HÖLDER ESTAMTES FOR THE $\overline{\boldsymbol{\partial}}$-OPERATOR ON BOUNDED DOMAINS IN C ${ }^{\mathrm{n}}$

P. W. Darko
Department of Mathematics, Delaware State University, 1200 N. Dupont
Highway, Dover, DE 19901-2277. E-mail: pdarko10@agl.com

Abstract

Holder estimates are obtained for the $\overline{\bar{\sigma}}$-operator on bounded domains in C^{n} with boundaries of Lebesgue zero.

Introduction

The pioneering work on the type of Hölder estimates for the δ-operator that we consider was done by ALY [1] and SIU [5] for the (0,1)-forms and for ($0, \mathrm{q}$)-forms by Lieb Range [4]. Since then various Holder estimates for the δ-operator have appeared (see references) [2] and [3]. Most of the results for Hölder estimates for the δ-operator mentioned above have been for strongly pseudoconvex domains or pseudoconvex domains of finite type.

Working with the Bochner-Martinelli-Koppelman kernel it dawned on us that we could get a generalization of Alt-Sui-Lieb-Range results to all bounded domains in C^{n} with boundaries of Lebesgue measure zero (at least for the range of Holder estimates we consider here). This short paper shows that we are right.

Preliminaries

Let U be open in $\mathbb{R}^{n}, 0<\alpha<1, k \geq 0$ an integer. We define $C^{k, \alpha}(\mathrm{U})$ to be the space of functions f on U such that

$$
|f| C^{k, a}{ }_{(\mathrm{U})}:=\sup _{\Omega}|f|+\quad \sup _{\substack{x \neq y \\ x, y \in \Omega}} \frac{\left|\mathrm{D}^{r} f(x)-\mathrm{D}^{r} f(y)\right|}{|x-y|^{\alpha}}
$$

is finite, where D^{γ} is a derivative or order $\left.|\gamma|, \gamma_{1}, \ldots, \gamma_{\mathrm{n}}\right), \gamma_{j} \geq 0$. If $U \subset \mathbb{C}^{n}$ is open, we use the real underlying coordinates of ${ }^{\mathrm{n}}$ considered as ${ }^{2 \mathrm{n}}$ to define $\mathrm{C}^{\mathrm{k}, \mathrm{a}}(U) . \mathrm{C}^{\mathrm{k}, \mathrm{a}}(U)$ is defined similarily.
If $f=\quad f_{(\mathrm{i} 1, \ldots, \mathrm{iq})} \mathrm{d}_{\mathrm{z}}{ }_{\mathrm{il}} \wedge \ldots \wedge \mathrm{d}_{\mathrm{iq}}$ is an (0,q)-form on U, where means the summation is over increasing multi-indices, we write f as $\sum^{\prime} f_{\mathrm{I}} \mathrm{d}_{\bar{z}} \mathrm{I}$ for short, $\mathrm{I}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{q}}\right)$ and set

$$
|f|_{\substack{k, \alpha \\(0, q)}}(U)=\max _{\mathrm{I}}\left|f_{\mathrm{I}}\right|_{C^{k, \alpha}(U)}
$$

Our result is then
Theorem 1, Let Ω be a bounded domain in ${ }^{\mathrm{n}}$ with boundary of Lebesgue measure zero and $0<\alpha<1$ and $k=1,2, \ldots$, and let $f \in \underset{(0, q+1)}{\mathrm{C}_{(, \alpha}^{\prime}}$ be $\bar{\partial}$-closed then there is $u \subset \underset{(0, q)}{\mathrm{C}_{k}, \alpha}(\Omega)$ such that $\delta \mathrm{u}=f$ in the sense of distributions and

$$
|u|_{C_{(0, q)}^{k, \alpha}}(\Omega) \leq|f|_{(0, q+1)}^{C^{k}, \alpha}
$$

where δ does not depend on f

Bochner-Martinelli-Koppelman Formula and $-\mathbf{u}=f$

Theorem 2 (Bochner-Martinelli-Koppelman). Let Ω be a bounded domain in ${ }^{n}$ with C^{1} boundary. For $f \in \underset{(0, q)}{\mathrm{l}, \alpha}(), 0 \leq \mathrm{q} \leq n$, we have

$$
\begin{align*}
& f(\mathrm{z})=\mathrm{B} q(., \mathrm{z})^{\wedge} f+\int_{\mathrm{s}} \mathrm{~B} q(., \mathrm{z})^{\wedge} \bar{\partial}_{\varepsilon} f \\
& +\bar{\partial}_{\mathrm{z}} \mathrm{~B} q-1(., \mathrm{z})^{\wedge} f, \mathrm{z} \in \Omega \tag{1}
\end{align*}
$$

where $\beta q(\xi, z)$ is the Bochner-Martinelli-Koppelman kernel of degree $(0, q)$ in z and of degree ($\mathrm{n}, \mathrm{n}-q-1$) in ξ. Recall, with $\beta=|\xi-z|^{2}$,

$$
\beta q(\xi, \mathrm{z})=\frac{(-1)^{q(q-1) / 2}}{(2 \pi \mathrm{i})^{\mathrm{n}}} \begin{gather*}
\mathrm{n}-1 \tag{2}\\
\mathrm{q}
\end{gather*} \beta^{-\mathrm{n}} \partial_{\xi} \beta \wedge\left(\partial_{\xi} \partial_{\xi} \beta\right)^{\mathrm{n}-\mathrm{q}-1} \wedge\left(\bar{\partial}_{\mathrm{z}} \partial_{\xi} \beta\right)^{q}
$$

Lemma 3. With f as in Theorem 1, if

$$
\begin{equation*}
u(z) \quad \beta_{q}(., z)^{\wedge} f, z \in \Omega \tag{3}
\end{equation*}
$$

then $\bar{\partial} \mathrm{u}=f$.
Proof With $f-\quad, \quad f_{j} \mathrm{~d} \bar{z}^{J}$ defined as zero outside Ω, regularize f coeffienctwise: $f_{\mathrm{m}}=$ $\left(f_{\mathrm{J}}\right)_{\mathrm{m}}{ }^{\mathrm{d}}{ }^{J}$ where

$$
\begin{align*}
\left(f_{\mathrm{J}}\right)(\quad) & =\int_{\mathbb{C}} f_{\mathrm{J}}(\mathrm{z}-\xi / \mathrm{m}) \varphi(\xi) \mathrm{d} \lambda(\xi) \tag{4}\\
& =\mathrm{m}_{\mathbb{C}^{\mathrm{n}}}^{2 \mathrm{n}} f \mathrm{~J}(\xi) \varphi(\mathrm{m}(\mathrm{z}-\xi)) \delta_{1}(\xi)
\end{align*}
$$

and $\varphi \in{ }_{0}^{\infty}\left({ }^{\mathrm{n}}\right), f \varphi \mathrm{~d} \lambda=1, \varphi \geq 0, \sup \varphi=\left\{\mathrm{z} \in \mathrm{C}^{\mathrm{n}}:|\mathrm{z}| \leq 1\right\}$ and λ is Lebesgue measure.
 f_{m} is -closed in ${ }^{\mathrm{n}}$ in the sense of distributions.

Now let

$$
\begin{equation*}
u_{\mathrm{m}}(\mathrm{z})=\mathrm{B}_{q}(., \mathrm{z})^{\wedge} f_{\mathrm{m}}, \tag{5}
\end{equation*}
$$

then from Theorem 2,

$$
\bar{\partial} u_{m}=f_{m},
$$

and since $f_{m} \rightarrow f$ in $L_{(0, q+1)}^{1}(\Omega)$, we have $u_{m} \rightarrow u$ in $L_{(0, \mathrm{q})}^{1}\left({ }^{\mathrm{n}}\right)$ and $\mathrm{u}=f$.
Note that in the proof of Lemma 3, since $f \in \underset{(0, \mathrm{q})}{C^{1, \mathrm{a}}}(\Omega)$ it follows that f belongs to the
Sobolev space $\mathrm{W} \quad(\Omega)$ and, therefore, f extended by zero outside Ω belongs to $\mathrm{W}_{(0, q+1)}^{1, \infty}\left(\mathbb{C}^{\mathrm{n}}\right)$, even though it man not belong to C
$\left(\mathbb{C}^{\mathrm{n}}\right)$, and since all derivatives are taken in the distribution sense, that is all we need!

Holder Estimates

In this section we finish the proof of Theorem 1:
From (5), we get

$$
\begin{equation*}
\partial^{\alpha} u_{m}(\mathrm{z})={ }_{\mathrm{n}} \beta_{q}(., \mathrm{z})^{\wedge} \partial^{\alpha} f_{\mathrm{m}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \partial^{\alpha} u_{m} \frac{|\partial|^{\alpha} \mid}{\partial x_{l}^{\alpha} \partial y_{1}^{\alpha} \ldots \partial x_{n}^{\alpha \alpha_{n-1}} \partial y_{\mathrm{n}}^{\alpha, n}} \\
& \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 \mathrm{n}-1}, \alpha_{2 \mathrm{n}}\right), \mathrm{z}=\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right), i=-\sqrt{-1},
\end{aligned}
$$

and the derivatives are taken coefficientwise. From (4), $\alpha<k$, as $m-\infty \partial^{\alpha} f_{\mathrm{m}} \rightarrow \partial^{\alpha} f$ in $\underset{(0, q+1)}{L^{1}}(\Omega)$ and so from (6) $\partial^{\alpha} u_{\mathrm{m}} \rightarrow \partial^{\alpha} u$ in $\underset{(0, \mathrm{q})}{L^{1}}(\Omega)$ and

$$
\begin{equation*}
\partial^{\alpha} u(\mathrm{z})=\int_{\xi z} \beta q(., \mathrm{z})^{\wedge} \partial^{\alpha} f, z \in \Omega \tag{7}
\end{equation*}
$$

Now from known properties of $\mathrm{Bq}(\xi, \mathrm{z})$ (see for example [2], page 269), we get the estimate from (7).

$$
u_{(0, q)}^{k, \alpha}(\Omega) \leq \delta|f|_{(0, q+1)}^{k, \alpha}(\Omega)
$$

$(0<\alpha<1, k \geq 1)$.

Reference

[1.] Alt, W. (1974) Holderabschatzungen von Losungen den Gleischung $\bar{\partial} u=f$ bei streng pseudokonvexem Rand. Man. Math. 13, 381-414.
[2.] Chen, S.-C. \& Shaw, M.-C. (2001). Partial Differential Equations in Several Complex Variable. Studies in Advanced Mathematics No. 19. AMS-International Press.
[3.] Lieb, I. \& Michel J. (2002). The Cauchy-Riemann Complex (Integral Formulae and Neumann Problem). Aspects of Mathematics E34. Vieweg.
[4.] Lieb, I. \& Range, R. M. (1980). Ein Losungsoperator fur den Cauchy-RiemannKomplex mit CkAbschatzugen. Math. Ann. 253, 145-164.
[5.] Sin, Y. T. (1974). The -problem with uniform bounds on derivations. Math. Ann. 207, 163-176.

