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Abstract

New estimates are ob-
tained for the ∂̄−operator on
non-stein domains in Cn and
the results are applied to the
Corona problem in Carleman
algebras on those domains.

Introduction

Let Ω be an open subset of a com-
plex manifold X, and let p be a non-
negative function on Ω. Denote by
Ap(Ω) the (Carleman) algebras of all
holomorphic functions f in Ω such that
for some positive constants c1 and c2

|f(z)| ≤ c1 exp(c2p(z)), z ∈ Ω. (1)

In [3] where X = C
n and Ω is pseu-

doconvex, and in Darko (2005), where
X is a complex manifold and Ω is a
relatively compact Stein open subset,
a condition is given on p such that a
given finite set f1, ..., fN ∈ Ap(Ω) gen-
erates Ap(Ω) if and only if

|f1(z)|+ |f2(z)|+ ...+ |fN (z)|

≥ c1 exp(−c2p(z)), z ∈ Ω (2)

for some constants c1 > 0, c2 > 0. Both
in Darko [2005] and Hormander (1967),

Ω was Stein. As is always the case, it
is natural to ask whether the condition
of Steinness can be dropped. We show
here that it can, if Ω is a domain in Cn

and we modify the condition in Darko
(2005) and Hormander (1967) to the
following Condition (H) :

(a) p is a non-negative upper semi-
continuous function on Ω.

(b) all polynomial belongs to Ap(Ω).

(c) there exist positive constants
K1, ...,K4 such that z ∈ Ω and
|z − ξ| ≤ exp(−K1p(z) −K2) ⇒
ξ ∈ Ω and p(ξ) ≤ K3p(z) + K4.

The only difference between the
condition in Hormander(1967)
and the Condition (H) here is
the replacement of “plurisubhar-
monic” with “upper semicontin-
uous”.

Note that if Ω is an arbitray domain
in Cn

, and d(z) denotes the distance
from z ∈ Ω to the complement of Ω in
Cn

, p(z) = log 1/d(z) satisfies Condi-
tion (H) on Ω.

If Ω is a domain in Cn and p satisfies
Condition (H)on Ω, then we have the



following two lemmas as in Hormander
(1967).

Lemma 1.1
If f ∈ Ap(Ω) it follows that ∂f

∂zj
∈

Ap(Ω), 1 ≤ j ≤ n.

Lemma 1.2 If f is holomorphic in Ω,
then f ∈ Ap(Ω) if and only if for some
K > 0

�

Ω
|f |2 exp(−2Kp(z)dλ < ∞,

where dλ denotes Lebesgue measure.

Our main Theorem is therefore the fol-
lowing
Theorem Let Ω be a domain in Cn

and p a fuction on Ω satisfying Condi-
tion (H). Then a finite set of functions
in Ap(Ω), f1, ..., fN generates Ap(Ω) if
and only if (2) is valid.

To prove this theorem we follow
the homological argument given in
Hormander(1967), almost word for
word, using Lemma 1.1 and 1.2
and Lp−Carleman estimates for the
∂̄−operator on Ω,which we establish in
the next section.

Lp−Carleman Estimates For
The ∂̄−Operetor

For 1 ≤ p ≤ ∞, let Lp
(r,q)(U) denote

the space of forms of type (r, q) with
coefficients in Lp(U),

f =
��

|I|=r

��

|J|=q

fI,Jdz
I ∧ dz̄

J (3)

where
��means that the summation is

performed only over strictly increasing
multi-indices,

I = (i1, ..., ir), J = (ji, ..., jq),

dz
I = dzi1 ∧ ... ∧ dzir , dz̄j1 ∧ ... ∧ dz̄jq ,

and U is open in C
n
. The norm of the

(r, q)−form in (3) is defined by

||f ||Lp
(r,q)

(U)=

� ��

I

��

J

||fI,J ||pLp(U)

� 1
p

,

1 ≤ p < ∞. Let Bq(ξ, z) be the
Bochner-Martinelli-Koppelman kernel
of degree (0, q) in z and degree (n, n−
q − 1) in ξ, so that, with β = |ξ − z|2,

Bq(ξ, z) =
(−1)q(q−1)/2

(2πi)n
�
n−1
q

�
β
−n

∂ξβ ∧
�
∂̄ξ∂ξβ

�n−q−1 ∧
�
∂̄z∂ξβ

�q
(4)

for 0 ≤ q ≤ n.

An upper semicontinuous function ϕ is said to be admissible in an open set U
in Cn

, if for every coefficient bq(ξ, z) of Bq(ξ, z), 0 ≤ q ≤ n,

�

U
|bq(ξ, z)|e−ϕ(z)

dλ(z) ≤ C,

�

U
|bq(ξ, z)|e−ϕ

dλ(ξ) ≤ C (5)

where C > 0 is a constant and λ is Lebesgue measure.

For an upper semicontinuous ϕ we de-
fine Lp(U,ϕ) where U is open in C

n
by



Lp(U,ϕ) :=

�
g is measurable on U :

�

U
|g|pe−ϕ

dλ < ∞
�
, (6)

1 ≤ p < ∞, and

||g||Lp(U,ϕ) =

��

U
|g|pe−ϕ

dλ

�1/p

.

Lp
(r,q)(U,ϕ) is the space of (r, q)−forms with coefficients in Lp(U,ϕ), and if f is

as in (3),

||g||Lp(U,ϕ) =

� ��

I

��

J

||fI,J ||pLp(U,ϕ)

�1/p

1 ≤ p < ∞.

Our second main result is

Theorem 2.1
Let Ω be a domain in Cn and let f ∈
Lp
(0,q+1)(Ωϕ) be ∂̄−closed, ,1 < p < ∞

and ϕ an upper semi continuous func-
tion admissible in Ω. Then there is
u ∈ Lp

(0,q)(Ω,ϕ) such that ∂̄u = f and

||u||Lp
(0,q)

(Ω,ϕ) ≤ δ||f ||Lp
(0,q+1)

(Ω,ϕ),

where δ is independent of f.

To prove Theorem we need a lemma
about Sobolev Space estimates for the
∂̄−operator on bounded domains in Cn

with boundaries of Lebesgue measure
zero. Accordingly, let W

1,1(U) be the
space of functions which together with
their distributional derivatives of order
one are in L1(U), with the usual norm,
and W

1,1
(r,q)(U) is the space of (r, q)−

forms with coefficients in W
1,1(U). We

then have

Lemma 2.2
Let Ω be a bounded domain in Cn with
boundary of Lebesgue measure zero.
Let f ∈ W

1,1
(0,q+1)(Ω) be ∂̄−closed, then

there is a u ∈ W
1,1
(0,q)(Ω) such that

∂̄u = f.

To prove Lemma 2.2 we need the
Bochner-Martinelli-Koppelman for-
mula:

Theorem 2.3
Let Ω be any bounded domain in
Cn with C

1 boundary. for f ∈
C

1
(0,q)(Ω), 0 ≤ q ≤ n, we have

f(z) =

�

∂Ω
Bq(·, z)∧f+

�

Ω
Bq(·, z)∧∂̄ξf

+∂̄z

�

Ω
Bq−1(·, z) ∧ f, z ∈ Ω (7)

where Bq(ξ, z) is in (4).

Proof of Lemma 2.2. With Ω and f as
in Lemma 2.2, if

u(z) =

�

Ω
Bq(·, z) ∧ f, z ∈ Ω, (8)

then ∂̄u = f :

Let f =
��

J fJdz̄
J be defined as zero

outside Ω and regularize f coefficient-
wise: fm =

�
J(fJ)mdz̄

J
,

where

(fJ)
(z)
m =

�

Cn

fJ(z − ξ/m)ϕ(ξ)dλ(ξ)

m
2n

�

Cn

fJ(ξ)ϕ(m(z − ξ))dλ(ξ)

and ψ ∈ C
∞
0 (Cn),

�
ψdλ = 1,ψ ≥

0,supp ψ = {z ∈ Cn : |z| ≤



1}, and λ is Lebesgue measure.
Then ||fm||Lp

(0,q+1)
(Cn

),fm → f in

L1
(0,q+1)(Ω) as m → ∞ and fm is

∂̄−closed in Cn
.

Now let

um(z) =

�

Cn
Bq(·, z) ∧ fm. (9)

Then from theorem 2.3, we have
∂̄um = fm, and since fm → f in
L1
(0,q+1)(Ω), we have um → u in

L1
(0,q)(Ω), and ∂̄u = f. Proof of The-

orem 2.1. We first assume that Ω is
bounded. It is clear that there is
a sequence Ω1 ⊂⊂ Ω2 ⊂⊂ ... of
bounded domains, each with bound-
ary of Lebesgue measure zero, such
that U

∞
ν=1Ωv = Ω. We construct a se-

quence of (0, q)−forms {uv}∞v=1 with
uv ∈ Lp

(0,q)(Ω,ϕ), ∂̄uv = f in Ωv and

||uv||Lp
(0,q)

(Ωv,ϕ) ≤ K||f ||Lp
(0,q+1)

(Ω,ϕ),

where K is the same for all v, 1 <

p < ∞.Let us regularize f as above.
For v fixed, if m is sufficiently large,
fm ∈ W

1,1
(0,q+1)(Ωv) and ∂̄fm = 0 in

Ωv. For such an m(sufficiently large )
define

gm =

�
fm in Ων

0 outside Ων

Then from Lemma 2.2, if

uv,m =

�

Ωv
Bq(·, z) ∧ gm,

∂̄uv,m = gm in Ωv

and since ϕ is admissible on Ωv

||uv,m||Lp
(0,q)

(Ωv,ϕ) ≤ K||f ||Lp
(0,q+1)

(Ω,ϕ).

Now it is clear that asm → ∞, gm → f

in L1
(0,q+1)(Ωv) and uv,m →some uv in

L1
(0,q)(Ωv), ∂̄uv = f and

||uv||LP
(0,q)

(Ωv,ϕ) ≤ K||f ||LP
(0,q+1)

(Ω,ϕ).

(10)
Define uv as zero outside Ωv, then since
LP
(0,q)(Ω,ϕ) is reflexive, for 1 < p < ∞,

by the Banach-Alaoglu Theorem, there
is u in LP

(0,q)(Ω,ϕ) with

||u||LP
(0,q)

(Ωv,ϕ) ≤ ||f ||LP
(0,q+1)

(Ω,ϕ),

(11)

(1 < p < ∞), and a subsequence {uvλ}
of {uv} such that uvλ → u weekly in
Lp
(0,q)(Ω,ϕ) as λ → ∞. In particular,

uvλ → u in the sense of distributions,
as λ → ∞. Therefore ∂̄u = f. If Ω is
not bounded, we can find a sequence
of bounded domains Ω1 ⊂⊂ Ω2 ⊂⊂
... exhausting Ω and a sequences of
(0, q)−forms {uv}∞v=1 as above, such
that ∂̄uv = f on Ωv and

||uv||LP
(0,q)

(Ωv,ϕ) ≤ K||f ||LP
(0,q+1)

(Ω,ϕ).

(12)
and K is the same for all v.

Treating the sequence in (12) as the
sequence in (10) was treated, we get
an (0, q)−form u ∈ Lp

(0,q)(Ω,ϕ) with

∂̄u = f and

||uv||LP
(0,q)

(Ωv,ϕ) ≤ K||f ||LP
(0,q+1)

(Ω,ϕ).

The format of the proof is the same as
that in (2) : Because of (1) and (2),
where |f |2 = |f1|2+ ...+ |fN |2, for each

Vj =
f̄j

|f |2

there is K > 0 such that
�

Ω
|Vj |2 exp(−2Kp)dλ < ∞ (13)

and it is clear that
N�

j=1

Vjfj = 1. (14)



For non-negative integers s amd r let
L
s
r denote the set of all differential

forms h of type (0, r) with values in
Λs

C
N
, such that for some K > 0

�

Ω
|h|2 exp(−2Kp)dλ < ∞. (15)

This means that for each multi-index
I = (i1, ..., is) of lenght [I] = s with
indices between 1 and N inclusively, h
has component hI which is a differen-
tial form of type (0, r) such that hI is
skew symmetric in I and

�

Ω
|h1|2 exp(−2Kp)dλ < ∞. (16)

As in [3], ∂̄ is an unbounded operator
from L

s
r to L

s
r+1 and the interior prod-

uct Pf by (f1, ..., fN ) maps L
s+1
r into

L
s
r.

(PI(h))I =
N�

j=1

hIjfj , |I| = s (17)

If we define PfL
0
r = 0, then clearly

P
2
f = 0 and Pf commutes with ∂̄, so

we have a double complex. We now
have (as in Hormander [1967]) the fol-
lowing

Theorem 3.1
For every g ∈ L

s
r with ∂̄g = Pfg = 0

one can find h ∈ L
s+1
r so that ∂̄h = 0

and Pfh = g.

Now from (14) Pf ∂̄V = ∂̄PfV =
∂̄(1) = 0, where V = (V1, ..., VN ),
therefore by Theorem 3.1 there exist
w ∈ L

2
1 with Pfw = ∂̄V and ∂̄w = 0.

let k ∈ L
2
0 solve ∂̄k = w and set

h = V − Pfk ∈ L
1
0 (18)

Then ∂̄h = ∂̄V − Pfw = 0 and

Pf (f) = PfV = 1 (19)

i.e. there exist h1, ..., hN ∈ Ap(Ω) such
that

N�

j=1

hjfj = 1. (20)
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