 
and 

 2
33 C

dr

d
rur r =ΩΣ−ΩΣ ν               21 

where 1C  and 2C , are constants of integration. For a 

steady disk, the mass outflow rate is rout urM Σ= π2& . 

This is a constant for a steady-state disk and so 

 
π21
outM

C
&

= .    22 

To calculate 2C , we note that the matter at the 

surface of the gravitating body at 0rr =  must be 

dragged into a rigid rotation so that 0=Ω drd  there. 
Then, from eqns. (20 - 22)  
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where we have assumed Keplerian rotation in the final 
step. On substituting this constant of integration back 
into the solution for the momentum equation (eqn. 21), 
and again making use of Keplerian motion, we get 
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This shows that the mass outflow rate ( 0<outM& ) 

depends linearly on kinematic viscosity (or the 
vorticity)ν . The mass outflow rate equals the inflow 
(accretion) rate but in opposite direction, so that the 
accretion rate in terms of kinematic viscosity is thus, 
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6. CONCLUSION  
 We have derived an expression to determine 
the magnitude of angular momentum transferred during 
the accretion process and use it to formulate a semi-
analytical model of an accretion process. The result 
shows that in the case where the viscosity in an 
accretion disk is due to random molecular motions, a 
kinematic viscosity prescription is clearly appropriate for 
use to determine the mass accretion rate. This 
formulation is inherently very useful, since we don’t need 
to know the luminosity of the accreting system to 
determine its mass flow rate. However, it is worthy to 
note that the model as described above would work well 
if the material in the accretion disk has a value of 
viscosity sufficient to cause enough mass inflow. The 
result obtained above will be extended in a future work 
to time-dependent accretion disks.  
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