THE CORONA PROBLEM IN CARLEMAN ALGEBRAS ON

NON-STEIN DOMAINS IN \mathbb{C}^n .

P. W. Darko

Department of Mathematics & Computer Science Lincoln University Newark, PA 19352 USA

E-mail:pdarko10@aol.com, pdarko@lincoln.edu

Abstract

New estimates are obtained for the $\bar{\partial}$ -operator on non-stein domains in \mathbb{C}^n and the results are applied to the Corona problem in Carleman algebras on those domains.

Introduction

Let Ω be an open subset of a complex manifold X, and let p be a nonnegative function on Ω . Denote by $A_p(\Omega)$ the (Carleman) algebras of all holomorphic functions f in Ω such that for some positive constants c_1 and c_2

$$|f(z)| \le c_1 \exp(c_2 p(z)), z \in \Omega.$$
(1)

In [3] where $X = C^n$ and Ω is pseudoconvex, and in Darko (2005), where X is a complex manifold and Ω is a relatively compact Stein open subset, a condition is given on p such that a given finite set $f_1, ..., f_N \in A_p(\Omega)$ generates $A_p(\Omega)$ if and only if

$$|f_1(z)| + |f_2(z)| + \dots + |f_N(z)|$$

> $c_1 \exp(-c_2 p(z)), z \in \Omega$ (2)

for some constants $c_1 > 0, c_2 > 0$. Both If Ω is a domain in \mathbb{C}^n and p satisfies

 Ω was Stein. As is always the case, it is natural to ask whether the condition of Steinness can be dropped. We show here that it can, if Ω is a domain in \mathbb{C}^n and we modify the condition in Darko (2005) and Hormander (1967) to the following Condition (H):

- (a) p is a non-negative upper semicontinuous function on Ω .
- (b) all polynomial belongs to $A_p(\Omega)$.
- (c) there exist positive constants $K_1, ..., K_4$ such that $z \in \Omega$ and $|z-\xi| \le \exp(-K_{1p}(z)-K_2) \Rightarrow$ $\xi \in \Omega$ and $p(\xi) \leq K_{3p}(z) + K_4$. The only difference between the condition in Hormander(1967)and the Condition (H) here is the replacement of "plurisubharmonic" with "upper semicontinuous".

Note that if Ω is an arbitray domain in \mathbb{C}^n , and d(z) denotes the distance from $z \in \Omega$ to the complement of Ω in \mathbb{C}^n , $p(z) = \log 1/d(z)$ satisfies Condition (H) on Ω .

in Darko [2005] and Hormander (1967), Condition (H) on Ω , then we have the

following two lemmas as in Hormander (1967).

Lemma 1.1 If $f \in A_p(\Omega)$ it follows that $\frac{\partial f}{\partial z_j} \in$ For $1 \leq p \leq \infty$, let $\mathcal{L}^p_{(r,q)}(U)$ denote $A_p(\Omega), 1 \le j \le n.$

Lemma 1.2 If f is holomorphic in Ω , then $f \in A_p(\Omega)$ if and only if for some K > 0

$$\int_{\Omega} |f|^2 \exp(-2K_p(z)d\lambda < \infty)$$

where $d\lambda$ denotes Lebesgue measure.

Our main Theorem is therefore the following

Theorem Let Ω be a domain in \mathbb{C}^n and p a function on Ω satisfying Condition (H). Then a finite set of functions in $A_p(\Omega), f_1, ..., f_N$ generates $A_p(\Omega)$ if and only if (2) is valid.

To prove this theorem we follow the homological argument given in Hormander(1967), almost word for word, using Lemma 1.1 and 1.2 $1 \leq p < \infty$. Let $B_q(\xi, z)$ be the and \mathcal{L}^p -Carleman estimates for the $\bar{\partial}$ -operator on Ω , which we establish in the next section.

\mathcal{L}^p -Carleman Estimates For The $\bar{\partial}$ -Operetor

the space of forms of type (r, q) with coefficients in $\mathcal{L}^p(U)$,

$$f = \sum_{|I|=r}^{\prime} \sum_{|J|=q}^{\prime} f_{I,J} dz^{I} \wedge d\bar{z}^{J} \qquad (3)$$

where \sum' means that the summation is performed only over strictly increasing multi-indices,

$$I = (i_1, ..., i_r), J = (j_i, ..., j_q),$$

$$dz^{I} = dz_{i_{1}} \wedge \ldots \wedge dz_{i_{r}}, d\bar{z}_{j_{1}} \wedge \ldots \wedge d\bar{z}_{j_{q}}$$

and U is open in C^n . The norm of the (r,q)-form in (3) is defined by

$$||f||_{\mathcal{L}^{p}_{(r,q)}(U)} = \left\{ \sum_{I}^{\prime} \sum_{J}^{\prime} ||f_{I,J}||_{\mathcal{L}^{p}(U)}^{p} \right\}^{\frac{1}{p}}$$

Bochner-Martinelli-Koppelman kernel of degree (0,q) in z and degree (n, n -(q-1) in ξ , so that, with $\beta = |\xi - z|^2$,

$$B_q(\xi, z) = \frac{(-1)^{q(q-1)/2}}{(2\pi i)^n} {n-1 \choose q} \beta^{-n} \partial_{\xi} \beta \wedge \left(\bar{\partial}_{\xi} \partial_{\xi} \beta\right)^{n-q-1} \wedge \left(\bar{\partial}_z \partial_{\xi} \beta\right)^q$$
(4)

for $0 \le q \le n$.

An upper semicontinuous function φ is said to be admissible in an open set U in \mathbb{C}^n , if for every coefficient $b_q(\xi, z)$ of $B_q(\xi, z), 0 \le q \le n$,

$$\int_{U} |b_q(\xi, z)| e^{-\varphi(z)} d\lambda(z) \le C, \int_{U} |b_q(\xi, z)| e^{-\varphi} d\lambda(\xi) \le C$$
(5)

where C > 0 is a constant and λ is Lebesgue measure.

For an upper semicontinuous φ we deby fine $\mathcal{L}^p(U,\varphi)$ where U is open in C^n

$$\mathcal{L}^{p}(U,\varphi) := \left\{ g \text{ is measurable on } U : \int_{U} |g|^{p} e^{-\varphi} d\lambda < \infty \right\}, \tag{6}$$

 $1 \leq p < \infty$, and

$$||g||_{\mathcal{L}^p(U,\varphi)} = \left\{ \int_U |g|^p e^{-\varphi} d\lambda \right\}^{1/p}.$$

 $\mathcal{L}^{p}_{(r,q)}(U,\varphi)$ is the space of (r,q)-forms with coefficients in $\mathcal{L}^{p}(U,\varphi)$, and if f is as in (3),

$$||g||_{\mathcal{L}^{p}(U,\varphi)} = \left\{ \sum_{I}^{\prime} \sum_{J}^{\prime} ||f_{I,J}||_{\mathcal{L}^{p}(U,\varphi)}^{p} \right\}^{1/p}$$

 $1 \le p < \infty$.

Our second main result is

Theorem 2.1

Let Ω be a domain in \mathbb{C}^n and let $f \in$ $\mathcal{L}^{p}_{(0,q+1)}(\Omega \varphi)$ be $\bar{\partial}$ -closed, , 1and φ an upper semi continuous function admissible in Ω . Then there is \mathbb{C}^n with C^1 boundary. If $u \in \mathcal{L}^p_{(0,q)}(\Omega, \varphi)$ such that $\bar{\partial}u = f$ and $C^1_{(0,q)}(\Omega), 0 \le q \le n$, we have

$$||u||_{\mathcal{L}^p_{(0,q)}(\Omega,\varphi)} \leq \delta ||f||_{\mathcal{L}^p_{(0,q+1)}(\Omega,\varphi)},$$

where δ is independent of f.

To prove Theorem we need a lemma about Sobolev Space estimates for the $\bar{\partial}$ -operator on bounded domains in \mathbb{C}^n with boundaries of Lebesgue measure zero. Accordingly, let $W^{1,1}(U)$ be the space of functions which together with their distributional derivatives of order one are in $\mathcal{L}^1(U)$, with the usual norm, and $W_{(r,q)}^{1,1}(U)$ is the space of (r,q)forms with coefficients in $W^{1,1}(U)$. We then have

Lemma 2.2

Let Ω be a bounded domain in \mathbb{C}^n with boundary of Lebesgue measure zero. Let $f \in W^{1,1}_{(0,q+1)}(\Omega)$ be $\bar{\partial}$ -closed, then there is a $u \in W^{1,1}_{(0,q)}(\Omega)$ such that $\bar{\partial}u = f.$

To prove Lemma 2.2 we need the Bochner-Martinelli-Koppelman formula:

Theorem 2.3

Let Ω be any bounded domain in for $f \in$

$$f(z) = \int_{\partial\Omega} B_q(\cdot, z) \wedge f + \int_{\Omega} B_q(\cdot, z) \wedge \bar{\partial}_{\xi} f$$
$$+ \bar{\partial}_z \int_{\Omega} B_{q-1}(\cdot, z) \wedge f, z \in \Omega \qquad (7)$$

where $B_q(\xi, z)$ is in (4).

Proof of Lemma 2.2. With Ω and f as in Lemma 2.2, if

$$u(z) = \int_{\Omega} B_q(\cdot, z) \wedge f, z \in \Omega, \quad (8)$$

then $\bar{\partial}u = f$:

Let $f = \sum_{J}^{\prime} f_{J} d\bar{z}^{J}$ be defined as zero outside Ω and regularize f coefficient-wise: $f_m = \sum_J (f_J)_m d\bar{z}^J$,

where

$$(f_J)_m^{(z)} = \int_{C^n} f_J(z - \xi/m)\varphi(\xi)d\lambda(\xi)$$
$$m^{2n} \int_{C^n} f_J(\xi)\varphi(m(z - \xi))d\lambda(\xi)$$
and $\psi \in C_0^{\infty}(\mathbb{C}^n), \int \psi d\lambda = 1, \psi \geq 0$, supp $\psi = \{z \in \mathbb{C}^n : |z| < 0\}$

1}, and λ is Lebesgue measure. Then $||f_m||_{\mathcal{L}^p_{(0,q+1)}(\mathbb{C}^n), f_m} \to f$ in $\mathcal{L}^1_{(0,q+1)}(\Omega)$ as $m \to \infty$ and f_m is $\bar{\partial}$ -closed in \mathbb{C}^n .

Now let

$$u_m(z) = \int_{\mathbb{C}^n} B_q(\cdot, z) \wedge f_m. \qquad (9)$$

Then from theorem 2.3, we have $\bar{\partial}u_m = f_m$, and since $f_m \to f$ in $\mathcal{L}^1_{(0,q+1)}(\Omega)$, we have $u_m \to u$ in $\mathcal{L}^1_{(0,q)}(\Omega)$, and $\bar{\partial}u = f$. Proof of Theorem 2.1. We first assume that Ω is bounded. It is clear that there is a sequence $\Omega_1 \subset \subset \Omega_2 \subset \subset$... of bounded domains, each with boundary of Lebesgue measure zero, such that $U^{\infty}_{\nu=1}\Omega_{\nu} = \Omega$. We construct a sequence of (0,q)-forms $\{u_v\}_{v=1}^{\infty}$ with $u_v \in \mathcal{L}^p_{(0,q)}(\Omega, \varphi), \bar{\partial}u_v = f$ in Ω_v and

$$||u_v||_{\mathcal{L}^p_{(0,q)}(\Omega_v,\varphi)} \le K||f||_{\mathcal{L}^p_{(0,q+1)}(\Omega,\varphi)},$$

where K is the same for all v, 1 . Let us regularize f as above.For v fixed, if m is sufficiently large, $<math>f_m \in W^{1,1}_{(0,q+1)}(\Omega_v)$ and $\bar{\partial}f_m = 0$ in Ω_v . For such an m(sufficiently large) define

$$g_m = \begin{cases} f_m & \text{in } \Omega_\nu \\ 0 & \text{outside } \Omega_\mu \end{cases}$$

Then from Lemma 2.2, if

$$u_{v,m} = \int_{\Omega v} B_q(\cdot, z) \wedge g_m,$$

$$\bar{\partial}u_{v,m} = g_m \text{ in } \Omega_v$$

and since φ is admissible on Ω_v

$$||u_{v,m}||_{\mathcal{L}^{p}_{(0,q)}(\Omega_{v,\varphi})} \le K||f||_{\mathcal{L}^{p}_{(0,q+1)}(\Omega,\varphi)}.$$

Now it is clear that as $m \to \infty, g_m \to f$ in $\mathcal{L}^1_{(0,q+1)}(\Omega_v)$ and $u_{v,m} \to \text{some } u_v$ in

$$\mathcal{L}^{1}_{(0,q)}(\Omega_{v}), \partial u_{v} = f \text{ and}$$

$$||u_{v}||_{\mathcal{L}^{P}_{(0,q)}(\Omega_{v,\varphi})} \leq K||f||_{\mathcal{L}^{P}_{(0,q+1)}(\Omega,\varphi).}$$
(10)

Define u_v as zero outside Ω_v , then since $\mathcal{L}^P_{(0,q)}(\Omega,\varphi)$ is reflexive, for 1 , by the Banach-Alaoglu Theorem, there is <math>u in $\mathcal{L}^P_{(0,q)}(\Omega,\varphi)$ with

$$||u||_{\mathcal{L}^{P}_{(0,q)}(\Omega_{v,\varphi})} \le ||f||_{\mathcal{L}^{P}_{(0,q+1)}(\Omega,\varphi)},$$
(11)

 $(1 , and a subsequence <math>\{u_{v\lambda}\}$ of $\{u_v\}$ such that $u_{v\lambda} \to u$ weekly in $\mathcal{L}^p_{(0,q)}(\Omega, \varphi)$ as $\lambda \to \infty$. In particular, $u_{v\lambda} \to u$ in the sense of distributions, as $\lambda \to \infty$. Therefore $\bar{\partial}u = f$. If Ω is not bounded, we can find a sequence of bounded domains $\Omega_1 \subset \subset \Omega_2 \subset \subset$... exhausting Ω and a sequences of (0,q)-forms $\{u_v\}_{v=1}^{\infty}$ as above, such that $\bar{\partial}u_v = f$ on Ω_v and

$$||u_{v}||_{\mathcal{L}^{P}_{(0,q)}(\Omega_{v,\varphi})} \le K||f||_{\mathcal{L}^{P}_{(0,q+1)}(\Omega,\varphi)}.$$
(12)

and K is the same for all v.

Treating the sequence in (12) as the sequence in (10) was treated, we get an (0,q)-form $u \in \mathcal{L}^{p}_{(0,q)}(\Omega,\varphi)$ with $\bar{\partial}u = f$ and

$$||u_v||_{\mathcal{L}^P_{(0,q)}(\Omega_{v,\varphi})} \le K||f||_{\mathcal{L}^P_{(0,q+1)}(\Omega,\varphi)}.$$

The format of the proof is the same as that in (2) : Because of (1) and (2), where $|f|^2 = |f_1|^2 + ... + |f_N|^2$, for each

$$V_j = \frac{\bar{f}_j}{|f|^2}$$

there is K > 0 such that

$$\int_{\Omega} |V_j|^2 \exp(-2Kp) d\lambda < \infty \qquad (13)$$

and it is clear that

$$\sum_{j=1}^{N} V_j f_j = 1.$$
 (14)

For non-negative integers s and r let L_r^s denote the set of all differential forms h of type (0, r) with values in $\Lambda^s C^N$, such that for some K > 0

$$\int_{\Omega} |h|^2 \exp(-2Kp) d\lambda < \infty.$$
 (15)

This means that for each multi-index $I = (i_1, ..., i_s)$ of lenght [I] = s with indices between 1 and N inclusively, h has component h_I which is a differential form of type (0, r) such that h_I is skew symmetric in I and

$$\int_{\Omega} |h_1|^2 \exp(-2Kp) d\lambda < \infty.$$
 (16)

As in [3], $\bar{\partial}$ is an unbounded operator from L_r^s to L_{r+1}^s and the interior product P_f by $(f_1, ..., f_N)$ maps L_r^{s+1} into L_r^s .

$$(P_I(h))_I = \sum_{j=1}^N h_{I_j} f_j, \quad |I| = s \quad (17)$$

If we define $P_f L_r^0 = 0$, then clearly $P_f^2 = 0$ and P_f commutes with $\bar{\partial}$, so we have a double complex. We now have (as in Hormander [1967]) the following

Theorem 3.1 For every $g \in L_r^s$ with $\bar{\partial}g = Pfg = 0$ one can find $h \in L_r^{s+1}$ so that $\bar{\partial}h = 0$ and $P_f h = g$.

Now from (14) $P_f \bar{\partial} V = \bar{\partial} P_f V = \bar{\partial} (1) = 0$, where $V = (V_1, ..., V_N)$, therefore by Theorem 3.1 there exist $w \in L_1^2$ with $P_f w = \bar{\partial} V$ and $\bar{\partial} w = 0$. let $k \in L_0^2$ solve $\bar{\partial} k = w$ and set

$$h = V - P_f k \in L_0^1 \tag{18}$$

Then $\bar{\partial}h = \bar{\partial}V - P_f w = 0$ and

$$P_f(f) = P_f V = 1 \tag{19}$$

i.e. there exist $h_1, ..., h_N \in A_p(\Omega)$ such that

$$\sum_{j=1}^{N} h_j f_j = 1.$$
 (20)

Chen S.C & Shaw M.C.(2001) Partial Differential Equations in Several Complex Variables. Studies in Advanced Mathematics, No. 19 AMS-International Press.

Darko P.W.(2005) The Corova Problem in Carleman Algebras on Stein Manifolds. Result. Math **48** 203-205.

Hormander L. (1967) Generators for Some Rings of Analytic Functions. Bull. AMS **73**, 943-949.