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Introduction
Electronic payment system has been defined 
by Elisha (2010), Gao et al. (2008) as the use 
of internet and digital stored value systems, 
personal computers, ATM, POS, internet and 
other electronic channels to process financial 
transactions without the account holders being 
present in the bank. It gives the customers 
fastest and easiest ways to transfer money, 
pay bills, make purchase and carry out other 
financial transactions. Despite the efforts made 
by the banks to ensure the customers enjoy the 

benefits of electronic payment systems, most 
Nigerian banks frequently receive complaints 
from customers on frequent network failure, 
account debit without dispensing of cash, 
incomplete money transfer, withholding of 
ATM cards due to machine failure, online theft 
and fraud challenges as studied and revealed 
by Ogunlowore et al. (2014). These challenges 
may result to advanced time-delay and 
volatility noise in investigating and reversal 
of wrongly debited money without dispensing 
of cash. If these challenges are not properly 
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addressed, customers’ attitude towards the use 
of e-payment systems may change. Advanced 
stochastic time-delay differential equation 
(ASTDDE) is a stochastic differential equation 
where the increment of the process depends not 
only on current state but also on the advanced/
future part of the system being modeled which 
contains the random values of the volatility 
noise term. The applications of SDDEs can 
be seen in applied sciences, economics and 
engineering. Several authorssuch as Evelyn 
(2000), Zhang et al. (2009), Bahar (2019), 
Wang et al. (2011), Kazmerchuk (2005), 
Kazmerchuk et al. (2004), Akhtari et al. (2015) 
used Euler-Maruyama scheme to formulate 
continuous split-step schemes of SDDE on a 
continuous interval for the numerical solutions 
and encountered some challenges in the use 

of interpolation techniques in evaluating their 
delay terms as studied by Majid et al. (2013).  
In order to circumvent these challenges, 
we applied Hybrid Block Extended Adams 
Moulton Methods (HBEAMM) as a linear 
multistep collocation method to discretize 

ASTDDEs on a discrete interval[ )0, at t . This 
was done, in order to obtain its discrete 
schemes for its numerical solution for 
customers’ satisfaction through the use of 
electronic payment systems in Nigeria banks 
without interpolation techniques.

From Kazmerchuk et al. (2004), advanced 
stochastic time-delay differential equation 
(ASTDDE) can be express as:

where ( )tϕ is the initial function, ( )y t is the 
stochastic process of the current state, t  is 
the time, τ is called the delay, ( )t τ+ is the 
advanced/future time-delay term and ( )y t τ+ is 
the solution of the advanced time-delay term 
on the drift part of (1). ( )S t is the Standard 
Brownian Motion with its differential 
equivalence as ( )ds t . This is the volatility 
noise term or Wiener process together with 
solution of the advanced time-delay term as 

( ) ( )y t ds tτ+ on the volatility or diffusion part of 
(1). The drift part of the Equation (1) which 
is ( ) ( ( ), ( ), )dy t y t y t t dtα τ= +  is deterministic and 
takes care of the average time rate of reversal 
of wrongly debited money without dispensing 
of cash or any risk involved. The volatility 
or diffusion part ( ) ( ( ), ( ), ) ( )dy t y t y t t ds tβ τ= +  is 

stochastic, which takes care of the random 
change and the risk involved in the time it 
takes for the reversal of wrong transactions 
caused by frequent network failure. These 
include account debit without dispensing of 
cash, incomplete money transfer, withholding 
of ATM cards due to machine failure, online 
theft and fraud. 

Experimental

Derivation of the method and analysis of 
basic properties of the method
Applying the discrete schemes of the Hybrid 
Block Extended Adams Moulton Methods 
(HBEAMM) derived by Chibuisi et al. (2022) 
using k-step multistep collocation method 
developed by Onumanyi et al. (1994) for step 
numbers k = 2 and 3 which are presented as:
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where −0 1, , vx x  are the vcollocation 
points and Xm+j  , j = 0, 1, 2, …, z – 1 are the 
z arbitrarily chosen interpolation points while 
d is the constant step size.

To get ( )j xα  and ( )j xβ , Sirisena (1997) arrived 
at a matrix equation of the form

AB = I	                                                       (5)

where I is the identity matrix of dimension  
(z+v) x (z+v)while A and B are matrices 
defined as 

 (8)

 (7)

 (6)
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Analysis of basic properties of the method
The order, error constant, consistency, zero 
stability and region of absolute stability of 
(8) and (9) are analyzed using the conditions 
proposed by Lambert (1973) and Dahlquist 
(1956).

Order and error constant
According to Lambert (1973), the Linear 
Multistep Method is said to be of order e  if                           

0 1 0,..., 0ec c c= = =  1 0ec +
≠ and 1ec + yields the error 

term.

The order and error constants for (8) are 
obtained as follows:

as

Therefore, (8) has order 7e =  and error 
constants,

Applying the same approach to (9), we 
obtained

but

Therefore, (9) has order 7e =  and error 
constants,

Consistency
In Lambert (1973), a numerical method is said 
to be consistent if the order e  is greater than 
1 i.e. 1e ≥ . Since, the order of our proposed 
method HBEAMMs as analyzed for the 
discrete schemes (8) and (9) is greater than 1 
i.e. 1e ≥ , the method is consistent.

Zero stability analysis
In Dahlquist (1956), a computational 
method is said to be zero stable if 
the roots , 1, 2,3,...,s s nr = of the first 
characteristic polynomial ( )gψ  expressed as 

(1) (1)
12( ) det( )g gW Wψ = − satisfies 1sg ≤  and 

( )0 1 2 3 4 5 6 7 0 0 0 0 0 0 T
c c c c c c c c= = = = = = = =

3751 89 872075 79 5929 67,
3386880 1128960 11098128384 1003520 75497472 846720

, , , ,− −− − − −

787 317 773 1721 244853 1,
211680 376320 3386880 8028160 1132462080 470

, ,
4

, ,
T

 − 
 

( )0 1 2 3 4 5 6 7 0 0 0 0 0 0 T
c c c c c c c c= = = = = = = =

787 317 773 1721 244853 1,
211680 376320 3386880 8028160 1132462080 4704

, , , ,−
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the roots sg is simple or distinct. 

The zero stability for (8) is examined as follows:

where 

and

        

(1) (1)
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1 0 0 0 0 1 0 0 0 0 0 0
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 Using Maple (18) software, we obtain

( )5 1 0gg⇒ + =−

1 2 3 4 5 61, 0, 0, 0, 0, 0g g g g g g⇒ = − = = = = = .Since 
the determinant of the first characteristic poly-

( )(1) (1)
12

(1) (1)
2 1

( ) det

       0.

g gW W

gW W

ψ = −

= − =
(10)

We have
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nomial ( )gψ  expressed as (1) (1)
12( ) det( )g gW Wψ = −

satisfies sg  and the roots sg are simple or 
distinct for 1,  s 1,2,3,4,5,6sg =< , the discrete 
scheme (8) is zero stable.

Using the same approach, then (9) is presented 
as

( )5( ) 1g ggψ = +−
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Where

and
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We have
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Using Maple (18) software, we obtain:

.Since the determinant of the first 
characteristic polynomial ( )gψ  expressed 

as (1) (1)
12( ) det( )g gW Wψ = − satisfies 1sg ≤  

and the roots sg are simple or distinct for
 

1,  s 1,2,3,4,5,6sg =< , the discrete scheme (9) is 
zero stable.

Convergence
Theorem 1: The necessary and sufficient 
condition for a linear multistep method to be 
convergent as stated by Dahlquist G. (1956) 
is that it must be consistent and zero stable. 
Since, the discrete schemes (8) and (9) are 
both consistent and zero stable, therefore the 
method is convergent.

Region of absolute stability

The regions of absolute stability of the 
numerical methods for ASTDDEs are 
considered. We considered finding the P - 
and Q -stability by applying (8) and (9) to the 
ASTDDEs of this form

( ) ( ( ) ( )) ( ( ) ( )) ( )dy t y t y t dt y t y t ds tα τ β τ= + + + + +

for 0, 0t t τ> >

( ) ( ),y t tϕ= for 0t t≤ 		              (12)

where ( )tϕ is the initial function, ,α β  are 

complex coefficients, ,vd vτ += ∈Z  , d is the step 
size and       is a positive integer. Let 1P dα=

and 2P dβ= , then the P -and Q -stability of 
(8) and (9) for 1v = are investigated, plotted 
using Maple 18 and MATLAB and presented 
in Figs. 1 to 4.

( )5( ) 1g ggψ = +

( )5 1 0gg⇒ + =

1 2 3 4 5 61, 0, 0, 0, 0, 0g g g g g g⇒ = − = = = = =

,v v
d
τ

=
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The P -stability regions in Figs. 1 to 2 lie 
inside the open-ended region while the Q
-stability regions in Figs. 3 to 4 lie inside the 
enclosed region.

Evaluations of delay terms and numerical 
computations

Evaluations of delay terms
Here, we shall formulate two accurate and 
efficient mathematical expressions for the 
evaluation of the advanced time-delay terms 
on the drift and the volatility noise term on 
the diffusion part of the stochastic time-delay 
differential equations. The advanced time-
delay term ( )t τ+  shall be evaluated with the 
accurate and efficient formula of this form

( )( )( )1 , 0( )m j
m cq m j r d c
c

tδ + + + − − ≠= (13) 

Using normalized Brownian Motion,we 
formulated an expression to evaluate the 
volatility noise term ( )ds t such that the 

distribution are Gaussian with ( )0,1N whose 
mean µ is 0 and the standard deviation σ is 1. 
The random process is expressed as 

 for (14)

Then by differentiating (14), we have
for (15)

where ( , ),j k k k∈ −  is a step number, 

, ;v vd
d
τ τ τ= ∈Ζ =  is the delay term, 
0,1,2,..., 1z Z= −  and Z is the number of solutions 

in the give interval which is implemented to 
evaluate the volatility noise term dS(t)

Numerical computations
In this section, the evaluated advanced time-
delay term and the volatility noise term using 
the two expressions (13) and (15) developed, 
shall be incorporated into some advanced 
stochastic time-delay differential equations 
before its evaluation with the discrete schemes 
(8) and (9) at constant step size d  = 0.01 to 
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obtain the computational solutions of ( )dy t
i.e. we present some .
Numerical problems

Problem 1

( ( ( (1000 1))) ( ( ( (1000 1)) ( ),( ) 1000 ( ) ( )y t In dt y t In ds tdy t t y t y+ + + + += − + +
0 3t≤ ≤

0( ) ,t tt eϕ − ≥=

Exact solution 

Problem 2

0 3t≤ ≤

0( ) 1, ttϕ ≥=

Exact solution ( ) 1 sin( )t tϕ = +

Results

Results, graphical presentations and 
discussions
Problems 1 & 2 were solved using the 
discrete schemes (8) and (9) generated by 
Hybrid Extended Adams Moulton Methods 
(HEBAMMs) and the results of the absolute 
random errors obtained are presented in Tables 
1 to 2

TABLE 1
Absolute random errors of HEBAMMs for k = 2 and 

3 using Problem 1.

t
K = 2 Absolute 
Random Error

K = 3 Absolute Random 
Error

1 0.565751199 0.526170595

2 0.842809479 0.862157617

3 0.911592118 0.905342205

4 1.002351227 0.929347474

5 0.864749645 0.871647786

6 0.913250098 0.860524042

7 1.146237691 0.850835748

8 0.646948079 0.866623951

9 0.84348562 0.666338564

10 1.319855341 0.645648321

11 0.362816087 0.644382402

12 0.754941177 0.726480697

13 1.481873881 0.44237991

14 0.082884249 0.401695385

15 0.660909689 0.420132842

16 1.587381389 0.567087895

17 0.143689956 0.267910683

18 0.56993907 0.197913565

19 1.611965638 0.242315408

20 0.293662272 0.423528521

21 0.48642232 0.16047006

22 1.553277394 0.063060018

23 0.367574147 0.131585718

24 0.411346837 0.310742833

25 1.425451969 0.104652176

26 0.380887536 0.008028775

27 0.343946862 0.075032333

28 1.251127777 0.227251551

29 0.354163289 0.076427669

30 0.283216727 0.035628969

CPU time of HEBAMMs for k = 2 is 0.05s and k = 3 is 0.10s.

 TABLE 2 
Absolute random errors of HEBAMMs for k = 2 and 

3 using Problem 2.

t K = 2 Absolute Ran-
dom Error

K = 3 Absolute Ran-
dom Error

1 0.845719236 0.845719236

2 0.917929971 0.917929971

3 0.154271898 0.154271898

( )) ( ),( ) cos( )(( ( ( ) 2) ( ( ) 2 ds tdy t t y y t dt y y t+= + +
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4 0.749531817 0.738997221

5 0.944923733 0.936881179

6 0.260472177 0.251682861

7 0.641732346 0.690204361

8 0.986803841 1.028003311

9 0.415212543 0.454234715

10 0.613232709 0.49338445

11 1.048601487 0.942005002

12 0.578623583 0.471703454

13 0.274896696 0.486723777

14 0.872323399 1.068803713

15 0.539539553 0.737431921

16 0.498281629 0.192244135

17 1.145443495 0.867394105

18 0.926684308 0.644419384

19 0.054269463 0.26442725

20 0.720869531 1.036821909

21 0.653305775 0.954966798

22 0.059092722 0.11750989

23 0.916341665 0.717674469

24 0.967245579 0.768929256

25 0.176929452 0.001728019

26 1.006426375 0.893273334

27 1.207809439 1.080526603

28 1.136693034 0.399595691

29 0.093831028 0.510970701

30 0.22410745 0.853166636

CPU time of HEBAMMs for k = 2 is 0.06s and k = 3 
is 0.09s.

Graphical presentation of results
Using Microsoft Excel, the Absolute Random 
Error Results of HEBAMMs for Problem 1 
and 2 in Table 1 and 2 are presented as;

Fig. 5: Advanced Stochastic Time-Delay DDEs 
absolute random error results for Problem 1.

Fig. 6: Advanced Stochastic Time-Delay DDEs 
absolute random error results for Problem 2

Comparison of results

In order to determine the accuracy, efficiency 
and advantage of our method HEBAMM, we 
compared the absolute maximum errors of our 
method with other existing methods in Evelyn 
(2000); Bahar (2019) and Osu et al. (2021).
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TABLE 3
Comparison between the Maximum Absolute Random 

Errors (MARE) of our method
HEBAMM for k = 2 and 3 with Evelyn (2000); Bahar 

(2019) and Osu et al. (2021) for constant step size 
d=0.01 for Problem 1. 

Numerical Method
COMPARED 
MAREs with 

[5,7,18]

HEBAMM MARE for k = 2 1.611965638

HEBAMM MARE for k = 3 0.929347474

CSSEMM MARE for k = 2 4.76E-02

CSSEMM MARE for k = 3 9.17E-02

CSSEMM MARE for k = 4 1.62E-01

EMM MARE for k = 2 1.84E-02

EMM MARE for k = 3 4.04E-03

EMM MARE for k = 4 9.73E-04

BSM MARE for k = 2 7.04E-01

BSM MARE for k = 3 7.04E-01

BSM MARE for k = 4 7.04E-01

TABLE 4
Comparison between the Maximum Absolute Random 

Errors (MARE) of our method HEBAMM for k 
= 2 and 3 with Evelyn (2000); Bahar (2019) and 

Osu et al. (2021) for constant step size d= 0.01 for                        
Problem 2.

Numerical Method
COMPARED 
MAREs with 
[5,7,18]

HEBAMM MARE for k = 2 1.207809439

HEBAMM MARE for k = 3 1.080526603

CSSEMM MARE for k = 2 3.18E-02

CSSEMM MARE for k = 3 5.90E-02

CSSEMM MARE for k = 4 1.37E-01

EMM MARE for k = 2 1.09E-01

EMM MARE for k = 3 4.91E-02

EMM MARE for k = 4 2.44E-02

BSM MARE for k = 2 6.96E-01

BSM MARE for k = 3 6.96E-01

BSM MARE for k = 4 6.96E-01

Graphical presentation for compared results

Fig. 7: Compared MAREs of HEBAMM with Evelyn 
(2000); Bahar (2019) and Osu et al. (2021) for 
Problem 1

Fig. 8: Compared MAREs of HEBAMMs with 
Evelyn (2000); Bahar (2019) and Osu et al. (2021) for 
Problem 2.

Conclusion
In this study, we have demonstrated that Hybrid 
Extended Block Adams Moulton Methods 
(HEBAMMs) are suitable for computational 
solution of Advanced Stochastic Time-Delay 
Differential Equations (ASTDDEs) without 
the application of interpolation techniques in 
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the evaluation of the advanced delay term and 
volatility noise term. The incorporation of the 
evaluated mathematical expressions (13) and 
(15) for evaluation of the advanced delay term 
and volatility noise term give better and faster 
results as shown in Tables 1 to 4 and Figs. 5 
to 8. The numerical results revealed that there 
are stochastic swings or uncertainties in the 
satisfaction that customers or users derive 
from the use of electronic payment systems 
in performing financial transactions as a 
result of the effect of advanced time-delay. To 
reduce these uncertainties in the customers’ 
satisfaction, prompt action should be taken 
by the banks to curb the advanced time-
delay that may occur in tracing and reversal 
of wrongly debited money, malfunctioning 
of the automated teller machines (ATMs), 
network failure in receiving transaction alerts 
and any other challenges that can lead to 
decline in customers’ satisfaction. This can 
be done by regular servicing of the ATMs, 
developing a new online electronic payment 
App which can handle any future challenges 
and quick restoration of network by the ICT 
unit of the banks for easy and fast transactions. 
Also, it was observed in Tables 1 to 4 that the 
discrete schemes of lower step number 2k =
of HEBAMMs performed slightly better and 
faster than the higher step number 3k =
when compared with other existing methods. 
Further research should be carried-out for 
step numbers k=4,5,6...  on the computational 
solutions of ASTDDEs using HEBAMMs. 

References
Akhtari, B., Babolian, E. & Neuenkirch, A. 

(2015) An Euler Scheme for Stochastic 
Delay Differential Equations on Unbounded 
Domains: Pathwise Convergence. Discrete 
Contin. Dyn. Syst., Ser. B 20 (1), 23 –3 8.

Bahar, A. (2019) Numerical Solution of Stochastic 
State-dependent Delay Differential Equations: 

Convergence and Stability. Advances in 
Deference Equations. A Springer Open 
Journal 396. https://doi.org/10.1186/s13662-
019-2323-x.

Chibuisi, C., Osu, B. O., Granados, C. & 
Basimanebotlhe, O. S. (2022) A Class of 
Seventh Order Hybrid Extended Block Adams 
Moulton Methods for Numerical Solutions 
of First Order Delay Differential Equations. 
Sebha University Journal of Pure & Applied 
Sciences (JOPAS) 21 (1), 94 - 105. 

Dahlquist, G. (1956) Convergence and Stability in the 
Numerical Integration of Ordinary Differential 
Equations. Math, Scand. 4, 33 - 53.

Elisha, M. A. (2010) E-banking in developing 
economy: Empirical evidence from Nigeria. 
Journal of Applied Quantitative Methods 5 (2), 
212 - 222.

Evelyn, B. (2000) Introduction to the Numerical 
Analysis of Stochastic Delay Differential 
Equations”. Journal of Computational and 
Applied Mathematics 125, 297 - 307.

Gao, P. & Owolabi, O. (2008) Consumer adoption 
of internet banking in Nigeria. International 
Journal of Electronic Finance 2 (3), 284 - 299.

Kazmerchuk, Y. I. (2015) Pricing of Derivatives 
Insecurity Markets with Delayed Response. 
Ph.D. thesis, University of York, Toronto, 
Canada 14.

Kazmerchuk, Y. I. & Wu, J. H. (2004) Stochastic 
State-dependent Delay Deferential Equations 
with Applications in Finance. Funct. Differ. 
Equ. 11, (1), 77 – 86.

Lambert, J. D. (1973) Computational Methods in 
Ordinary Differential Equations, New York, 
USA. John Willey and Sons Inc.

Majid, Z. A., Radzi, H. M. & Ismail, F. (2013) 
Solving Delay Differential Equations by the 
Fve-point One-step Block Method Using 
Neville’s Interpolation. International Journal 
of Computer Mathematics. http://dx.doi.org/1
0.1080/00207160.2012.754015.



GHANA JOURNAL OF SCIENCE VOL. 6370

Ogunlowore, A. J. & Oladele, R. (2014) Analysis of 
electronic banking and customer satisfaction 
in Nigeria. European Journal of Business and 
Social Sciences 3 (3), 14 - 27.

Onumanyi, P., Awoyemi, D. O., Jator, S. N. & 
Sirisena, U. W. (1994) New Linear Multistep 
Methods with Continuous Coefficients for 
First Order Initial Value Problem. Journal of 
Nigerian Mathematical Society 13, 37 - 51.

Osu, B. O., Chibuisi, C., Egbe G. A. & Egenkonye, 
V. C. (2021) The Solution of Stochastic Time-
Dependent First Order Delay Differential 
Equations Using Block Simpson’s Methods. 
International Journal of Mathematics and 
Computer Applications Research (IJMCAR) 
11 (1), 1 – 20.

Sirisena, U. W. (1997). A reformulation of the 
continuous general linear multistep method 
by matrix inversion for the first order initial 
value problems. Ph.D. Thesis (Unpublished), 
University of Ilorin, Nigeria.

Wang, X. & Gan, S. (2011) The Improved Split-
step Backward Euler Method for Stochastic 
Differential Delay Equations. Int. J. Comput. 
Math. 88 (11), 2359 – 2378.

Zhang, H., Gan, S. & Hu, L. (2009) The Split-step 
Backward Euler Method for Linear Stochastic 
Delay Deferential Equations. Comput. Appl. 
Math. 225 (2), 558 – 568.

Received 6 Sep 22; revised 12 Jan 23.


