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Abstract  

 
There are instances in well logging operations where log response can be missing or inaccurate for a specific depth 

of interest due to wellbore conditions such as wellbore size, wellbore rugosity and mud cake effects. The 

conventional approach is to rerun the logs at definite depths, however, this remedial technique is costly, time-

consuming and prone to errors due to the presence of a casing. Machine learning methods are currently 

implemented as an innovative way of predicting missing log responses. The present study seeks to investigate the 

potential of multivariate adaptive regression splines (MARS) as a density log predictive model. The performance 

of the developed MARS model was judged with the widely used artificial neural networks (ANN). The results 

reveal that MARS generalise better when predicting the density log response of the testing data. The MARS 

density log model achieved the highest correlation of 0.869, an error rate of 0.01196 and 0.1094 for MSE and 

RMSE respectively on the withheld dataset. While back propagation neural network (BPNN) and radial basis 

function neural network (RBFNN) had 0.855 and 0.802 as R, 0.0128 and 0.0147 as MSE, 0.1131 and 0.1212 as 

RMSE respectively. Therefore, a cost-effective MARS model can accurately generate synthetic density well log 

response. 
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1 Introduction  
 

Well logs have played a vital role in the global 

petroleum and gas exploration and reservoir 

evaluation since their first successful 

implementation at the beginning of the 20th century. 

They are essential for the oil and gas industry to 

understand the in situ subsurface petrophysical 

properties (Alger et al., 1963). Widespread field 

application has demonstrated that the measurement 

of formation density is a valuable and revealing 

technique for well logging, and as such the 

formation density tool was devised. The density well 

log tool measures the bulk densities of formations 

and corresponds to the bulk density variations of the 

formation. Therefore, density log affords valuable 

data on porosity, lithology and fluid content of 

formations (Misra and Wu, 2020). 

 

If there exist wellbore conditions that prevent a 

direct contact to the borehole walls, the reading of 

the tool can be affected leading to unreliable results. 

The most critical borehole environments that impact 

the quality of the density log and the validity of the 

measured data are wellbore size, wellbore rugosity 

and mud cake effects. Also, a well log suite may 

miss some definitive logs for the entire well depth or 

specific depths of interest. These missing log 

responses may be required in the estimation of 

particular reservoir properties (Rezaee and 

Applegate, 1997; Rajabi et al., 2010). Such 

drawbacks in the well logging operation may need 

new drilling or a rerunning of the logging tool. On 

the other hand, drilling a new well or rerunning the 

logging tool generates additional cost and some log 

types cannot be measured due to the well casing. 

 

To combat this challenge, recent studies have 

proposed the application of machine learning 

techniques in generating synthetic well logs (Chen 

et al., 2005; Rolon et al., 2009; Korjani et al., 2016; 

Akkurt et al., 2016; Blanes de Oliveira and Carneiro, 

2021). The widely utilized neural network algorithm 

in generating density log data has been the Back 

Propagation Neural Network (BPNN). Long et al. 

(2016) incorporated clustering method and BPNN in 

predicting density well log. Similarly, BPNN was 

adopted in estimating density and resistivity logs by 

Salehi et al. (2017). Other well log types such as 

Photo-Electric (PE) and Unconfined Compressive 

Strength (UCS) logs which are difficult to obtain 

were compared by BPNN, decision tree, gradient 

boosted and random forest in Akinnikawe et al. 

(2018). Deep learning algorithms have also been 

employed for generating synthetic well log data in 

studies such as, Kim et al. (2020), Zhang et al. 

(2018) and Tatsipie and Sheng (2021). 
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It is important to mention that Multivariate Adaptive 

Regression Splines (MARS) can accurately model 

non-linearities and extract patterns among different 

variables (Friedman, 1991; Hastie et al., 2008). 

Compared to other machine learning models, MARS 

is more precise and easier to implement (Fard et al., 

2019). Considering the scarcity of studies on the 

potential of MARS in predicting well log response, 

the present research investigated the capability of 

MARS in generating accurate density well log 

response from other well logs. The performance of 

the MARS model was quantitatively compared to 

the widely used machine learning models of back 

propagation and radial basis function neural 

networks. 

 

2 Resources and Methods Used 
 

2.1 Data 
 

The well log data used for the purpose of this study 

was from two wells located in the Ordos Basin in the 

northwest of China. The well logs are composed of 

Gamma ray (GR), caliper (CAL), sonic travel time 

(AC), bulk density (DEN) and compensated neutron 

(CNL). The input variables were GR, CAL, AC and 

CNL while DEN became the output. The visual 

description of the well log data used for the research 

is shown in Figures 1 and 2. At a sampling depth of 

0.25 m, the total number of well log points of Well 

A for training the predictive models was 4475 and 

1118 data points of Well B were considered the 

testing data. 

 

 

 

 
Fig. 1 Well Log Data for Well A used for 

Training the Models 

 

 
Fig. 2 Well Log Data for Well B used for Testing 

the Models 

 

 

2.2 Multivariate adaptive regression splines 
 

MARS is a non-parametric technique for generating 

non-linear patterns within a set of dependent and 

independent variables. The MARS method is 
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composed of a continuous piecewise polynomial 

function (splines) and can be expressed as 

(Friedman, 1991); 
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where ki represents the least squares generated 

coefficient and BFi is the basis function. For the 

purpose of this study, x represents the input well 

logs. The MARS algorithm uses the optimal basis 

function and the knot, which is the position of where 

two individual spline polynomial functions 

coincide, to develop the model.  

 

The MARS model is developed by initially stacking 

up knots and basis functions in order to minimize the 

prediction error. After the initial stacking up process 

is completed, the remaining basis function that did 

not contribute to the prediction outcome will be 

eliminated. The basis function elimination is 

performed using an optimal number of terms and 

they are commonly determined using the 

Generalized Cross-Validation (GCV) index. The 

GCV is best adopted based on its less computational 

requirements (Friedman, 1991; Hastie et al., 2008; 

Qi et al., 2021). In this study, MARS was 

implemented using the Salford Predictive Modeler 

(SPM) version 8. 

 

2.3 Back propagation neural network 
 

Due to its simplicity and efficient computation of the 

gradient descent, BPNN is the widely used 

supervised neural network. The general operation of 

the BPNN algorithm requires a forward propagation 

of input data and reverse transmission of output 

error. The main objective of BPNN is to obtain the 

optimal weights that can generate the least error 

margin. The mathematical expression of the 

optimum weight is provided in Eq. (2) (Konate´ et 

al., 2015). 

       

 ( )wEW pminarg* =   (2)

  

where w is weight matrix and Ep(w) is an objective 

function on w. E(w) is the error that is to be reduced 

at any point of w as seen in Eq. (3) (Konate´ et al., 

2015; Asante-Okyere et al., 2018). 
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where p is the number of training samples and the 

error for each sample well log point is given as 

Ep(w) as represented in Eq. (4) (Konate´ et al., 2015; 

Asante-Okyere et al., 2018). 
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BPNN is influenced by the type of training 

algorithm, activation function, and more 

importantly, the number of hidden neurons (Ziggah 

et al., 2016). When training the BPNN, the optimal 

number of hidden neurons was obtained through a 

sequential trial and error approach. The Levenberg-

Marquardt algorithm was adopted as the training 

algorithm, while the hyperbolic tangent function 

was used as the activation function as provided in 

Eq. (5) (Ziggah et al., 2016). BPNN model was 

coded and implemented in MATLAB R2019b.  
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2.3 Radial Basis Function Neural Network 
 

RBFNN was initially used by Broomhead and Love 

(1988), and Moody and Darken (1989) to mitigate 

the overfitting and underfitting problem posed by 

the BPNN. The structure of RBFNN is similar to 

BPNN, with input, hidden and output layers. The 

hidden layer accommodates the radial basis function 

(Bullinaria, 2004). The radial basis function used in 

the study was the Gaussian function expressed in Eq. 

(6) (Bullinaria, 2004). 
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In the Gaussian function, the Euclidian distance 

between the centre of the basis function and the 

input vector x is determined as the radial distance di 

(Bullinaria, 2004). 

 

  
2

i id x c= −         (7) 

where, ϕj (x) denotes the output of the basis function 

and δ is the spread of the interpolated function.  The 

output layer linearly sums up the weighted value 

from the hidden neurons in determining the overall 

output for the neural network using Eq. (8) 

(Bullinaria, 2004). 
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where yk(x) is the output from the kth output neuron. 

M is the total number of basis function and W(k,i) is 

the weight between kth and ith output neuron. The 

gradient descent rule was adopted to train the 

RBFNN. MATLAB R2019b was the software used 

to code and implement RBFNN model. 
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The workflow for developing the density log 

prediction models is represented in Fig. 3. 

 

 

 

 

 
 

Fig. 3 Workflow of Developing MARS, BPNN 

and RBFNN for Density Log Prediction 

 

 

2.4 Statistical Model 
 

The performance of the proposed density log 

response prediction model from BPNN and RBFNN 

was determined using statistical parameters namely 

correlation coefficient (R), mean square error 

(MSE), and root mean square error (RMSE). The 

correlation between the prediction from the models 

and measured density log response was explained by 

the R value (Eq. 9). The R value ranges from 0 to 1, 

with a strong correlation existing if the R value 

approaches 1. The average square and the root 

average square deviation between the observed and 

predicted density values were also expressed using 

the MSE and RMSE scores shown in Eqs. (9) and 

(11) respectively. The MSE and RMSE value 

provides an indication of how much the estimates 

deviate from the measured density log data and 

reflects the quality of the predictive model. 
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where g is the generated density log response, m is 

the measured density log response, and n is the total 

number of observations 

 

3 Results and Discussion 
 

3.1 MARS model 
 

During the calibration process of the MARS model, 

the best outcome was achieved at a maximum basis 

function of 15, with the maximum interactions of 1. 

Minimum observations between knots were 

specified as 0 and the degree of freedom for knot 

optimization was observed to be 3.  

 

The training performance of the optimal MARS 

model for generating density well log response is 

summarized in Table 1. From Table 1, it was 

identified that the MARS model during training 

attained an R value of 0.903 which represents a 

strong positive correlation between the estimated 

density log response and the measured density log 

data. The error statistics of MSE and RMSE for the 

training stage of the model are 0.0104 and 0.102 

respectively.  

 

The trained MARS model was tested on the 

withheld data. From the statistical indicators, an R 

value of 0.869 was obtained. The error metrics of 

MSE and RMSE of 0.01196 and 0.1094, 

respectively. 

 

Table 1 Training and testing performance of 

MARS model 

Statistical Indicator Train Test 

R 0.903 0.869 

MSE 0.0104 0.01196 

RMSE 0.1020 0.1094 

 

 

3.2 BPNN Model 
 

The optimal BPNN structure was identified at a 

structure of 4 inputs, a single hidden layer with 6 

nodes and an output (i.e., 4-6-1). The optimal BPNN 

had R value of 0.912 during training. When the 

trained BPNN model was tried on the withheld 

testing data of Well B, 0.855 was recorded as the R 

value. 

 

The error metrics of RMSE and MSE recorded values 

of 0.09747 and 0.0095 for training, and 0.1131 and 
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0.0128 for validation, respectively. The 

performance of the BPNN is summarized in Table 2. 

 

 

Table 2 Training and Testing performance for 

BPNN model 

Statistical Indicator Train Test 

R 0.9122 0.855 

MSE 0.0095 0.0128 

RMSE 0.0975 0.1131 

 

 

3.2 RBFNN Model 
 

The optimum architecture for the RBFNN was 

obtained by adjusting the spread parameter based on 

a sequential trial and error approach. Therefore, the 

best performing RBFNN structure was identified at 

a spread parameter of 0.9. This represents a RBFNN 

structure of 4 inputs, a hidden layer with a maximum 

of 50 hidden neurons, a width parameter of 0.9, and 

1 output. The correlation coefficient obtained was 

0.9161 for training. During testing on Well B, the 

estimation from the trained RBFNN had R value of 

0.8019. The RMSE value during training and testing 

was 0.0954 and 0.1212, respectively. In contrast, the 

MSE score for the optimal RBFNN was 0.0091 and 

0.0147 during training and validation, respectively. 

The performance of the RBFNN as the model 

parameter is summarised in Table 3. 

 

 

Table 3 Training and Testing performance for 

RBFNN model 

Statistical Indicator Train Test 

R 0.9161 0.8019 

MSE 0.0091 0.0147 

RMSE 0.0954 0.1212 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Predictive Performance of MARS, BPNN 

and RBFNN 

Testing R RMSE MSE 

MARS 0.869 0.1094 0.01196 

BPNN 0.855 0.1131 0.0128 

RBFNN 0.802 0.1212 0.0147 

 

 

3.3 Predictive Performance 
 

The practicality of the models was compared using 

the testing performance as the developed models 

were tried on the independent, withheld dataset. The 

testing results reveal the generalization capability of 

the models since the testing data did not contribute 

to the learning process of the models. The results as 

the models were tried on the independent testing 

data gives a clear indication of the performance of 

the developed models when implemented in real life 

situations. 

 

From Table 4, the MARS model generated a more 

excellent density log prediction than BPNN and 

RBFNN. MARS had the highest correlation of 

0.869, which reflects the density log response 

generated 86.9 % accuracy. In comparison, BPNN 

and RBFNN produced 0.855 and 0.802, respectively 

(Table 4). It was also identified that the prediction 

outcome from MARS had the least error margin 

when compared with BPNN and RBFNN. The 

predicted density log response from MARS had the 

least MSE and RMSE value as shown in Table 4. 

 

Therefore, it can be inferred from the improved 

generalization ability that MARS is an excellent 

predictor for accurate density well log response from 

other well logs and can easily be implemented 

without the need to rerun the logging tool. A visual 

illustration of the performance of MARS, BPNN 

and RBFNN in generating density log response and 

the measured density log is shown presented in 

Figure 4. 
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Fig. 4 Prediction Performance of Density Log 

Response for MARS, BPNN and RBFNN 

 

 

4 Conclusions  
 

In this research, an examination of the effectiveness 

of MARS in producing synthetic density log 

response was conducted using data from wells 

situated in the Ordos Basin in China. A comparative 

analysis was further performed to confirm the 

prediction output of the proposed MARS model with 

the widely adopted BPNN and RBFNN.  

During training, the BPNN and RBFNN produced a 

correlation score (R) of 0.912 and 0.916, 

respectively. The error statistics of MSE and RMSE 

for BPNN and RBFNN were 0.0095 and 0.0975; 

0.0091 and 0.0954, respectively for training. The 

MARS model obtained an R value of 0.903, MSE 

and RMSE score of 0.0104 and 0.102 respectively, 

during the training process.  

However, it was identified during the testing stage 

that the MARS model outperformed the BPNN and 

RBFNN models when the predictive capability was 

examined. The MARS model produced density log 

estimates having an R value of 0.869 compared to 

the 0.855 and 0.802 generated by BPNN and 

RBFNN, respectively. Similarly, a lower error 

margin was recorded for MARS as it obtained 

0.01196 and 0.1094 for MSE and RMSE 

respectively, compared to 0.0128 and 0.1131 for 

BPNN, 0.0147 and 0.1212 for RBFNN.  

A deduction can therefore be drawn from the 

improved predictability of the MARS model that it 

is a reliable alternative in providing accurate density 

log predictions without the need to rerun the logging 

tool. 
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