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ABSTRACT
In this paper, we used Imperialist Competitive Algorithm (ICA) to get A-and D-optimal de-
signs for two models; one with nonlinear and the other linear model were found for two 
life data. It was noted that the number of iterations for D-optimal design for both models 
was smaller than that of A-optimal design. This implies that getting a D-optimal design is 
preferable and saves time and energy compared to A-optimal since they are addressing the 
same issues related to the variance- covariance function. The Efficiency Lower Bound and the 
Sensitivity function embedded in ICA which support the general equivalent theorem in getting 
optimal design were also found in this study. Another advantage of using ICA algorithm is that 
it does not require the design space or the region of uncertainty to be discretized which means 
that the search for the support points of the optimal design is not restricted to the grid point. 
This was also confirmed here that the optimal design for A and D- designs were not restricted 
to the grid points.

Keywords: Imperialist Competitive Algorithm, Efficiency Lower Bound, Sensitivity func-
tion,  A-optimal design, D-optimal design.

Introduction
In an experiment with set of trials, where the 
result of each trial is an observation, a design 
is choosing the points in which the trials 
will be conducted.  Experimentation is the 
process of planning a study to meet specified 
objectives which constitutes a foundation of 
the empirical sciences (Zhu, 2012). One major 
advantage of an experiment is its ability to 
control the experimental conditions, as well 
as to determine the variables to include in a 
study (Fackle, 2008). In recent years, optimal 
experimental designs have replaced standard 
designs from catalogs in many applications. 
Optimal designs of experiments are a set of 
designs that produce maximum efficiency 
with respect to some statistical criteria. Here, 

efficiency refers to the degree of the worth of 
experimental design, that is, the precision of 
variances of estimators when dealing with the 
estimation of model parameters. Classification 
of optimal designs is based on the concept that 
provides a methodical approach to obtaining 
the possible best or highly efficient design 
using available data with respect to the 
situation being considered.

Optimal experimental design is an 
essential area of scientific research. The 
fundamental idea underlying optimality 
theory of a design is that Statistical inference 
about quantities of interest can be improved 
by optimally selecting levels of the control 
variables at low costs.  Multiple optimality 
criteria exist for selecting the optimal 
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experimental designs, these includes: 
D-optimal design, which minimizes the volume 
of the joint confidence region on the vector of 
regression coefficients. A-optimal criterion 
deals with only the variances of the regression 
coefficients. It minimizes the sum of the main 
diagonal elements of . This is called 
the trace of . Thus, an A-optimal 
design minimizes the sum of the variances of 
the regression coefficients. In a nutshell, the 
D-and A-optimality criteria focus on precise 
estimation of the model parameters and are, 
therefore, estimation oriented. A design is said 
to be G-optimal if it minimizes the maximum 
scaled prediction variance over the design 
region; V-optimal criterion considers the 
prediction variance at a set of points of interest 
in the design region, it minimizes the average 
prediction variance over the design region. 
I-optimal design minimizes the average 
prediction variance of the model over a region 
of movement parameters, therefore, the I- 
and G-optimality criteria focus on precise 
predictions of the response and are, therefore, 
prediction oriented.

In this article, we focus on the 
performance of A- and D-optimality criteria 
with application to two real-life data on the 
rate of transport of sulfite ions from blood 
cells suspended in a salt solution which were 
obtained by W. H. Dennis and P. Wood at the 
University of Wisconsin, and analyzed by 
(Sredni, 1970). The chloride concentration 
(tabe) was determined from a continuous curve 
generated from electrical potentials and the 
Kinematic Viscosity data obtained which were 
obtained and discussed in Linssen (1975). 
In the model, f is predicted ln(viscosity), 

 is temperature, and  is pressure. D-and 
A-optimality criteria are, therefore, more 
suitable to comparing screening experiments 
than the prediction oriented I- and G-optimality 
criteria. D-optimum design is independent of 

model parameters in an experiment involving 
effective dose levels in generating optimum 
design for one-variable first-order Poisson 
model. Investigations on the dependence 
of D-optimal designs concerning model 
parameters of the research interest with a 
quadratic term in one variable, as well as 
with additive two-variable with interaction 
term was considered and the performances of 
certain appealing standard designs examined 
(Russell et al 2009).

In literatures, optimal design is found 
from the theory when the model is nonlinear 
with one or two factors. This approach 
encounters mathematical difficulties when 
the model has more factors. Under such 
situations, our experience is that the classical 
optimization numerical techniques fail to find 
the locally optimal design or they become very 
inefficient. This is because as the number of 
factors in the model increases, the number 
of parameters in the model also increases. 
Consequently, the number of design points 
for the optimal design increases, resulting in 
having substantially many more variables to 
optimize. Thus, the design problem becomes 
quickly high-dimensional and also non-
separable when factors interact with one 
another. Premature convergence can become 
a severe issue since solutions can easily get 
trapped in local optima.

In view of this, different algorithms on 
how to get optimal design are now increasing 
applied for complicated optimization 
problems.

The first algorithms for creating 
designed experiments using a computer 
employed the D-optimality criterion and 
produced highly D-efficient designs (see, 
e.g., (Atkinson, 1992); (Cook & Nachtrheim, 
1980); (Mitchell, 2000)).

Algorithms and software for generating 
A-optimal designs are scarce compared 
with algorithms and software for generating 
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D-optimal designs. Likewise, there is far 
more literature on D-optimal designs than 
on A-optimal designs. One reason for this is 
that computer searches for A-optimal designs 
require the computation of the inverse of 
the information matrix, while searches for 
D-optimal designs only require the determinant 
of the information matrix to be computed. The 
latter is computationally less expensive than 
the former, as a result of which computing 
D-optimal designs requires less time than 
computing A-optimal designs. Another reason 
why A-optimal design are less commonly 
used than D-optimal designs is that, unlike 
D-optimal designs, A-optimal designs are not 
invariant to changes in the scale or the coding 
of the factors. A third reason for the relative 
lack of popularity of A-optimal designs is that 
D-optimal designs are often said to perform 
well with respect to other optimality criteria 
(Atkison & Donev, 1992) (Goos, 2002).  

Particle Swarm Optimization (PSO) 
which was proposed by (Elberhart & Kennedy, 
1995). This algorithm, like (Kennedy, 2011) is 
one such algorithm which has been recently 
used to solve various optimal design. (Qiu 
et al., 2014) Used the algorithm to solve the 
optimization problems in animal instincts to 
design efficient biomedical studies via PSO. 
(Chen et al., 2015)

However, the D-optimal design 
problems in these papers have only 3 or 
fewer factors in the statistical model and so 
premature convergence may not be an issue. 
Other algorithms were developed to address 
the problem of factors that are more than 3. 

Differential Evolution (DE) is an 
algorithm from a family of gradient-free 
algorithms-evolutionary algorithms. Mutation, 
crossover and selection are three fundamental 
operations in DE (Das & Suganthan, 2011). 
One advantage that DE has over other 
evolutionary algorithms is that it has fewer 
control parameters and works well in handling 

numerical optimization problems (Zhang et al., 
2017). Compared with PSO, DE can alleviate 
the premature convergence issue moderately 
since most of the mutation strategies of DE do 
not exert the selective pressure onto the current 
best solution. However, based on the studies 
of DE variants for solving high-dimensional 
problems, there is no specially designed 
mechanism to explore various but novelty 
regions in the search space and to preserve 
the diversity of the population. (Masoudi et 
al., 2016) Used ICA to find the minimax and 
standardized maximin optimal designs. 

Jones et al., (2020) investigated the 
performance of A and D-optimal designs 
for screening experiment and persuaded the 
experimenters to choose A-optimal designs 
rather than D-optimal. Their reasons is that 
A-optimal criterion is more consistent with 
the screening objective than the D-optimality 
criterion. (Bodunwa et al., 2019) Found the 
D-optimal design in regression models with the 
problem of heteroscedasticity in the application 
of Kinematic Viscosity data. This was done for 
different models and three correction methods 
were used for the heteroscedasticity.     

Experimental

Materials and method
In this section, we define the two optimality 
criteria we use in this article. The definitions 
of the A and D-optimality criteria goes thus:
Considering the model 
	                                                                 (1)

In vector notation, we can write the model as
	                                                                           

(2)

Assuming that all n random errors are 
independent normally distributed random 
variables with zero mean and variance , 
the best unbiased estimator for the parameter 
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vector  is the ordinary least-squares estimator
	                                                                               

(3)

The variance-covariance matrix of this 
estimator is 
		                                                                              

(4)
The inverse of the matrix
		                                                                                       

(5)

This is the information matrix and summarizes 
the information content of the experimental 
design concerning the parameters in the model.
A-optimal criterion searches for the 
minimization of the trace of the inverse of 
information matrix, i.e.,
                                        

(6)

The A-optimal criterion is equivalent to the 
minimization of the average variance of the p 
parameter estimates in  in regression model.
 As a result, an A-optimal design minimizes the 
sum of the diagonal elements of the ordinary 
least-squares estimator’s variance– covariance 
matrix. Because that sum is called the trace of 
the variance–covariance matrix, an A-optimal 
design minimizes  .
The relative A-efficiency of a design with 
model matrix X1 with respect to a design with 
model matrix X2 is defined as

 		
	 (7)

A relative A-efficiency larger than one 
indicates that the former design is better than 
the latter in terms of A-optimality.

D-optimal design maximizes the determinant 
of the Fisher information matrix, 

. Because this determinant is inversely 
related to the volume of the p dimensional 
confidence ellipsoid about the parameters in 

, a D-optimal design minimizes that volume 
for a given number of runs n. We use the 
relative D-efficiency to compare the quality 
of two designs with model matrices X1 and 
X2 in terms of the D-optimality criterion. The 
relative D-efficiency of a design with model 
matrix X1 with respect to a design with model 
matrix X2 is defined as

                                                          
(8)        

A relative D-efficiency larger than one indicates 
that the former design is better than the latter 
in terms of the D-optimality criterion.

Imperialist competitive algorithm was 
used to get A-optimal design and D-optimal 
design conditioned for some set of data in real 
life. The first data was on the rate of transport of 
sulfite ions from blood cells suspended in a salt 
solution which were obtained by W. H. Dennis 
and P. Wood at the University of Wisconsin, 
and analyzed by Sredni (1970). The chloride 
concentration (%) was determined from a 
continuous curve generated from electrical 
potentials. A model was derived from the 
theory of ion transport and the same model 
was used here as

                                                    
(9)

Where  is the predicted chloride concentration 
and  is the time. This data was coded between 
-1 to +1 as often used in literatures.
The second data was on the kinematic viscosity 
of a lubricant, in stokes, as a function of 
temperature , and pressure in atmospheres 
(atm) as discussed in Linssen (1975) where y 
is predicted ln(viscosity),  is temperature, 
and  is pressure. The model used was 
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(10)

The imperialist competitive algorithm (ICA) is 
a computational technique employed in solving 
different kinds of optimization problems. It is a 
mathematical model and computer assimilation 
of human social evolution. The ICA can be 
defined as a form of meta-heuristic algorithm 
designed for solving optimization problems. 
In design of experiments, the imperialist 
competitive algorithm is basically used to 
solve optimal design problems pertaining to 
non-linear models. The package” ICAOD” 
authored by (Masoudi E. , Holling, Wong, & 
Kim, 2020)  in R version 1.0.1 was used for 
findings locally D-optimal designs for linear 
and nonlinear models. It should be used when 
a vector of initial estimates is available for the 
unknown model parameters. Locally optimal 
designs may not be efficient when the initial 
estimates are far away from the true values of 
the parameters. Since the criteria of optimality 
for nonlinear models depends on the unknown 
parameters, the locally optimal design function 
deals with the parameter-dependency based 
on the information available for the unknown 
parameters. 

Results and discussion
This section describes the results of the 
optimal designs using two real life data sets. 
The first data was on the rate of transport of 
sulfite ions from blood cells suspended in a salt 
solution which were obtained by W. H. Dennis 
and P. Wood at the University of Wisconsin, 
and analyzed by Sredni (1970). The chloride 
concentration (%) was determined from a 

continuous curve generated from electrical 
potentials represented in equation (9) above. 
This data was coded between -1 to +1 as 
often used in literatures. Using the model 
in equation (9) with initial parameters of 1, 
3, 5 respectively were used as constants for 

 .

TABLE 1
The initialized values used.

ICA control parameters Values
Inipars (1, 3, 5)

Lx and Ux (-1, 1)
K 3

Stop rule equivalence
Check freq 50

Table 1 above shows the initialized values 
selected for getting locally D- and A-optimal 
designs in Imperialist Comparative Algorithm. 
These were selected based on examples from 
literatures. The Inipars represent the initial 
parameter on the model, Lx and Ux are lower 
and upper bound of predictors respectively, K 
is number of design points. Must be at least 
equal to the number of model parameters 
to avoid singularity of the FIM. Stop rule 
Denote the type of stopping rule which is the 
equivalence and the algorithm verifies the 
general equivalence theorem in every  Check 
freq iterations. 

Following the above description table, 
the result of locally optimum designs were 
presented generally shows the no of Iterations, 
the Design Points with associated Weight, 
the Efficiency Lower Bound (ELB) and the 
Criterion Values which is the log determinant 
of the inverse of Fisher Information Matrix 
(FIM).
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TABLE 2
D-optimal design for predicted chloride concentration on time.

Iteration                       (Design Points) Weight ELB Sen. Fun Crit. Val
1 (-0.9426) 0.3584; (-0.7572) 0.3862;

(0.8939) 0.2555
0.2571376 8.666907 -12.47912

10 (-0.9998) 0.2910; (-0.8089) 0.2896;
(0.7950) 0.4193

0.866633 0.461673 -13.62527

50 (-1) 0.3333; (-0.8001) 0.3333;
(0.9999) 0.3333

0.9998237 0.00052906 -13.68086

Fig. 1: D-optimal design - shows the derivative plot 
that confirms the optimality of the design point of the 
ICA generated designs. 

As shown in Table 2, as at the first 10 up to 
49th iteration, the design points were yet to 
be optimal because the ELB are far from 1. 
Often, the worth of a design ξ is measured by 
its efficiency relative to the optimal design ξ ∗. 
For D-optimality, the D-efficiency of a design 
ξ is 
If its D-efficiency is near 1, ξ is close to ξ ∗. If the 
theoretical optimal design ξ ∗ is unknown, the 
proximity of a design ξ to ξ ∗ can be determined 
from convex analysis theory. Specifically, its 
D-efficiency is at least exp       where θ is the 
maximum positive value of the sensitivity 
function across the entire design space and k 
is the dimension of the parameter (Pazman, 
1986) and from the condition in which the 
optimal design points are reach was when the 
ELB is very close to 1. This was established 
by (Xu, Wong, Tan, & Xu, 2019) that says if 
the D-efficiency lower bound is close to 1, 
the design ξ is close to the D-optimal design 
ξ ∗. It was noted here that as the number of 
iteration was increased to 100, the algorithms 
automatically finished or stopped on 50th 
iteration.  A general observation is that the 

value of sensitivity function converges as the 
number of iterations increases and the criterion 
value. Therefore, the D-optimal design for the 
equation (9) above is
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TABLE 3
A-Optimal design for chloride.

Iteration (Design Points) Weight ELB Sen. Fun Crit. Val
1 (-0.9563) 0.0485; (-0.3136) 0.2545;

(0.6576) 0.6970
0.08224637 33.47578 12.63548

10 (-0.9206) 0.0127; (-0.6398) 0.0541
(0.8263) 0.9332

0.1217664 21.63733 10.44512

50 (-0.9003) 0.00567; (-0.5423) 0.0432
(0.9965) 0.95113

0.8760041 3.58734232 10.2346

100 (-1) 0.00265; (-0.5192) 0.0494;
(0.9999) 0.9479

0.9980996 0.005712154 10.20708

500 (-1) 0.0026; (-0.5192) 0.0494;
(0.9999) 0.9479

0.9999931 2.07496e-05 10.20708

1000 (-1) 0.0026; (-0.5192) 0.0494;
(1) 0.9479

0.9999931 2.07639e-05 10.20708

Table 3 is the equivalent of Table 2 in 
A-optimal criterion. The table shows that the 
number of Iteration for A-optimal is higher 
that of D-optimal. The design points as at 100 
times remain the same with the associated 
weight but still displaying different ELB and 
sensitivity function with same criterion value.  
That same criterion values helps in generating 
the evolution plot in figure 3 that shows the best 
imperialist and the mean of it. The A-optimal 
design for the model in equation (9) is 

 

Fig. 2: Derivative plot of A-optimal design – shows 
the derivative plot that confirms the optimality of the 
design point of the ICA generated designs. 

In the evolution plot in figure 3 below, the 
solid red line is the cost value of the best 
imperialist and the dotted blue line is the 
mean of all imperialists’ costs. The evolution 
plots show how ICA’s best imperialist quickly 
moves toward the optimal design after only a 
few iterations.
The second data set was on the kinematic 
viscosity of a lubricant, in stokes, as a 
function of temperature , and pressure in 
atmospheres (atm) as discussed in Linssen 
(1975) with the model (10) above.
This data was coded between -1 to +1 as often 
used in literatures. Both A- and D-optimal 
designs were also found here.

Fig. 3: Evolution plot
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minimum and maximum values of X1 and X2. 
A-optimal design for the model (10) is

TABLE 4
D-Optimal design for real life on kinematic viscosity.

Iteration (Design Points) Weight ELB Sen. Fun Crit. Val
1 (0.9869, 0.6876) 0.36522; (-0.6243, -.96195) 0.26624;

(-0.75962, 0.9244)0.1483; (0.3517, 0.1105)0.2202
0.3913577 4.665622 1.257633

10 (0.9337, 0.9958) 0.5156; (-0.9248, -0.9673) 0.2088;
(-0.9988, 0.9930)0.1569; (-0.8836, 0.4275)0.1187

0.4683218 3.405851 0.6786509

50 (0.9990, 0.9999) 0.2746; (-0.9997, -0.9997) 0.2399;
(-0.9998, 0.9989)0.2343; (-0.9949, 0.9962)0.2510

0.9554928 0.1397411 0.0095276

Here, since there are two predictor values, the 
design points were chosen from two points 
with the associated weight and the optimal 
design point were reached at 50th iteration 

time. The convergence of the sensitivity 
function and the criterion values were high and 
the D-efficiency lower bound was 95.5%. The 
D-optimal design for model (10) is 

TABLE 5
A-Optimal design for real life data on kinematic viscosity.

Iteration                       (Design Points) Weight ELB Sen. Fun Crit. Val

1 (0.9489, 0.6872) 0.36522; (-0.6237, -.96195) 0.26624;
(-0.7596, 0.9238)0.1483; (0.3517, 0.1105)0.2202 0.1670044 14.9636 5.131856

10 (0.9328, 0.7627) 0.3059; (-0.8266, -0.9849) 0.3261;
(-0.7686, 0.9821)0.1589; (-0.7014, 0.4947) 0.2090 0.4411568 3.800303 4.051697

100 (0.9999, 0.9999) 0.2502; (-0.9999, -0.9999) 0.2502;
(-0.9999, 0.9999)0.2491; (-0.9999, 0.9999)0.2504 0.9955207 0.01349829 3.00005

500 (1, 1) 0.25; (-1, -1) 0.25; (-1, 1) 0.25; (1, -1) 0.25; 1 4.7835e-08 3

Table 5 shows the perfect design points as 
at 500 iteration for A-optimal design when 
the ELB is exactly 1 for the combination of 

Conclusion
In this paper, we used ICA to get A-and 
D-optimal designs for two models; one with 
nonlinear and the other linear model were 
found for two life data. It was noted that the 
number of iterations for D-optimal design 
for both models were smaller than that of 
A-optimal design. One of the advantages of 
using ICA algorithm is that it does not require 
the design space or the region of uncertainty to 
be discretized which mean that the search for 
the support points of the optimal design is not 

be restricted to the grid point. This was also 
confirmed here that the optimal design for A 
and D- designs were not restricted to the grid 
points. 
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