AFLATOXINS AND FUMONISINS CONTAMINATION OF HOME-MADE FOOD (WEANIMIX) FROM CEREAL-LEGUME BLENDS FOR CHILDREN

J. KUMI1, N. J. MITCHELL2, G. A. ASARE4, E. DOTSE1, F. KWAA3, T. D. PHILLIPS2 and N-A ANKRAH1

1Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana, 2Texas A&M University, College Station, Texas, USA, 3Ejura Sekyedumase District Hospital, Ejura, Ashanti Region, Ghana, 4School of Allied Health Sciences, University of Ghana, Accra, Ghana

DOI: http://dx.doi.org/10.4314/gmj.v48i3.2

Corresponding Author: Professor Nii-Ayi Ankrah

Conflict of Interest: None declared

SUMMARY

Background: Weanimix is an important food for children in Ghana. Mothers are trained to prepare homemade weanimix from beans, groundnuts and maize for their infants. Groundnuts and maize are prone to aflatoxin contamination while fumonisin contaminates maize. Aflatoxin, is produced by the Aspergillus fungi while fumonisin, is produced by Fusarium fungi. These mycotoxins occur in tropical areas worldwide due to favorable climate for their growth.

Objective: The objective of the study was to determine the levels of aflatoxin and fumonisin in homemade weanimix in the Ejura-Sekyedumase district in the Ashanti Region of Ghana.

Methods: Thirty six homemade weanimix samples (50g each) were collected from households. Aflatoxin and fumonisin were measured using a fluorometric procedure described by the Association of Official Analytical Chemist (AOAC official method 993.31, V1 series 4).

Results: Aflatoxin and fumonisin were detected in all 36 samples, range 7.9-500ppb. Fumonisin levels range: 0.74-11.0ppm. Thirty (83.3%) of the thirty six samples were over the action limit of 20ppb for aflatoxin with an overall mean of 145.2 ppb whiles 58.3% of the samples had fumonisins above the action limit of 4 ppm with an overall mean of 4.7 ppm.

Conclusion: There were significant aflatoxin and fumonisin contamination of homemade weanimix. Children fed on this nutritional food were being exposed to unacceptable levels of aflatoxin and fumonisin. Therefore there is a critical need to educate mothers on the dangers of mycotoxin exposure and to develop strategies to eliminate exposure of children fed homemade weanimix to aflatoxin and fumonisin.

Keywords: Aflatoxin, Fumonisin, Home-made Weanimix, infants.

INTRODUCTION

Human exposures to mycotoxins have raised worldwide concerns due to their negative effect on health. In sub-Sahara Africa, aflatoxins and fumonisins contamination of food have been associated with increased incidence of hepatocellular carcinoma in the presence of hepatitis B virus (HBV) infection and esophageal cancer respectively. 2 Aflatoxin B1 (AFB1) being the most potent are produced on various food crops including maize and groundnuts by Aspergillus flavus and Aspergillus parasiticus. Fumonisins B1 (FB1) are produced primarily in maize by Fusarium verticillioides and F. monoliforme.

Environmental conditions typical of tropical countries favour the formation of both of these mycotoxins in food crops. Acute exposure to AFB1 in excess of 2ppm is known to cause nonspecific liver damage, malaise and death in few days. 4,5 Chronic AFB1 exposure via consumption of contaminated foods (20ppb or more) is associated with immune suppression 6 and nutritional deficiencies. 7 FB1 also suppresses the immune system, causes deficiency in nutrients such as folic acid 8 and the modification of sphingomyelin metabolism. 9

AFB1 exposure in children increases significantly following weaning and stunting in children. 10 Studies have shown that, saliva IgA (sIgA) was markedly lower in children with detectable AFB1 levels of 50.4µg AFB1s/mg protein compared with those with non-detectable levels. 7

These observations indicate that exposure to AFB1 and FB1 could negatively affect the Expanded Programme of Immunization (EPI), recovery from illness and development with consequences for achieving Primary Health Care goals in tropical countries, Ghana included.
Ghanaian foods prepared to eat11 or unprepared obtained from both urban and rural areas and sold in public markets 12 were shown to be highly contaminated with aflatoxins with levels ranging from (5.7-22,168 ppb) in groundnuts and groundnuts products. Co-exposure to AFB\textsubscript{1} and FB\textsubscript{1} has been demonstrated in persons living at Ejura-Sekyedumase district in the Ashanti region, Ghana. 13,14 In an effort to increase nutritional status and child growth, mothers of the children are taught to prepare a nutritional food, “weanimix” which is designed for children who are newly weaned from breastfeeding (approximately 6 months-2 years in age).

It is worth noting that maize and groundnuts, usually contaminated with AFB\textsubscript{1} and FB\textsubscript{1}, are important food crops for homemade weanimix in Ghana. However data is not readily available on the safety, with respect to mycotoxins, of homemade weanimix fed to children in selected communities in Ghana. In this study, we seek to find out the extent of dietary intake of AFB\textsubscript{1} and FB\textsubscript{1} in homemade weanimix fed to children in selected communities in Ghana.

\textbf{MATERIALS AND METHODS}

\textit{The study site and population}

The study was carried out at Ejura-Sekyedumase district in the Ashanti Region of Ghana and located in the transition zone between the Northern and Southern zones of the country. Previous work in this district showed high exposure rates of aflatoxins with 100\% of people (n=180) screened testing positive for the AFB\textsubscript{1}-albumin biomarker of exposure and 75\% testing positive for urinary biomarkers of exposure. 15 Thirty-six mothers who were trained by the Nutrition Department of the Ejura-Sekyedumase District hospital on weanimix preparation were recruited and consented for their participation in the study. Study participants were from the following three communities in the district, Hiawoawu, Dromankuma and Ejura town.

\textit{Materials}

Vicam AflaTest and FumoniTest kits were used according to the Association of Official Analytical Chemists’ method (AOAC) for aflatoxin and fumonisin analysis in weanimix, respectively (AOAC official method 993.31, V1 series 4). Sodium chloride (NaCl) and HPLC grade methanol were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). AflaTest and FumoniTest immunoaffinity columns were purchased from VICAM (Watertown, MA, USA). All other chemicals and reagents used were of highest purity available and commercially purchased.

\textbf{Homemade weanimix preparation}

The mothers prepared weanimix by mixing groundnuts, beans and maize, in the ratio 0.5:0.5:4.0 respectively. The food items were purchased on the open market at Ejura. The mixture was roasted for about 20 minutes and milled to obtain the homemade weanimix powder. The latter was used to prepare porridge for feeding of children.

A 100g sample of the homemade weanimix powder was collected from each of the 36 mothers participating in the study and kept in sterile zip-locked bags at room temperature. The samples were labeled with individual identity codes and transported at room temperature to the Noguchi Memorial Institute for Medical Research in a sealed sterile transport box for analysis of aflatoxins and fumonisins.

\textbf{Sample processing and analysis}

\textit{Weanimix Aflatoxin Analysis (Aflatest)}

Briefly, 25g of the weanimix powder was blended with 5g NaCl and 125ml of the extraction solution (70\% methanol) in a covered blender jar at high speed for 2 minutes. The extract was then filtered twice; first through fluted filter paper and then with a glass microfiber filter (90mm, 1.0µm). The eluent was collected in a clean beaker. Deionized water (30 ml) was added to 15 ml of the eluent and mixed thoroughly.

The resulting diluent was then filtered again through a glass microfiber filtered. Fifteen milliliters (15 ml) of the filtered eluent was passed through Aflatest column at the rate of 1-2 drops/second. The column was washed twice with 10 ml deionized water at the rate of 1-2 drops/second. This was followed by elution with 1.0 ml HPLC grade methanol at the rate of 1-2 drops/second and collected in a glass cuvette. Aflatest developer (VICAM) was prepared daily. One milliliter (1ml) of the developer was mixed thoroughly with the eluent and the concentrations of aflatoxins were measured at a fluorescence detection of 425 nm using a calibrated fluorometer (VICAM, series 4, detection limit was 2 ppb).

\textit{Fumonisins analysis}

The procedure for fumonisins determination was similar for the aflatoxin but with minor changes. Briefly, 50g of milled sample was blended with 5g NaCl and 100ml of the extraction solution (80\% methanol) in a covered blender jar at high speed for 1 minute. The extract was then filtered twice, diluted 4-fold with 0.1\% Tween-20 and refiltered and was passed through Fumonitest column. This was eluted with 1.0 ml HPLC grade methanol and mixed with the fumonitest developer.
After 4 minutes the concentration of total fumonisin was measured at a fluorescence detection of 483nm with detection limit of 0.2 ppm (2mg/kg).

Statistical analysis
Data from the three communities were analyzed with JMP version 9 (SAS Institute Inc. Cary, NC USA). The data was subjected to simple descriptive statistics, which looked at the range, the mean and the variance.

RESULTS
A total of 36 weanimix samples were collected from 3 different communities in the Ejura-Sekyedumase district (12 samples from each community) and analyzed for total aflatoxins and fumonisins. Of those samples all (100%) were positive for aflatoxin with 83.34% of the samples exceeding a concentration of 20 ppb; the action limit set forth by the U.S. Food and Drug Administration (U.S. FDA). Fumonisin was also present in all weanimix samples collected with 58.3% over the U.S. FDA limit of 4 ppm.

Figure 1
Range and Concentration of Aflatoxin and Fumonisin in Weanimix. (A) Aflatoxin (AFB₁) concentration. (B) Fumonisin (FB₁) concentrations.

The range of aflatoxin concentrations from the three communities was 7.9-500 ppb with 9 samples over 200 ppb (Figure 1a) and fumonisins ranged from 0.75-11.0 ppm (Figure 1b).

Aflatoxin concentrations in weanimix varied from community to community with Ejura town having the highest with mean value of 209.4 ppb and a range of 23-470 ppb, Hiawoawu had a range of 7.9-380 ppb with a mean concentration of 115.2 ppb and Droman-kuma had a range of 14-500ppb with a mean concentration of 111.1 ppb (Figure 2a). The mean aflatoxin level in the homemade food for children at Droman-kuma (111.1ppb) was significantly (p< 0.05) lower when compared with the level (209.4ppb) obtained at Ejura town. The data on fumonisin showed no significant (p> 0.05) difference in the fumonisin concentrations between the three communities (Figure 2b). The fumonisin values ranged from 0.74-11.0 ppm with a mean of 5.4 ppm in Ejura town, 1.9-6.8 ppm with a mean of 4.2 ppm in Hiawoawu and Droman-kuma had a range of 1.5-11.0 ppm with a mean of 4.3 ppm.

Figure 2
Mean of aflatoxin concentrations in Weanimix. (A) Aflatoxin (AFB₁) concentration. (B) Fumonisin (FB₁) concentrations.
DISCUSSION
Weaning is a transition period of a child from breast milk to other sources of food which often results in a marked decrease in nutrient intake in developing countries. One possible variable contributing to poor child health is the increase in exposure to mycotoxin contaminated foods following weaning. The present studies have shown that, homemade weanimix meant to improve child nutrition is significantly contaminated with the mycotoxins, aflatoxin and fumonisin.

Aflatoxin exposure early in life has been associated with impaired growth, particularly stunting. This early exposure is a potential risk for synergistic interactions with other toxins as subjects grow in later years. Other studies elsewhere in Africa have shown high levels of aflatoxin contamination in staple foods. In a study involving 507 Ghanaian participants, high levels of blood aflatoxin biomarker (>11.34 pg/mg albumin) were observed in pregnant women. AFB1 lysine adduct levels were statistically higher in subjects who had low levels of both vitamins A and E compared to subjects who had high vitamins A and E.

A cohort study involving 472 Gambian children of ages 6-9 years were recruited for analysis of possible correlation of aflatoxin exposure and immune status. Immune parameters included secretory IgA (sIgA) in saliva and cell-mediated immunity (CMI). It was found that, saliva IgA (sIgA) was markedly lower in children with detectable aflatoxin-lysine compared with those with non-detectable levels of 50.4 µg/mg protein.

The co-occurrence of (70.8%) of aflatoxins and fumonisins contaminations seen in this study with the 53% as reported by indicates about 0.74-fold increase which may be due to poor storage conditions of the maize, groundnuts and beans used to prepare weanimix. The toxicosis that AFB1 and FB1 cause in humans and animals as well as the possible carryover of aflatoxins into consumable animal products, such as milk and infant feed is of widespread concern for child health in Sub-Saharan African countries.

The results of the present study suggest that very young children from the Ejura-Sekyedumase district of the Ashanti Region of Ghana are likely to be exposed to high levels of aflatoxin from consumption of Aflatoxin contaminated homemade weanimix. The possible consequences on child immunity and growth in the district warrant further studies.

CONCLUSION
From this study homemade weanimix, an important food for feeding very young children was found to be highly contaminated with aflatoxin and fumonisin. This could negatively impact their health with respect to immunity and growth faltering, particularly stunting. The observations emphasize the need for aflatoxin exposure intervention strategies in high-risk countries, possibly targeted at the weaning period. Therefore there is a critical need to educate mothers on the dangers of mycotoxins exposure and to develop an economically feasible strategy to eliminate exposure of children fed homemade weanimix to aflatoxin and fumonisin.

ACKNOWLEDGEMENT
The study was supported by a grant from The Peanut Collaborative Research Program, TAM 149 USAID. The Authors are also grateful to Mr. Ebenezer Ofori-Atta of Clinical Pathology department, Noguchi Memorial Institute for Medical Research for his technical support.
REFERENCES

24. Kpodo K, Thrane U, Hald B. Fusaria and fumonisins in maize from Ghana and their co-

