

\textbf{REGULARITY THEORY FOR FULLY NONLINEAR UNIFORMLY ELLIPTIC EQUATIONS}

\textbf{P. W. DARKO}

\textit{Department of Mathematics and Computer Science, Lincoln University, PA 19352, USA. E-mail: pdarko10@aol.com, pdarko@lincoln.edu}

\textbf{Abstract}

With the aim of obtaining at least Cordes-Nirenberg, Schauder and Calderon-Zygmund estimates for solutions of Fully Nonlinear Uniformly Elliptic Equations, we arrive at $W^{2, p}$, C^1, α regularity estimates for those equations, improving the existing estimates.

\textbf{Introduction}

Consider fully nonlinear second order uniformly elliptic equations of the form

$$F(D^2u, x) = f(x)$$

where $x \in \Omega$ and u and f are functions defined in a bounded domain Ω of \mathbb{R}^n, and $F(M, x)$ is a real valued function defined on $S \times \Omega$, where S is the space of real $n \times n$ symmetric matrices. Assume F is uniformly elliptic in the sense that there are positive constants $\lambda < \Lambda$ such that for any $M \in S$ and $x \in \Omega$,

$$\lambda \|N\| \leq F(M + N, x) - F(M, x) \leq \Lambda \|N\| \quad \forall N \in S, x \in \Omega.$$ \hfill (2)

When N is a symmetric matrix, $N > 0$ means, i.e. is non-negative definite. $\|M\|$ denotes the (L^2, L^2)-norm of M (i.e. $\|M\| = \sup_{x\in\Omega} |Mx|$; therefore $\|N\|$ is equal to the maximum eigenvalue of N whenever $N \geq 0$).

Recalling that any $N \in S$ can be uniquely decomposed as $N = N^+ - N^-$, where $N^+, N^- > 0$ and $N^+ N^- = 0$, it follows that F is uniformly elliptic if and only if

$$F(M + N \leq F(M), x + \|N^+\| - \lambda \|N^-\| \quad M, N \in S, x \in \Omega.$$ \hfill (3)

It also follows from (3) that if F is uniformly elliptic, then

$$\lambda |\hat{e}| \leq |F(M, x) - F(0, x)| \quad M \in S, x \in \Omega.$$ \hfill (4)

where $|\hat{e}| = \max\{|e_1|, \ldots, |e_n|\}$, the e_j ($1 \leq j \leq n$) being the eigenvalues of M.

\textit{Ghana J. Sci. 50} (2010), 9-12
In [1], rather detailed regularity estimates were obtained for solutions of (1), where \(\Omega \) was the unit ball and \(F(M, x) \) was convex or concave in \(M \). As is normal, it is natural to ask whether we can remove the convexity conditions on \(F \) and make \(\Omega \) a general bounded domain in \(\mathbb{R}^n \). We show here that we can, without even assuming that \(\Omega \) is \(F \)-convex in the sense of [2].

Our methods are not direct generalization of those of [1]. Rather we use only the philosophy that the most useful square matrix is a diagonal one, the approach being frontal. We obtain sharp Hölder and Sobolev regularity results, and from the Hölder estimates, show that once \(f \) in (1) is continuous and \(F(0, \cdot) \) is locally integrable in \((L^\infty(\Omega)) \), every solution of (1) is a viscosity solution.

We consider in this paper only those solutions of \(u \) of (1) such that the distributional derivatives \(\partial^2 u \) are actual functions on \(\Omega \), and we also assume that the boundary of \(\Omega \) has Lebesgue measure zero.

Our results are as follow:

Theorem 1. If \(F(0, \cdot) \) and \(f \) are in \(L^p(\Omega) \), \(1 < p < \infty \), then \(u \in W^{2,p}(\Omega) \) and there is a constant \(K \) independent of \(F \) such that

\[
\|u\|_{W^{2,p}(\Omega)} \leq K \|F(0, \cdot)\|_{L^p(\Omega)} + \|f\|_{L^p(\Omega)}.
\]

Theorem 2. If \(F(0, \cdot) \) and \(f \) are in \(L^{n/1-\alpha}(\Omega) \), \(0 < \alpha < 1 \), then \(u \in C^{1,\alpha}(\Omega) \) and there is constant \(K \) independent of \(F \) such that

\[
\|u\|_{C^{1,\alpha}(\Omega)} \leq K \|F(0, \cdot)\|_{L^{n/1-\alpha}(\Omega)} + \|f\|_{L^{n/1-\alpha}(\Omega)}.
\]

Theorem 3. If \(F(0, \cdot) \) and \(f \) are in \(L^\infty(\Omega) \), then \(u \in C^{2,\alpha}(\Omega) \) for every domain \(\Omega_0 \subset \subset \Omega \) and there is a constant \(K = K(\Omega_0, \Omega) \) such that

\[
\|u\|_{C^{2,\alpha}(\Omega)} \leq K \|F(0, \cdot)\|_{L^\infty(\Omega_0)} + \|f\|_{L^\infty(\Omega)}.
\]

Theorem 4. If \(f \) is continuous and \(F(0, \cdot) \in L^\infty_{1oc}(\Omega) \), then every solution of (1) is a viscosity solution.

Proof of Theorems

First if \(M = (M_{ij}) \) is in \(S \), we define \(|M| := \sqrt{\sum_{i,j} M_{ij}^2} \). It then follows, using the fact that \(M = \text{ODO}^t \), where \(D_{ij} = e_i^\top D e_j \) (\(e_i \) being the eigenvalues of \(M \)) and \(O \) is an orthogonal matrix,
and Cauchy-Schwartz Inequality that

\[|M| \leq n \epsilon_j^{1/2}. \]

Therefore, since \(D^2 u = \left(\frac{\partial^2 u}{\partial x_i \partial x_j} \right) \), we have from (4) and (5) that

\[D^2 u \leq K \left(|F(0, .)| + |f| \right), \]

for some \(K > 0 \).

Putting \(u = 0 \) outside \(n \) and using Poincaré Inequality (noting that the boundary of \(\Omega \) has Lebesgue measure zero) we get Theorem 1 from (6).

To prove Theorem 2 we use (from [3] p. 123) Lemma 5. Let \(u \in \mathcal{D}'(\mathbb{R}^n) \) and assume that \(\partial_j u \in L^p(\mathbb{R}^n), j = 1, \ldots, n \), where \(p > n \). Then \(u \) is continuous and with \(\gamma = 1 - n/p \), we have

\[\sum_{j=1}^{n} \sup_{x \neq y} \left| \frac{|u(x) - u(y)|}{|x - y|} \right| \leq C \left\| \partial_j u \right\|_{L^p(\mathbb{R}^n)} \]

for some \(c > 0 \).

Putting again \(u = 0 \) outside \(\Omega \) and noting that the boundary of \(\Omega \) has Lebesgue measure zero, we get Theorem 2 from Lemma 5, Theorem 1 and Poincaré Inequality.

To prove Theorem 3, we note that there is a constant \(K = K(\Omega_{\Omega^c}, \Omega) \) such that

\[\sup_{x, y \in \Omega_{\Omega^c}} \left| \frac{\partial^2 u(x)}{\partial x_i \partial x_j} - \frac{\partial^2 u(y)}{\partial x_i \partial x_j} \right| \leq \left\| \partial_j u \right\|_{L^\infty(\Omega)} \]

for \(1 \leq i \leq n \), and then use Theorem 1.

To prove Theorem 4, we note that from the hypothesis of Theorem 4, Theorem 2 holds on any domain \(\Omega_{\Omega^c} \subset \subset \Omega \).

References

Received 29 Nov 08; revised 16 Jan 09