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Abstract gral representation methods of Mar-
tinelli, Bochner and Koppelman type.
These are not as sophisticated as the
Ramirez-Henkin types, but they are
still very powerful. We first obtain LP-
Sobolev estimates for the d-operator
on all bounded domains in C" with
boundries with Lebesgue measure zero
and then use these estimates to ob-
tain LP-Carleman estimates for the 0-
operator on all bounded in C" (regard-
less of boundaries). For 1 < p < o0, let
LfT7q) denote the space of forms of type

(r,q) with coefficients in L?(U),i.e

Sobolev and Carleman es-
timates are obtained for the
O—operator on all bounded
domains in C" with bound-
aries of Lebesgue measure
Z€ero

Introduction

The work in this paper stems from
the confluence of three ground break-
ing results. The first is Horman-
der’s L?—estimates for the —operator
on pseudoconvex domains Horman-

der 1965.The second is LP-estimates
for the J-operator on strongly

pseudoconvex domains obtained by
Kerzman,(1971) and Ovrelid (1971) .

f= Z ! Z /fdeZI/\dZJ, (1)
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where Y "'means that the summation is
performed only over strictly increasing

The last is the work by Beals, Greiner, multi-indicies,
and Stanton (1987) on domains which
satisfy the so-called Condition z(q).
Three different methods are used in
the above mentioned works. Horman-
der uses Hilbert space methods, Kerz-
man and Ovrelid use integral repre-
sentation methods of Ramirez-Henkin
type and Beals, Greiner and Stanton
use psuedodifferential operations. In
extending their results to bounded do-
mains in C" with boundaries with
Lebesgue measure zero, we use inte-
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is open in C". The norm of the
(r,q)—form in (1) is defined by

|
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1 <p< oo, and
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Let WrkP(U),1 <p < o0,k =1,2,3..
be the space of functions which to-
gether with their distributional deriva-
tives of order through k are in LP(U),

with the actual norm, and W(kr q)(U )

the space of (r,q)—forms with coeffi-
cients in W*P(U), with norm defined
by

Mg = {35 /|fI,J||Wk,p<U>} tepen,
»q T 7

and
HfHW(k;j;C)(U maX ||f[ J||Wk oo (U).
Let By(&,2z) be the Bochner- (0,¢) in z and degree (n,n —¢ —1) in
Martinelli-Koppelman kernel of degree &, so that, with 8 = |€ — z|?,
(=1)° q(q—1)/2 ) B ) B
Bq(&,2) = N (571) B7"0eB N (0c0¢B8)" "1 A (D:0:8)T  (2)
for 0 < q < n.

A plurisubharmonic function ¢ is said
to be admissible on a bounded open set

e

2)e”?#dX(z) <C’/|b (&, 2)[e”?EaxeE) < C

U in C", if for every coefficient by (¢, 2)
of B4(£,2)0<¢<n

3)

where C' > 0 is a constant and A is Lebesgue measure.

For a plurisubharmonic ¢ we define LP(U, ¢) where U is open in C" by

LP(U, ) := {g is measurable on U : / lg|Pe™?dA < oo} 1<p<oo, (4)
U

19l (U, ) = { / glPe- ‘de}

and

(T )
as in (1) our results are

(U, ) is the space of (r,q)—forms with coefficient in LP(U, ¢), and if f is

-

1F11ZE, ) = {Zanf J|Lp<w)} .



Theorem 1

Let  be a bounded domain in C™ with
boundary of Lebesgue measure zero.

Let for k > 1f € W(]:)ZH () be a

O—closed, then thereis au € W(O’Z;)(Q)
such that Ou = f and
<61 flyyx v

(0,9+1)

(€)

where ¢ is independent of f(1 < p <
00).

Theorem 2

Let Q be any bounded domain in C™
and let f € L(o qul)( ,p)be 0—closed,
1 < p < o0, and ¢ plurisubharmonic

and admissible in Q. Thgn there is
u € L?O o (§2,¢) such that du = f and

||UHW’“P 1 ()

llleg, , @<olifilg, @),

where § is independent of f.

Bochner-Martinelli-Koppelman
Formular and 0u = f

Theorem 3

Let Q be a bounded domain in C"
with C'! boundary. For f € C(, (),
0 < ¢ <n, we have

/ By(

B, —1(.,
Q

NS+ / 2(2 2)ADe f

+0. 2)Nf,zeQ (5)
where B,(,z) is as in (2).
Lemma 4

With Q and f as in Theorem 1.1, if
u(z) = / By(,2)Nf,ze  (6)
Q

then Ou = f.

Proof.

Let f =", fsdz’ defined as zero out-
side Q and regularize f coeflicientwise:

fm =S (f7)mdz’, where

(1) = /C £3(2 — €/m)b(€)AA(E)

=m?" fJ(ﬁ) (m(z — £))dA(§)

(7)
and ¥ € C§(C"), [¢dX = 1,9 >
0, supp v = {z € (C" :

2] < 1} and X is Lebesgue mea-
sure. Then |[fmllzg . 0n@©cn)y <
Hf||L(0 oy (@C) forl < p < o0, fin —
f mL(O g+1)(82) as m — oo and fp, is
O—closed in C".

/ By(
Then, from Theorem 3, we have
5um = fin,

and since f,, — f in L}

(8)

2) N fmn-

(0.9+1) () we
,and Ou = f.

have u,, — u in L(o,q)
—Sobolev etimates
In this section we indicate how the esti-

mates in Theorem 1 should be arrived
at. Now, from (

/ By(

glal
Qzn_ ;
Ox Oy?...0xn"" " Oyp™

2)0% fm, (9)

where

o =

O52n—17042n)

Ty +iyn) i =V -1
and the derivatives are taken coeffi-
cientwise. Therefore, the desired esti-

mate follows upon letting m — oo in
(9) and estimating.

a = (a1, ag, ...,

z = (21 + Y1, ..,



LP—Carleman etimates

1. In this section we prove Theorem
2. Let Q,p and f be as in Theo-
rem 2. We then have the follow-
ing
Lemma 5
There is a sequence 21 CC
Qy CC - of bounded do-
mains,each with boundary of
Lebesgue measure zero, such
that (U2, = €, and se-
quence of (0,q)—forms {u,}5,
with u, € L{’O,q)(Qyw),éuu =f
in ©, and

lunllee, @) < Kllzz, @),

where K is the same for all v, 1 <
p < 0.

Proof.
The first part is clear. Let us reg-
ularize f as in the proof of theo-
rem 1.

For v fixed, if m is sufficiently
1?rge fm € W(ld)q+1)(QV) and
Ofm = 0 in Q,. For such an
m(sufficiently large) define

| fm in Q,
Im =1 0 outside Q,

Then from Lemma 4, if

Uy m(2) = /Q By(-, 2) A gm

Oy = gm in

and since ¢ is admissible on (2,

|[tw,m] ‘Lfqu)

Now it is clear that as m —
00,9m — f in L%07q+1)(9u)7

e < KISz, @0,

and Uy m ~ — some u, in
L(lo’q)(Q,,),aul, = fin Q, and

lusllis,

(Qlaq) < KHfHLﬁ)’q_*_l)(Q,cp).
(10)

. Now define u,, as zero outside €2,

then since L’()0 o (82 ) is reflexive
for 1 < p < oo, by the Banach-
Alaoglu Theorem, there is u in

Lp (9,¢) with

||UHL§’01q)

Q) < K‘|f||L§’01q+1>(Q,¢)
(11)
(I < p < ), and a subse-
quence {u,n} of {u,} such that
u,Ny — u weekly in L;?O,q)<Q7SD)
as N — oo. In particular, u,, — u
in the sense of distributions, as
N — oo. Therefore, du = f and

we are done.
Conclution

Using  the  techniques  of
Darko(2000,2002) we can get
LP—Sobolev and LP—Carleman
regularity for the d—operator on
relatively compact Stein domains
of complex manifolds.
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