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powerful numerical method for solving the root-finding problem 0)( xf . Its
simplicity and quadratic rate of convergence have significantly contributed to its
popularity with numerical practitioners over its linearly convergent rival methods
(bisection, secant and the regula-falsi). Masenge [1973: 51-53] derived a quasi

third order convergent method   )()()(2
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involves both the first and second derivatives of f . In this article we present a
quasi fourth order numerical method for solving the root-finding problem. The
proposed method is based on Taylor’s polynomial and represents significant
improvement over Newton’s method and Masenge’s quasi third order method. The
new method exploits the higher rate of convergence gained in Masenge’s hybrid
method to achieve an even faster rate of convergence.

Numerical experiments carried out on a number of prototype test functions
demonstrate unequivocally the gain both in accuracy and in speed of convergence
achieved by the proposed method over previously published numerical methods.
Our experience working with the method has shown that, in only two iterations,

results with an accuracy of up to 1010 are achievable provided the starting value

0x for the iteration is sufficiently close to the required root.

Key words: Root-finding problem 0)( xf ; Single-step iteration methods; Taylor
polynomial; order of convergence.

INTRODUCTION
Single step iterative methods for approximating an isolated root of a function )(xf
are derived using either the fixed point theorem or Taylor series expansion of the
function about a point nx assumed to be sufficiently close to the root  being

looked for. The fixed point theorem approach expresses the function )(xf in the

form )()( xgxxf  where g is a function that can be formed in many different
ways, but must satisfy certain conditions to guarantee the existence and uniqueness
of a fixed point  , which turns out to be a root of f . Numerical methods based on
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Taylor series expansion use truncated versions of the series expansion of f at the

approximate root nx to obtain a better approximation 1nx of the root  .

If the derivatives /f , //f , ///f are not difficult to obtain and evaluate at a point

nx , then numerical methods based on Taylor series expansion are superior to those

based on the fixed point theorem because of the relative ease of determining or
estimating the corresponding rate of convergence.

Let ],[3 baCf  and  be an isolated root of f in ),( ba .  If ),( baxn  is

sufficiently close to but not equal to  , then .0)( nxf We seek to determine the

adjustment h needed in nx to obtain the exact root hxn  . Since  is a root

of f it follows that
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The classical Newton-Raphson method is obtained from )1( by considering only
the first two terms of the series. This gives the result

).()(0 /
nn xhfxf  (2)

Due to the associated truncation error, the quantity hxn  will not be equal the root

 but will hopefully be a better approximation to  than nx . We therefore denote

hxn  by 1nx and write hxx nn 1 . Solving equation )2( for h and

observing that nn xxh  1 , we arrive at the Newton-Raphson iteration formula
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If we truncate the right-hand side of equation )1( after the term containing the

second derivative //f we get the approximate equation
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The quantity )( 1 nn xx  appearing inside the square brackets in )4( is replaced by

the quantity
)(
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yields Masenge’s hybrid formula
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DERIVATION OF THE PROPOSED METHOD
The new method we are proposing uses terms of the Taylor series expansion )1( up

to and including the third derivative term ///f :
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To derive Masenge’s hybrid method )5( we used the Newton-Raphson method )3( .

Likewise, we shall use the hybrid formula )5( to derive the proposed new method.

From )5( we define the quantity
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Substituting A for the two expressions )( 1 nn xx  that appear inside the square

brackets in )6( one gets
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where B represents the quantity enclosed inside the square brackets in )8( :

)(
6

1
)(

2

1
)( ///2///

nnn xfAxAfxfB   )()(3
6

)( //////
nnn xAfxf

A
xf  .

(9)

Solving equation )8( for 1nx one gets
B

xf
xx n
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Equation )10( together with the expressions defining the quantities A and B as

given by )7( and )9( , respectively, constitute the proposed new root-finding
numerical method.

ALGORITHM
An algorithm for implementing the method is outlined below:
If nx approximates an isolated root  of a function f , then an improved

approximation 1nx is obtained by calculating the following quantities:
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The improved approximation 1nx given by )10( after the first iteration may now

be used to obtain the next improved value 2nx in an obvious iterative manner.

ORDER OF CONVERGENCE
The order of convergence of a sequence of numbers  ,,, 210 xxx generated by a

single step iteration formula of the general form )(1 nn xgx  is a positive number

p defined by the equation p
nn K 1 , where ,2,1,0,  ixii 

Remark: The order of convergence of a numerical method derived by truncating
the formula
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of equation )1( is simply the power of h in the first neglected term. Consequently,

the order of convergence of the Newton-Raphson method )3( in approximating an

isolated root is 2p (second order or quadratic rate of convergence) because it is

obtained by truncating the series of terms on the right hand side of )11( after the

linear term in h . The power of h in the first neglected term is 2 . Because we

derived the new method )10( by truncated the series after the term involving 3h it

is tempting to think that the method is of order 4 . However, this is not the case
because subsequently we did not calculate the exact value of the adjustment

nn xxh  1 but resorted to using an approximation previously derived in an

earlier publication (Masenge [1973: 51-53]). Thus, the proposed method is almost
(quasi-) fourth order, implying that 43  p .

As can be inferred from the above remark, determination of the order of
convergence of a hybrid method is not a straightforward matter. Instead, one relies
on comparing results of numerical experiments obtained using methods with known
rates of convergence. On this basis,

NUMERICAL EXPERIMENTS
We demonstrate the power of the proposed method by applying it on three
prototype functions )(xf and compare the results with those obtained using the
Newton-Raphson method and Masenge’s hybrid methods.
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Example 1: 5.0,cos)( 0  xxxxf

The exact root of the function correct to 9 decimal places is 739085133.0 .
The first three derivatives are:

.sin)(,cos)(,sin1)( ////// xxfxxfxxf 
Newton-Raphson

Method
Hybrid Method New Method

Error! Objects cannot
be created from editing

field codes.

5.0 5.0 5.0

1x 755222417.0 737262173.0 739122193.0
Error! Objects cannot
be created from editing

field codes.

739141654.0 739085132.0 739085133.0

3x 739085133.0

Example 2: 5.1,4)( 0
24  xxxxf

The exact root of the function correct to 9 decimal places is 249621068.1 .
The first three derivatives are

.24)(,212)(,24)( ///2//3/ xxfxxfxxxf 

Newton-Raphson
Method

Hybrid Method New Method

Error! Objects cannot
be created from editing

field codes.

5.1 5.1 5.1

1x 299242424.1 256236934.1 251350367.1

Error! Objects cannot
be created from editing

field codes.

251975432.1 249621215.1 249621068.1

3x 249626632.1 249621362.1

4x 249621068.1

Example 3: 0.1,cos)1ln()( 0
2  xxxxf

The exact root of the function correct to 9 decimal places is 915857659.0 .
The first three derivatives are
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Newton-Raphson
Method

Hybrid Method New Method

Error! Objects
cannot be created
from editing field

codes.

0.1 0.1 0.1

1x 916998489.0 915975350.0 915862341.0
Error! Objects

cannot be created
from editing field

codes.

915857915.0 915857659.0 915857659.0

3x 915857659.0

CONCLUSION
A quasi fourth order convergent root finding iterative numerical method for solving
the nonlinear equation 0)( xf has been derived.  The method is based on Taylor

series expansion of the function f at an approximate root nx and requires

evaluation of the first three derivatives of the function at the current approximate
root nx . Numerical experiments carried out on a number of prototype examples

have shown that the rate of convergence is almost fourth order, giving almost four
additional correct significant digits per iteration. We know that the order of
convergence of the method p lies in the interval 43  p but the exact value of
p is yet to be computed. This task is yet to be carried out and is a challenge for

future research.
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