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Abstract
With the aim of obtaining at least Cordes-Nirenberg, Schauder and Calderon-Zygmund
estimates for solutions of Fully Nonlinear Uniformly Elliptic Equations, we arrive at W2,

p, C1, 
α
(}, C2, α regularity estimates for those equations, improving the existing estimates.

Introduction
Consider fully nonlinear second order uniformly elliptic equations of the form

F(D2u, x) = f(x) (1)

where x ∈ Ω and u and f are functions define in a bounded domain Ω of Rn, and F(M, x)
is a real valued function defined on S × Ω, where S is the space of real n × n symmetric
matrices.  Assume F is uniformly elliptic in the sense that there are positive constants) λ <
∧ such that for any M ∈ S and x ∈ Ω,

λ||N|| < F (M + N, x) – F(M, x) < Λ ||N||  N > O. (2)

When N is a symmetric matrix, N > 0 means, i.e. is non-negative definite. ||M|| denotes the
(L2, L2)-norm of M (i.e. ||M|| = sup|x|

= l
 |Mx|; therefore ||N|| is equal to the maximum

eigenvalue of N wherever N > 0).
Recalling that any N ∈ S can be uniquely decomposed as N = N+– N– , where N+, N–

> 0 and N+ N– = 0, it follows that F is uniformly elliptic if and only if

F(M + N < F (M), x + ^ ||N+|| – λ||N–|| 

 

M, N ∈ S, x ∈ Ω. (3)

It also follows from (3) that if F is uniformly elliptic, then
λ|ê| < |F|(M, x) < + |F(0, x)| 

 

M ∈ S, x ∈ Ω. (4)

where |ê| = max{|e
1
|, ... , |e

n
|}, the e

j
 (1 <   j  <  n) being the eigenvalues of M.
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In [1], rather detailed regularity estimates were obtained for solutions of (1), where Ω was
the unit ball and F(M, x) was convex or concave in M. As is normal, it is natural to ask
whether we can remove the convexity conditions on F and make Ω a general bounded
domain in ] 

 

n. We show here that we can, without even assuming that Ω is F-convex in
the sense of [2].

Our methods are not direct generalization of those of [1]. Rather we use only the
philosophy that the most useful square matrix is a diagonal one, the approach being frontal.
We obtain sharp Hölder and Sobolev regularity results, and from the Hölder esitmates,
show that once f in (1) is continuous and F(0,·) is locally integrable in (L∞ (Ω), every
solution of (1) is a viscosity solution.

We consider in this paper only those solutions of u of (1) such that the distributional
derivatives     ∂2u   are actual functions on Ω, and we also assume that the boundary of Ω

          ∂xi
∂xj

has Lebesgue measure zero.
Our results are as follow:

Theorem 1. If F(0, ·) and f are in LP (Ω), 1 < p <  ∞, then u ∈ W2,p (Ω) and there is a
constant K independent of F such that

||u||
W2,p (Ω) 

< K   ||F(0,.)||
Lp (Ω)

 + || f ||
Lp (Ω)   

.

Theorem 2. If F(0, ·) and f are in Ln/1– α (Ω), O < α < 1, then u ∈ C1,α (Ω) and there is
constant K independent of F such that

||u||
C

1, α
 (Ω)

 < K  ||F(0, .) ||
L

n/1 – α
(Ω)

 + ||f||
L

n/1 – α
(Ω)   

.

Theorem 3. If F(0, ·) and f are in L∞  (Ω), then u ∈ C2,α (Ω
o
) for every domain Ω

o
⊂⊂  Ω

and there is a constant K = K(Ω
o
, Ω) such that

||u||
C2,α(Ωo)

 < K   ||F(0, .) ||
L∞(Ω)

 + ||f||
L∞(Ω)

 .

Theorem 4. If f is continuous and F(0,·) ∈ L∞   (Ω), then every solution of (1) is a viscosity
solution.     

1oc

Proof of Theorems

First if M = (M
ij 
) is in S, we define |M|:=     

1/2

.  It then follows, using the fact that

M = ODOt, where D
ij
 = e

i
δ

ij
 (e

i
 being the eigenvalues of M) and O is an orthogonal matrix,
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and Cauchy-Schwartz Inequality that

|M| < n  

 

 
 

   1/2

.

Therefore, since D2u =      ∂
2u   , we have from (4) and (5) that

  ∂xi
∂xj

D2u <  K (|F(0, .)| + | f |),

for some K > 0.
Putting u = 0 outside n and using Poincaré Inequality (noting that the boundary of Ω

has Lebesgue measure zero) we get Theorem 1 from (6).

To prove Theorem 2 we use (from [3] p. 123) Lemma 5. Let u ∈ ′ (  n) and assume that
∂

j
u ∈Lp (

 

n), j = 1, ... , n, where p > n. Then u is continuous and with γ = 1 - n/p, we have

sup |u|(x) – u (y)/ |x – y|γ| < C 
 

 ||∂
j
u||

p
,

 x≠y

for some c > 0.
Putting again u = 0 outside Ω and noting that the boundary of Ω has Lebesgue

measure zero, we get Theorem 2 from Lemma 5, Theorem 1 and Poincaré Inequality.
To prove Theorem 3, we note that there is a constant K = K(Ω

o
, Ω) such that

  sup  

  x ≠ y        |x – y|     <  

 

 | ∂
j
u ||

L∞(Ω)

      

x,y∈Ω
ο

 

 1 < i < n, and then use Theorem 1.
To prove Theorem 4, we note that fromt the hypothesis of Theorem 4, Theorem 2

holds on any domain Ω
o
 ⊂  ⊂ Ω.
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