
GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 18, NO. 1&2, 2012: 87-94
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579

www.globaljournalseries.com, Email: info@globaljournalseries.com

FOURIER SERIES MODELS THROUGH TRANSFORMATION
C. O. OMEKARA AND O. E. OKEREKE

(Received 26, October 2010; Revision Accepted 24, January 2011)

ABSTRACT

This study considers the application of Fourier series analysis (FSA) to seasonal time series data. The
ultimate objective of the study is to construct an FSA model that can lead to reliable forecast. Specifically, the study
evaluates data for the assumptions of time series analysis; applies the necessary transformation to the data and fits
multiplicative and additive FSA models. In order to meet the aforementioned objectives of the study, the average
monthly temperature data (1996 – 2005) collected from the National Root Crops Research Institute, Umudike are
subjected to statistical analysis. The preliminary analysis of the data makes transformation necessary. As a result, the
square transformation which outperforms the others is adopted. Consequently, each of the multiplicative and additive
FSA models fitted to the transformed data are then subjected to a test for white noise based on spectral analysis. The
result of this test shows that only the multiplicative model is adequate. Hence, it used to make forecast of the future
values of the original data.

KEY WORDS: Fourier series, square transformation, multiplicative model, additive model, white noise and spectral
analysis.

INTRODUCTION

Sometimes, a given series shows regular fluctuations in addition to the presence of the secular trend. These
fluctuations or movements are often periodic(Ekpeyong,2005). A function is said to be periodic if it is repeats itself
after a given period. Thus, if a function of )(tgsayt  has a period  , then    tgtg   . If   is an integer,

)(...,),2(),1( nggg  are possible. However, when   is not an integer, the periodic function )(tg  can be
approximated by a number of trigonometric functions (Priestly, 1981). Periodic time series are said to be seasonal.
Several time series tools have been used by analysts in modelling seasonality in a given time series data. In this
regard, Omekara and Ekpeyong (2006) employed the Fourier series model in the analysis of temperature data of Uyo
metropolis. The procedure for using experimental smoothing for analysing seasonal time series data is given by
Delurgio (1998). Analysis of seasonal time series data can also be done using the Box and Jekins Method. This may
be as a result of the availability of the statistical package (MINITAB) and model identification tools namely
autocorrelation function (ACF) and partial autocorrelation (PACF) that facilitate model building(Chatfield,2004). Fourier
series analysis is usually preferred to the other methods of modelling seasonal time series data described above. This
is because, it involves Orthogonal Coefficient. As a result, if a coefficient is found not to be significantly different from
zero, the concerned term is dropped without necessarily refitting be model(Delurgio, 1998).

In spite of the interesting feature of Fourier series analysis, not much has been done or said about its use in
modelling climatic data (Dyer, 1977). Again, some analysts fit time series models without actually checking if they are
adequate or not. Inadequate models may lead to unreliable forecast. Since one of the goals of time series analysis is
to make good predication with a fitted model; it is often expedient to check the adequacy of any fitted model before
making forecast. If a model is inadequate, it should be refitted. Model inadequacy may be as a result of violation of
one or more of the assumptions necessary for the use of a model. Transformation can be applied to improve the
quality of a time series data in terms of normality and constant variance (Draper etal ,1981) .
Iwueze and Akpanta (2009) outlined the procedure for applying an appropriate transformation to time series data
without fitting the time series model first.

Jenkins and Watts (1968) pointed out that situations arise in practice when it is necessary to detect
departures from the theoretical white noise process caused by periodic effect and in this case, a test based on
spectrum is more appropriate. This calls for the use of a spectral based test for white noise while working on Fourier
series analysis of seasonal time series data. Therefore, the ultimate objective of this work is to fit a Fourier series
analysis model that can lead to reliable forecast. Specifically, the study:
 Evaluates the Umudike temperature (seasonal) data for the assumptions of time series models.
 Transforms the given data if necessary
 Fit time series (multiplicative and additive) models to the seasonal data.
 Check the adequacy of the fitted models.
 Forecast the future values of the Umudike temperature data using the adequate model(s).
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2.0 METHOD OF ANALYSIS FOURIER SERIES MODELS
The basic concept of Fourier series analysis used in analyzing the seasonal time series data is discussed in

this section. The common form of this Fourier series model for time series decomposition is given by (Delurigio 1998)
as:

  )1(.................................................sincos
1
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tX fitted value of the series at time t
a constant used to set the level of the series
b trend estimate of the series

 ),...,3,2,1(, kjba jj Fourier coefficients

n
f 2

 is the Fourier frequency

k highest harmonic of 
The coefficients kk bababa ,...,,,,, 2211 are obtained by regressing the detrended series on

.sin,cos...,,2sin,2cos,sin,cos kwtkwtwtwtwtwt
It shall be noted that a test for each of the parameters in the trend equation is required in order to find out if there is a
significant trend or not, if the trend is not significant, the grand mean may be used as an estimate of trend. Equation
(1) may be referred to as the additive Fourier series analysis model.

Furthermore, Chatfield (1975) points out that the components of time series can be combined using the
additive, multiplicative or mixed model. Hence, we introduce the multiplicative form of Fourier time series models. This
model is of the form:
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Where the meanings of kk babababa ,...,,,,,,, 2211  are as stated under equation (1).

2.1 CHOICE OF APPROPRIATE TRANSFORMATION

The need for transformation arises when one or more of the assumptions of a model is not met (Osburne, 2000).
Among the common transformation are the logarithmic transformation, square transformation, square root
transformation and inverse transformation.
Studies have shown that it is possible to determine if the given data require transformation before the main statistical
modelling. Iwueze and Akpanta (2009) suggested that to determine the appropriate transformation to apply to the
given time series data, the regression analysis of the natural logarithms of the standard deviations on the natural
logarithms of their corresponding means is required. Hence, the estimated regression equation is given by:

)3(................................................,3,2,1,loglog mjX jeje 



where
m =  the total number of years considered in the given time series data

j



 = the estimated standard deviation for the jth year data


 = the estimated regression parameter independent of jX


  = the estimated regression coeffient.

jX = the estimated mean for the jth year data

We now consider the power transformation:

)4(......................................................................
1,

1,log

1

1

































ifX

ifX
W

e

t

The transformed data become normally distributed if the relationship between the annual standard deviations and
means is not significant.
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The Bartlett’s test for the constant variance assumption in the transformed data is also to be considered.
Here, the test statistic is given by:
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It shall be noted that Q approximately follows a 2 Distribution with m – 1 degrees of freedom.

2.2 MODEL ADEQUACY

After fitting a time series model to data, it is imperative to check if the model is adequate or not. This can be
done by ascertaining if the residual is a white noise or not.
Alvarez et al (2006) considered a simple test for white noise based on spectral analysis. The test statistics is given by:
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tx  = a stationary (detrended) series

To find out if a series is a white noise or not, the critical valve of   at a given significant level should be
known. These values for 01.0,05.0,1.0 and  are contained in table 1 of Alvarez et al (2006). If   is less than
its corresponding critical value at a given level of significance  , the residual series is a white noise. Otherwise, the
null hypothesis of white noise is rejected.

2.3 F ORECAST ACCURACY MEASURE

Thiel’s coefficient is used to measure the forecast accuracy of the fitted model. This coefficient is given by
Friedhelm(1973) as
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Where iA  and iP  are the ith actual and predicted values of the series respectively. 2U  lies between 0 and 1 inclusive

i.e 10 2 U . If ,02 U there is a perfect prediction. When ,12 U there is a perfect inequality or negative
proportionality between actual and predicted values (Raymond, 1975).
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RESULTS AND DISCUSSION

The statistical procedure discussed in section II for Fourier analysis of seasonal time series data are applied
to average monthly temperature data of Umudike (1996 – 2005). The following table contains natural logarithms of the
annual standard deviations and their corresponding natural logarithms of annual means of Yt.

Table 1: Natural Logarithms of Annual Standard Deviation and Means

Ln(std) 0.42 -0.33 0.39 -0.22 -0.22 0.11 -0.99 0.11 0.22 0.12
Ln(mean) 3.28 3.29 3.31 3.29 3.32 3.39 3.29 3.30 3.31 3.31

The regression analysis of the natural logarithms of the annual standard deviations on the natural logarithms
of the annual means is given by

)10(...........................................ln21.11.4ln jj Y


 .

From equation (10), 21.1



Considering the approximate value of   in the power transformation, we have:
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Again, when the actual value of


  (i.e – 1.21) is considered in the transformation, we have

)12(........................................................21.2
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The transformed values generated by ttt WandXY ,  are subjected to regression analysis. Result of the regression

analysis of jjjj WandXYon lnln,lnln


  are shown in the following table.

Table 2: Regression Analysis of Loge (Standard Deviation) on Loge (Mean) of Various Transformations

T-test for slope Bartltlett’s testTransform Regression R2

Df t-value Q Df

tY jj Yln21.11.4ln 



0.004 8 -0.18 19.5781 9

tX jj Xln27.02.2ln 



0.001 8 0.8 20.1291 9

tW
jj Wln42.08.1ln 




0.002 8 0.14 20.2641 9

The transformation tX  and tW  appear to remove the relationship between ln (standard deviation) and ln (mean) at

05.0 . The relationship exists in the original data  tY . Again, ttt WandXY ,,  exhibit some sense of

constant variance assumption. Our choice of tX  as the appropriate transformation is based on the facts that it is

easier to compute 221.22 . RYWthanYX tttt   is also minimum in the transformation tX  as shown in table

2. The least square estimates of the trend parameters are 120.027.728 


banda . We shall now consider
table 4.3 for the test for significance of the parameters.

Table 3: Anova Table for Test of Significance of the Trend Parameters of Xt.

Source of
Variation

Degree of
freedom

Sum of
squares

Mean sum
Of squares

F P

Regression 1 0.777 0.777 0.60 0.438
Error 118 151.772 1.286
Total 119 152.549
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From table 4.3, there is no significant trend in the transformed data  tX . Hence, the trend is estimated using the

grand mean 546.735tX . For the additive Fourier series model, the detrended series is obtained by subtracting

735.546 from the transformed data  tX . The corresponding terms of the seasonal component of the model obtained

by regressing the detrended series on the trigonometric terms wtwtwtwtwt 6cos...,,2sin,2cos,sin,cos  and their
significance test are contained in the table below.

Table 4: Test for Significance of the Parameters of Seasonal Component of the Additive FSA Models

Predictor Coefficient P
Constant -0.000 1.000

tcos 9.384 0.049
tsin 65.189 0.000

t2cos -17.280 0.000

t2sin -13.198 0.006

t3cos -8.543 0.073

t3sin -13.205 0.006

t4cos -30.14 0.524

t4sin -9.609 0.044

t5cos -0.643 0.892

t5sin -3.279 0.488

t6cos 0.774 0.817

Based on table 4, terms associated with tandttttt  4sin3sin,2sin,2cos,sin,cos  are significant.
Hence, the estimated Fourier series model (additive) is given by

)13(................4sin60.93sin205.13sin189.65cos384.9546.7351 ttttX t  


On the other hand, the detrended series corresponding to the multiplicative model is obtained by dividing

tX by the grand mean tX =735.546. A test for significance of the parameters of the seasonal component of the
multiplicative FSA model is summarized in the following table.

Table 5: Test for Significance of the Parameters of the Seasonal Component of the Multiplicative FSA Model.

Predictor Coefficient P
Constant 1 0.000

tcos 0.128 0.049
tsin 0.089 0.000

t2cos -0.023 0.000

t2sin -0.018 0.006

t3cos 0.012 0.073

t3sin -0.018 0.006

t4cos -0.004 0.524

t4sin -0.013 0.044

t5cos -0.001 0.892

t5sin -0.004 0.488

t6cos 0.001 0.817

In this case, only the constant term and terms associated ,2cos,sin,cos ttt  ,2sin t t3sin and
t4sin are significant at 05.0 . Hence, the multiplicative FSA model is given by

 14...)4sin013.03sin018.02sin018.02cos023.0sin089.0cos128.01(546.7352 ttttttX t  

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Furthermore, the calculated value of  for the additive model is 2345821067. At 05.0 , the calculated
value of   is greater than the critical value of 292. Therefore, the residual series of the additive model is not white
noise. Similarly the value of   for the multiplicative model is 1.95 which is less than 2.9, hence the residual series of
the multiplicative model is a white noise. This implies that the multiplicative model is adequate and can be used to
make forecast.

The graphical representations of the actual data and their estimates for both additive and multiplicative
models are shown in figures 1 and 2 respectively. It can be seen that the graph of the estimates appears to be
generally closer to that of the actual data in figure 2 than in figure 1. Thus, the multiplicative model fits better to the
data than its additive counterpart.

Fig. 1: Plot of the Actual Data and their Estimates for Additive Model
In figure 1 above, the actual data are in solid circles while the estimated values are in pluses.
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Fig. 2: Plot of Actual Data and their Estimates for Multiplicative Model
In figure 2 above, the actual data are in solid circles while the estimated values are in pluses.

3.1 FORECASTING
The forecast values of Umudike temperature for the year 2006 obtained using the model in equation 14 are

contained in table 6.
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Table 6: Actual and Forecast Values of Umudike Temperature for 2006

Mean
Temperature 28.5

28.5 29.0 28.5 27.0 27.0 26.5 25.5 25.5 26.5 27.5 26.0

Forecast
Value

28.4 29.1 28.8 27.5 26.2 25.0 24.6 25.2 26.0 27.2 28.4 28.5

Here, the Thiel’s coefficient 04.02 U  which is approximately equal to zero. Thus, the model is suitable enough to
describe the series.

CONCLUSION

We have considered the basic concept of fitting
Fouier series models to time series data. The used data
are evaluated in order to find out if there is any need for
transformation using the procedure outlined by Iwueze
and Akpanta (2009). Two appears to be computationally
easier than the latter. It also leads to the minimum
coefficient of determination and therefore is preferred to
the latter.

The conventional additive Fourier series model
is fitted to the transformed series  tX . The analysis of
the residual series of the model using the Alvarez’s
proposed test for white noise shows that the model is
inadequate.

The introduction of the multiplicative form of
FSA model is in line with what is obtainable in other
methods of analyzing time series data. On evaluating
the residual of the series this model performs better than
the additive model in this case. We therefore
recommend that analysts working on Fourier series
analysis of time series data should consider the nature
of the given data before making a choice of model.
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APPENDIX I: Mean Temperature of Umudike Data from 1996 – 2006

MONTH
YEAR JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC
1996 28.0 29.0 28.0 27.5 27.5 26.0 25.0 25.0 24.5 25.1 25.1 27.1
1997 27.5 27.5 28.5 27.5 27.0 26.5 26.0 26.0 26.5 27.0 27.0 26.5
1998 26.5 30.0 29.5 29.5 28.5 27.0 36.5 26.0 26.0 26.5 27.5 26.5
1999 27.5 28.0 27.5 27.5 27.5 27.0 26.0 26.0 25.5 26.0 27.0 27.0
2000 28.0 28.0 29.0 28.5 28.0 28.0 26.5 27.0 27.0 27.5 28.0 26.5
2001 26.5 28.5 28.5 27.5 27.5 26.5 25.5 25.0 25.5 26.5 26.5 27.0
2002 26.5 28.0 28.5 27.0 27.0 26.5 26.5 25.5 25.5 26.0 27.5 27.0
2003 27.5 28.5 29.0 29.0 27.5 26.5 26.5 26.0 26.0 27.0 27.5 26.0
2004 27.0 29.0 30.0 29.0 27.0 26.5 26.5 26.5 26.0 27.0 27.5 27.0
2005 25.9 29.0 28.5 29.0 27.5 27.0 26.0 26.0 27.0 26.5 28.0 27.0
2006 28.5 28.5 29.0 28.5 27.0 27.0 26.5 25.5 25.5 26.5 27.5 26.0
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