SOBOLEV AND L^{P} -CARLEMAN ESTIMATES FOR THE

 $\bar{\partial}$ -OPERATOR ON BOUNDED DOMAINS IN \mathbb{C}^n

P. W. Darko

23 Fairway Road APT.2B, Newark, DE 19716 USA

E-mail:pdarko10@aol.com

Abstract

Sobolev and Carleman estimates are obtained for the $\bar{\partial}$ -operator on all bounded domains in \mathbb{C}^n with boundaries of Lebesgue measure zero

Introduction

The work in this paper stems from the confluence of three ground breaking results. The first is Hormander's L^2 -estimates for the ∂ -operator on pseudoconvex domains Hormander 1965. The second is L^p -estimates for the ∂ -operator on strongly pseudoconvex domains obtained by Kerzman, (1971) and Ovrelid (1971). The last is the work by Beals, Greiner, and Stanton (1987) on domains which satisfy the so-called Condition z(q). Three different methods are used in the above mentioned works. Hormander uses Hilbert space methods, Kerzman and Ovrelid use integral representation methods of Ramirez-Henkin type and Beals, Greiner and Stanton use psuedodifferential operations. In extending their results to bounded domains in \mathbb{C}^n with boundaries with Lebesgue measure zero, we use integral representation methods of Martinelli, Bochner and Koppelman type. These are not as sophisticated as the Ramirez-Henkin types, but they are still very powerful. We first obtain L^p -Sobolev estimates for the $\bar{\partial}$ -operator on all bounded domains in \mathbb{C}^n with boundries with Lebesgue measure zero and then use these estimates to obtain L^p -Carleman estimates for the ∂ operator on all bounded in C^n (regardless of boundaries). For $1 \leq p \leq \infty$, let $L^p_{(r,q)}$ denote the space of forms of type (r,q) with coefficients in $L^p(U)$, *i.e*

$$f = \sum_{|I|=r} '\sum_{|J|=q} 'f_{I,J}dz^I \wedge d\bar{z}^J, \quad (1)$$

where \sum' means that the summation is performed only over strictly increasing multi-indicies,

$$I = (i_1, ..., i_r), \ J = (j_1, ..., j_q),$$

 $dz^{I} = dz_{i_{1}} \wedge ... \wedge dz_{i_{r}}, d\bar{z}^{J} = d\bar{z}_{j1} \wedge ... \wedge d\bar{z}_{j_{q}}, U$ is open in \mathbb{C}^{n} . The norm of the (r, q)-form in (1) is defined by

$$||f||_{L^{p}_{(r,q)}}(U) = \left\{ \sum_{I} \sum_{J} ||f_{IJ}||_{L^{p}(U)}^{p} \right\}^{\frac{1}{p}}$$

 $1 \le p < \infty$, and

$$||f||_{L^{\infty}_{(r,q)}(U)} = \max_{I,J} ||f_{I,J}|| L^{\infty}(U).$$

be the space of functions which together with their distributional derivatives of order through k are in $L^p(U)$,

Let $W^{k,p}(U), 1 \leq p \leq \infty, k = 1, 2, 3...$ with the actual norm, and $W^{k,p}_{(r,q)}(U)$ the space of (r,q)-forms with coefficients in $W^{k,p}(U)$, with norm defined by

$$|f||_{W^{k,p}_{(r,q)}(U)} := \left\{ \sum_{I} \ '\sum_{J} \ '||f_{I,J}||_{W^{k,p}(U)} \right\}^{\frac{1}{p}}, 1 \le p < \infty$$

and

$$||f||_{W^{k,\infty}_{(r,q)}(U)} :=_{I,J}^{\max} ||f_{I,J}||_{W^{k,\infty}(U)}$$

 $B_q(\xi, z)$ be the Bochner- (0, q) in z and degree (n, n - q - 1) in Let Martinelli-Koppelman kernel of degree ξ , so that, with $\beta = |\xi - z|^2$,

$$B_q(\xi, z) = \frac{(-1)^{q(q-1)/2}}{(2\pi i)^n} {\binom{n-1}{q}} \beta^{-n} \partial_{\xi} \beta \wedge (\bar{\partial}_{\xi} \partial_{\xi} \beta)^{n-q-1} \wedge (\bar{\partial}_z \partial_{\xi} \beta)^q$$
(2)

for $0 \le q \le n$.

I

A plurisubharmonic function φ is said U in \mathbb{C}^n , if for every coefficient $b_q(\xi, z)$ to be admissible on a bounded open set of $B_q(\xi, z) 0 \le q \le n$

$$\int_{U} |b_q(\xi, z)| e^{-\varphi(z)} d\lambda(z) \le C, \int_{U} |b_q(\xi, z)| e^{-\varphi(\xi)} d\lambda(\xi) \le C$$
(3)

where C > 0 is a constant and λ is Lebesgue measure.

For a plurisubharmonic φ we define $L^p(U, \varphi)$ where U is open in \mathbb{C}^n by

$$L^{p}(U,\varphi) := \left\{ g \text{ is measurable on } U : \int_{U} |g|^{p} e^{-\varphi} d\lambda < \infty \right\}, 1 \le p < \infty, \quad (4)$$

and

$$||g||L^{p}(U,\varphi) = \left\{ \int_{U} |g|^{p} e^{-\varphi} d\lambda \right\}^{\frac{1}{p}}.$$

 $L^p_{(r,q)}(U,\varphi)$ is the space of (r,q)-forms with coefficient in $L^p(U,\varphi),$ and if f is as in (1) our results are

$$||f||L_{(r,q)}^{p} = \left\{\sum_{I}'\sum_{J}'||fI,J||_{L^{p}(U,\varphi)}^{p}\right\}^{\frac{1}{p}}.$$

Theorem 1

Let Ω be a bounded domain in \mathbb{C}^n with Let $f = \sum_J' f_J d\bar{z}^J$ defined as zero out-boundary of Lebesgue measure zero. side Ω and regularize f coefficientwise: Let for $k \geq 1f \in W^{k,p}_{(0,q+1)}(\Omega)$ be a $f_m = \sum_J' (f_J)_m d\bar{z}^J$, where $\bar{\partial}$ -closed, then there is a $u \in W^{k,p}_{(0,q)}(\Omega)$ such that $\overline{\partial u} = f$ and

$$||u||_{W^{k,p}_{(0,q)}(\Omega)} \le \delta ||f||_{W^{k,p}_{(0,q+1)}}(\Omega)$$

where δ is independent of $f(1 \leq p \leq$ ∞).

Theorem 2

Let Ω be any bounded domain in C^n and let $f \in L^p_{(0,q+1)}(\Omega,\varphi)$ be $\bar{\partial}$ -closed, $1 , and <math>\varphi$ plurisubharmonic and admissible in Ω . Then there is $u \in L^p_{(0,q)}(\Omega,\varphi)$ such that $\partial u = f$ and

$$||u||_{L^{p}_{(0,q)}(\Omega,\varphi) \leq \partial ||f||_{L^{p}_{(0,q+1)}}(\Omega,\varphi)},$$

where δ is independent of f.

Bochner-Martinelli-Koppelman Formular and $\partial u = f$

Theorem 3

Let Ω be a bounded domain in \mathbb{C}^n with C^1 boundary. For $f \in C^1_{(0,q)}(\Omega)$, $0 \le q \le n$, we have

$$f(z) = \int_{\partial\Omega} B_q(.,z) \wedge f + \int_{\Omega} B_q(.,z) \wedge \bar{\partial}_{\xi} f$$
$$+ \bar{\partial}_z \int_{\Omega} B_q - 1(.,z) \wedge f, z \in \Omega \quad (5)$$

where $B_q(\xi, z)$ is as in (2).

Lemma 4

With Ω and f as in Theorem 1.1, if

$$u(z) = \int_{\Omega} B_q(., z) \wedge f, z \in \Omega \qquad (6)$$

then $\bar{\partial}u = f$.

Proof.

$$(f_J) = \int_{C_n} f_J(z - \xi/m)\psi(\xi)d\lambda(\xi)$$
$$= m^{2n} \int_{\mathbb{C}^n} f_J(\xi)\psi(m(z - \xi))d\lambda(\xi)$$

and $\psi \in C_0^{\infty}(\mathbb{C}^n), \int \psi d\lambda = 1, \psi \geq 0$, supp $\psi = \{z \in \mathbb{C}^n :$ $|z| \leq 1$ and λ is Lebesgue measure. Then $||fm||_{L_{(0,q+1)}(\mathbb{C}^n)} \leq ||f||_{L_{(0,q+1)}^p}(\mathbb{C}^n)$ for $1 \leq p \leq \infty, f_m \rightarrow \infty$ $f \text{ in } L^1_{(0,q+1)}(\Omega) \text{ as } m \to \infty \text{ and } f_m \text{ is }$ $\bar{\partial}$ -closed in \mathbb{C}^n .

$$u_m(z) = \int_{\mathbb{C}^n} B_q(\cdot, z) \wedge f_m. \qquad (8)$$

Then, from Theorem 3, we have

$$\bar{\partial}u_m = f_m$$

and since $f_m \to f$ in $L^1_{(0,q+1)}(\Omega)$, we have $u_m \to u$ in $L^1_{(0,q)}$, and $\bar{\partial}u = f$.

L^p -Sobolev etimates

In this section we indicate how the estimates in Theorem 1 should be arrived at. Now, from (8)

$$\partial^{\alpha} u_m(z) = \int_{\mathbb{C}^n} B_q(\cdot, z) \partial^{\alpha} f_m, \quad (9)$$

where

$$\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial_{y_1}^{\alpha_2} \dots \partial x_n^{\alpha_{2n-1}} \partial y_n^{\alpha_{2n}}}$$
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{2n-1}, \alpha_{2n})$$
$$z = (x_1 + iy_1, \dots, x_n + iy_n) \ i = \sqrt{-1}$$

and the derivatives are taken coefficientwise. Therefore, the desired estimate follows upon letting $m \to \infty$ in (9) and estimating.

L^p -Carleman etimates

In this section we prove Theorem
 Let Ω, φ and f be as in Theorem 2. We then have the following

Lemma 5

There is a sequence $\Omega_1 \subset \subset \Omega_2 \subset \subset \cdots$ of bounded domains, each with boundary of Lebesgue measure zero, such that $\bigcup_{\nu=1}^{\infty} \Omega_{\nu} = \Omega$, and sequence of (0, q)-forms $\{u_{\nu}\}_{\nu=1}^{\infty}$ with $u_{\nu} \in L^p_{(0,q)}(\Omega_{\nu,\varphi}), \bar{\partial}u_{\nu} = f$ in Ω_{ν} and

$$||u_{\nu}||_{L^{p}_{(0,q)}(\Omega,\varphi)} \le K||_{L^{p}_{(0,q+1)}(\Omega,\varphi)},$$

where K is the same for all $\nu, 1 .$

Proof.

The first part is clear. Let us regularize f as in the proof of theorem 1.

For ν fixed, if m is sufficiently large $f_m \in W^{1}_{(0,q+1)}(\Omega_{\nu})$ and $\bar{\partial}f_m = 0$ in Ω_{ν} . For such an m(sufficiently large) define

$$g_m = \begin{cases} f_m & \text{in } \Omega_\nu \\ 0 & \text{outside } \Omega_\nu \end{cases}$$

Then from Lemma 4, if

$$u_{\nu,m}(z) = \int_{\Omega_{\nu}} B_q(\cdot, z) \wedge g_m$$

$$\partial u_{\nu,m} = g_m \text{ in } \Omega_n$$

and since φ is admissible on Ω_{ν}

$$||u_{\nu,m}||_{L^{p}_{(0,q)}(\Omega_{\nu},\varphi)} \leq K||f||_{L^{p}_{(0,q+1)}(\Omega,\varphi)},$$

Now it is clear that as $m \to \infty, g_m \to f$ in $L^1_{(0,q+1)}(\Omega_{\nu}),$

and $u_{\nu,m} \to \text{ some } u_{\nu}$ in $L^1_{(0,q)}(\Omega_{\nu}), \bar{\partial}u_{\nu} = f \text{ in } \Omega_{\nu}$ and

$$|u_{\nu}||_{L^{p}_{(0,q)}}(\Omega_{\nu,q}) \leq K||f||_{L^{p}_{(0,q+1)}(\Omega,\varphi)}$$
(10)

2. Now define u_{ν} as zero outside Ω_{ν} , then since $L^{p}_{(0,q)}(\Omega, \varphi)$ is reflexive for 1 , by the Banach-Alaoglu Theorem, there is <math>u in $L^{p}_{(0,q)}(\Omega, \varphi)$ with

$$||u||_{L^{p}_{(0,q)}}(\Omega,\varphi) \le K||f||_{L^{p}_{(0,q+1)}(\Omega,\varphi)}$$
(11)

 $(1 , and a subsequence <math>\{u_{\nu N}\}$ of $\{u_{\nu}\}$ such that $u_{\nu N} \rightarrow u$ weekly in $L^p_{(0,q)}(\Omega,\varphi)$ as $N \rightarrow \infty$. In particular, $u_{\nu} \rightarrow u$ in the sense of distributions, as $N \rightarrow \infty$. Therefore, $\bar{\partial}u = f$ and we are done.

Conclution

Using the techniques of Darko(2000,2002) we can get L^p -Sobolev and L^p -Carleman regularity for the $\bar{\partial}$ -operator on relatively compact Stein domains of complex manifolds.

References

Beals, R, Greiner P.C, & Stanton N.K 1987. L^p and Lipschitz Estimates for the $\bar{\partial}$ -Neumann Problem. Math. Ann. **277** 185 – 196.

Chen S.C. & Shaw M.C 2001: Partial Differencial Equations in Several Complex Variables. Studies in Advanced Mathematics, No. **19** AMS-International Press. Darko P. W 2000 L^2 estimates for the $\bar{\partial}$ -operator on Stein manifolds. *Math. Proc. Camb. Phil.* Soc **192**, 73-76.

P.W.Darko 2002 Cohomology with Bounds and Carleman Estimates for the $\bar{\partial}$ -operator on Stein Manifolds, IJMMS, 32 : **6**, 383 - 386.

Hormander L, (1965) L^2 Estimates and Existence Theorem for the $\bar{\partial}$ -operator, Acta Math. **113**, 89 - 152.

Kerzman N,(1971) Holder and L^p estimates for solutions of $\bar{\partial}u = f$ in strongly pseudoconvex domains. Comm Pure Appl.Math, **24**, 301-379.

Ovrelid N,(1971) Integral representation formulars and L^p estimates for the $\bar{\partial}$ -equation. Math.Scand. **29**, 137 – 160.