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Abstract

Sobolev and Carleman es-
timates are obtained for the
∂̄−operator on all bounded
domains in Cn with bound-
aries of Lebesgue measure
zero

Introduction

The work in this paper stems from
the confluence of three ground break-
ing results. The first is Horman-
der’s L2−estimates for the ∂−operator
on pseudoconvex domains Horman-
der 1965.The second is Lp-estimates
for the ∂-operator on strongly
pseudoconvex domains obtained by
Kerzman,(1971) and Ovrelid (1971) .
The last is the work by Beals, Greiner,
and Stanton (1987) on domains which
satisfy the so-called Condition z(q).
Three different methods are used in
the above mentioned works. Horman-
der uses Hilbert space methods, Kerz-
man and Ovrelid use integral repre-
sentation methods of Ramirez-Henkin
type and Beals, Greiner and Stanton
use psuedodifferential operations. In
extending their results to bounded do-
mains in Cn with boundaries with
Lebesgue measure zero, we use inte-

gral representation methods of Mar-
tinelli, Bochner and Koppelman type.
These are not as sophisticated as the
Ramirez-Henkin types, but they are
still very powerful. We first obtain Lp-
Sobolev estimates for the ∂̄-operator
on all bounded domains in Cn with
boundries with Lebesgue measure zero
and then use these estimates to ob-
tain Lp-Carleman estimates for the ∂-
operator on all bounded in Cn (regard-
less of boundaries). For 1 ≤ p ≤ ∞, let
Lp
(r,q) denote the space of forms of type

(r, q) with coefficients in Lp(U), i.e

f =
�

|I|=r

�
�

|J|=q

�fI,Jdz
I ∧ dz̄J , (1)

where
��means that the summation is

performed only over strictly increasing
multi-indicies,

I = (i1, ..., ir), J = (j1, ..., jq),

dzI = dzi1∧...∧dzir , dz̄J = dz̄j1∧...∧dz̄jq,U
is open in Cn. The norm of the
(r, q)−form in (1) is defined by

||f ||Lp
(r,q)

(U) =

�
�

I

�
�

J

�||fIJ ||pLp(U)

� 1
p

,

1 ≤ p < ∞, and

||f ||L∞
(r,q)

(U) =
max
I,J ||fI,J ||L∞(U).



Let W k,p(U), 1 ≤ p ≤ ∞, k = 1, 2, 3...
be the space of functions which to-
gether with their distributional deriva-
tives of order through k are in Lp(U),

with the actual norm, and W k,p
(r,q)(U)

the space of (r, q)−forms with coeffi-
cients in W k,p(U), with norm defined
by

||f ||Wk,p
(r,q)

(U) :=

�
�

I

�
�

J

�||fI,J ||Wk,p(U)

� 1
p

, 1 ≤ p < ∞,

and
||f ||Wk,∞

(r,q)
(U) :=

max
I,J ||fI,J ||Wk,∞(U).

Let Bq(ξ, z) be the Bochner-
Martinelli-Koppelman kernel of degree

(0, q) in z and degree (n, n− q − 1) in
ξ, so that, with β = |ξ − z|2,

Bq(ξ, z) =
(−1)q(q−1)/2

(2πi)n
�
n−1
q

�
β−n∂ξβ ∧ (∂̄ξ∂ξβ)

n−q−1 ∧ (∂̄z∂ξβ)
q (2)

for 0 ≤ q ≤ n.

A plurisubharmonic function ϕ is said
to be admissible on a bounded open set

U in Cn, if for every coefficient bq(ξ, z)
of Bq(ξ, z)0 ≤ q ≤ n

�

U
|bq(ξ, z)|e−ϕ(z)dλ(z) ≤ C,

�

U
|bq(ξ, z)|e−ϕ(ξ)dλ(ξ) ≤ C (3)

where C > 0 is a constant and λ is Lebesgue measure.

For a plurisubharmonic ϕ we define Lp(U,ϕ) where U is open in Cn by

Lp(U,ϕ) :=

�
g is measurable on U :

�

U
|g|pe−ϕdλ < ∞

�
, 1 ≤ p < ∞, (4)

and

||g||Lp(U,ϕ) =

��

U
|g|pe−ϕdλ

� 1
p

.

Lp
(r,q)(U,ϕ) is the space of (r, q)−forms with coefficient in Lp(U,ϕ), and if f is

as in (1) our results are

||f ||Lp
(r,q) =

� ��

I

��

J

||fI, J ||pLp(U,ϕ)

� 1
p

.



Theorem 1

Let Ω be a bounded domain in Cn with
boundary of Lebesgue measure zero.
Let for k ≥ 1f ∈ W k,p

(0,q+1)(Ω) be a

∂̄−closed, then there is a u ∈ W k,p
(0,q)(Ω)

such that ∂̄u = f and

||u||Wk,p
(0,q)

(Ω) ≤ δ||f ||Wk,p
(0,q+1)

(Ω)

where δ is independent of f(1 ≤ p ≤
∞).

Theorem 2

Let Ω be any bounded domain in Cn

and let f ∈ Lp
(0,q+1)(Ω,ϕ)be ∂̄−closed,

1 < p < ∞, and ϕ plurisubharmonic
and admissible in Ω. Then there is
u ∈ Lp

(0,q)(Ω,ϕ) such that ∂̄u = f and

||u||Lp
(0,q)

(Ω,ϕ)≤∂||f ||Lp
(0,q+1)

(Ω,ϕ),

where δ is independent of f.

Bochner-Martinelli-Koppelman
Formular and ∂̄u = f

Theorem 3

Let Ω be a bounded domain in Cn

with C1 boundary. For f ∈ C1
(0,q)(Ω),

0 ≤ q ≤ n, we have

f(z) =

�

∂Ω
Bq(., z)∧f+

�

Ω
Bq(., z)∧∂̄ξf

+∂̄z

�

Ω
Bq − 1(., z) ∧ f, z ∈ Ω (5)

where Bq(ξ, z) is as in (2).

Lemma 4

With Ω and f as in Theorem 1.1, if

u(z) =

�

Ω
Bq(., z) ∧ f, z ∈ Ω (6)

then ∂̄u = f.

Proof.

Let f =
��

J fJdz̄J defined as zero out-
side Ω and regularize f coefficientwise:
fm =

��(fJ)mdz̄J , where

(fJ) =

�

Cn

fJ(z − ξ/m)ψ(ξ)dλ(ξ)

= m2n

�

Cn
fJ(ξ)ψ(m(z − ξ))dλ(ξ)

(7)
and ψ ∈ C∞

0 (Cn),
�
ψdλ = 1,ψ ≥

0, supp ψ = {z ∈ Cn :
|z| ≤ 1} and λ is Lebesgue mea-
sure. Then ||fm||L(0,q+1)(Cn) ≤
||f ||Lp

(0,q+1)
(Cn

) for1 ≤ p ≤ ∞, fm →
f inL1

(0,q+1)(Ω) as m → ∞ and fm is

∂̄−closed in Cn.

um(z) =

�

Cn
Bq(·, z) ∧ fm. (8)

Then, from Theorem 3, we have

∂̄um = fm,

and since fm → f in L1
(0,q+1)(Ω), we

have um → u in L1
(0,q), and ∂̄u = f.

Lp−Sobolev etimates

In this section we indicate how the esti-
mates in Theorem 1 should be arrived
at. Now, from (8)

∂αum(z) =

�

Cn
Bq(·, z)∂αfm, (9)

where

∂α =
∂|α|

∂xα1
1 ∂α2

y1 ...∂x
α2n−1
n ∂yα2n,

n

α = (α1,α2, ...,α2n−1,α2n)

z = (x1 + iy1, ..., xn + iyn) i =
√
−1

and the derivatives are taken coeffi-
cientwise. Therefore, the desired esti-
mate follows upon letting m → ∞ in
(9) and estimating.



Lp−Carleman etimates

1. In this section we prove Theorem
2. Let Ω,ϕ and f be as in Theo-
rem 2. We then have the follow-
ing

Lemma 5
There is a sequence Ω1 ⊂⊂
Ω2 ⊂⊂ · · · of bounded do-
mains,each with boundary of
Lebesgue measure zero, such
that

�∞
ν=1 Ων = Ω, and se-

quence of (0, q)−forms {uν}∞ν=1

with uν ∈ Lp
(0,q)(Ων,ϕ), ∂̄uν = f

in Ων and

||uν ||Lp
(0,q)

(Ω,ϕ) ≤ K||Lp
(0,q+1)

(Ω,ϕ),

where K is the same for all ν, 1 <
p < ∞.

Proof.
The first part is clear. Let us reg-
ularize f as in the proof of theo-
rem 1.

For ν fixed, if m is sufficiently
large fm ∈ W 1.

(0,q+1)(Ων) and

∂̄fm = 0 in Ων . For such an
m(sufficiently large) define

gm =

�
fm in Ων

0 outside Ων

Then from Lemma 4, if

uν,m(z) =

�

Ων

Bq(·, z) ∧ gm

∂̄uν.m = gm in Ων

and since ϕ is admissible on Ων

||uν,m||Lp
(0,q)

(Ων ,ϕ) ≤ K||f ||Lp
(0,q+1)

(Ω,ϕ),

Now it is clear that as m →
∞, gm → f in L1

(0,q+1)(Ων),

and uν,m → some uν in
L1
(0,q)(Ων), ∂̄uν = f in Ων and

||uν ||Lp
(0,q)

(Ων,q) ≤ K||f ||Lp
(0,q+1)

(Ω,ϕ).

(10)

2. Now define uν as zero outside Ων ,
then since Lp

(0,q)(Ω,ϕ) is reflexive
for 1 < p < ∞, by the Banach-
Alaoglu Theorem, there is u in
Lp
(0,q)(Ω,ϕ) with

||u||Lp
(0,q)

(Ω,ϕ) ≤ K||f ||Lp
(0,q+1)

(Ω,ϕ)

(11)
(1 < p < ∞), and a subse-
quence {uνN} of {uν} such that
uνN → u weekly in Lp

(0,q)(Ω,ϕ)
asN → ∞. In particular, uν → u
in the sense of distributions, as
N → ∞. Therefore, ∂̄u = f and
we are done.

Conclution

Using the techniques of
Darko(2000,2002) we can get
Lp−Sobolev and Lp−Carleman
regularity for the ∂̄−operator on
relatively compact Stein domains
of complex manifolds.
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