ON THE HOMOGENEOUS COMPLEX MONGE-AMPERE

EQUATION

P.W.Darko 23 Fairway Road APT.2B, Newark, DE 19716 USA

E-mail:pdarko10@aol.com

Abstract

Harmonic functions are used to construct nonzero solutions of the homogeneous Complex Monge-Ampere equation which particularize to results of Lempert and Bracci-Patrizio. Mathematics Subject Classification:35J15, 35J60

Introduction

In Darko(2002), we constructed viscosity solutions of the inhomogeneous complex Monge-Ampere equation. The constructed solutions turned out to be zero in the homogeneous case. Meanwhile Lempert(1981), has the following remarkable result.

Let $D \subset C^n$ be a bounded strongly convex domain with smooth boundary and let $z_0 \in D$, then there is a solution to the homogeneous Monge-Ampere equation:

u plurisubharmonic in D

$$M_{c}(u) := \det \left(\frac{\partial^{2} u}{\partial z_{j} \partial z_{k}}\right) = 0, \text{ in } D \setminus \{z_{0}\} C^{n}. \text{ Then the homogeneous complex}$$

Monge-Ampere equation
$$du \neq 0$$

$$u(z) = 0 \text{ for } z \in \partial D$$
 (1) $M_c(u) := \det\left(\frac{\partial u}{\partial z_j \partial \bar{z}_k}\right) = 0$

 $u(z) - \log ||z_0 - z|| = O(1)$ as $z \to z_0$

This result turned out to be very useful in several Complex Variables as pointed out in Bracci & Patrizio(2005), where we have equally remarkable result:

Let $D \subset C^n$ be a bounded strongly convex domain with smooth boundary and let $p \in \partial D$, then the Monge-Ampere equation with singularity at the boundary point p:

u plurisubharmonic in D

$$M_c(u) := \det\left(\frac{\partial^2 u}{\partial z_j \partial z_k}\right) = 0$$
$$du \neq 0$$

$$u(z) = 0$$
 for $z \in \partial D \setminus \{p\}$

 $u(z) \approx ||p-z||^{-1} \text{ as} z \to p \text{ non-tangentially}$ (2)

has a solution. Because of the importance of the above results, it is natural to seek to generalise to other domains and other singularities. We therefore have the following.

Theorem 1

has a non-zero solution u in Ω such and (3) is satisfied. that u is plurisubharmonic $du \neq 0$

$$u(z) = 0 \quad \text{for } z \in \partial \Omega \tag{3}$$

Smooth Solutions of $M_c(u) = 0$

Let h be a real harmonic function on C such that h is never zero on C and $dh \neq 0.$

Define the distribution H_j in C^n by

$$H_j(\varphi) = h(\varphi(0, 0, ..., j, ..., 0, 0)) \quad (4)$$

the action of h being in the *j*th coordinate. $\varphi \in D(C^n)$ -a test function and let f be a nonzero function in $L^1_{loc}(\mathbb{C}^n)$, such that $df \neq 0$.

Let $\Omega_1 \subset \subset \Omega_2 \subset \subset \Omega_3 \subset \ldots$, with $U_{\nu=1}^{\infty}\Omega_{\nu} = \Omega$, be an exhaustion of Ω . Let $\{\varphi_{\nu}\}_{\nu=1}^{\infty}$ be a sequence of functions with $\varphi_{\nu} \in C_0^{\infty}(\Omega_{\nu+1}), \varphi_{\nu} \equiv 1$ on Ω_{ν} and $0 \leq \varphi_{\nu} \leq 1$.

Define $V_{\nu} \in C^{\infty}(C^n)$ by

$$V_{\nu} = \{(H_1 + H_2 + \dots + H_n) * (\varphi_{\nu} f)\} \varphi_{\nu}$$
(5)

where * is convolution.

Then it is clear that $M_c(u) = 0$ in Ω_{ν} and $\{v_{\nu}\}$ tends locally uniformly to a C^∞ function u on Ω such that

$$M_c(u) = 0 \text{ on } \Omega \tag{6}$$

Conclusion

By choosing the locally integrable function f in (5) appropriately, we can specialise our theorem to the cases of Lempert and Bracci-Patrizio.

References

Bracci, E & Patrizio, G (2005) Monge-Ampere foliations with singularities at the boundary of strongly convex domains. Math.Ann **332**, 499-522

Darko .P. W.(2002) Continuos and L^P Estimates for the Complex Monge-Ampere Equation on Bounded Domains in C^{n} IJMMS **30** 11 705-707.

Lempert, L.(1981) La me'trique de Kobayashi et la representation de domains sur la boule. Bull. Soc.Math. Fr. 109 427-474.

Received 14 Apr 2008; revised 16 Jan 2009.