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Abstract: In countries where insurance and credit markets are thin or missing, 
production and consumption risks play a critical role in the choice and use of 
production inputs and adoption of new farm technologies. This paper investigated 
the effect of selected farm technologies and their risk implications in different 
rainfall patterns of Pangani river basin in Tanzania. Given the production risks 
posed by climate change, such information can be used by decision makers to 
identify appropriate agricultural practices that act as a buffer against climate 
change. Using a household and plot-level data set, Just and Pope framework was 
applied to using a quadratic production function to investigate the impact of 
selected farm technologies on average crop yields and the variance of crop yields, 
while controlling for several household and plot level factors. The results revealed 
that farm technologies perform differently in different rainfall areas, which 
underscores the importance of careful geographical targeting when promoting and 
up-scaling farm technologies adoption to climate change.  
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INTRODUCTION 

Climate change is a serious threat for agriculture, food security and the 
fight against poverty in the world. Sub-Saharan Africa has been portrayed 
as the most vulnerable region towards the impacts of global climate change 
because of its reliance on agriculture which is highly sensitive to weather 
and climate variables such as temperature, precipitation and extreme 
events (Agrawal et al., 2003; IPCC, 2013). Frequent droughts represent the 
most pressing constraints to farmers the direct effects being reduced 
productivity and reduced area under cultivation, each of which contribute 
to reduced overall crop production (Bezabih et al., 2010). Such reduction 
has forced many families to deplete their assets to support household 
consumption with long-term consequences (Dercon and Christiansen, 2007; 
Westengen and Brysting, 2014).  
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Pangani river basin, situated in the north-east part of Tanzania, is a typical 
example where smallholder farmers are facing a wide range of uncertainty 
in their farming. The basin has been projected to face declining rainfall and 
drought due to climate change (Ndomba, 2010). The temperature in 
Pangani basin is predicted to rise by 1.8oC and 3.6oC by 2050 and 2100 
respectively (IUCN, 2009). These changes are already having an adverse 
impact on agricultural and natural resource production systems and hence 
livelihoods in this area. Rainfall variability and associated drought have 
been major causes of food shortage and famine in the basin (URT, 2014). 
During the last ten years, the basin has experienced many severe droughts 
leading to production levels that fell short of basic subsistence levels for 
many farm households (IUCN, 2003; Ndomba, 2010). Harvest failure due to 
weather events is the most important cause of risk-related hardship of rural 
households, with adverse effects on farm household consumption and 
welfare (Dercon, 2004, 2005). More erratic and scarce rainfall and higher 
temperature imply that farmers will be facing a larger periods of 
uncertainty.  
 
To mitigate the decreasing farm productivity resulting from climate change 
effects, some farmers have kept up with their traditional farming practices 
which are no longer suitable taking into account the unpredictability of 
rainfall patterns across the country. On the other hand the government of 
Tanzania and other development partners have had various initiatives to 
enhance agricultural productivity, especially among smallholder farmers. 
In their programmes improved seeds of different crop varieties have been 
introduced and disseminated, fertilizer prices have been subsidized, and 
soil and water conservation (SWC) technologies have been promoted 
(Salami et al., 2010; Asfaw et al., 2013). Despite these efforts, adoption rates 
for majority of the improved farm technologies remains low and varying 
across households and regions (Lyimo et al., 2014). Moreover, even for 
technologies that have been better adopted like inorganic fertilizers and 
improved maize seeds adoption rate are still low i.e.12 percent and 20 
percent of the smallholder farmers respectively (URT, 2014). Further report 
shows that yield have either been declining or stagnating contrary to 
common belief that these technologies are yield-enhancing (Kangalawe and 
Lyimo, 2013). This leads us to pose the following questions: Is climate 
change adaptation a successful risk management strategy that makes the 
adapters’ more resilient to current environmental risk? The answer to this 
question requires one to look at the risk implications of adaptation to 
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climate change in the area. This is because some inputs may reduce the 
level of output risk, whereas others may increase it (Shankar et al., 2008). 
 
That being the case, it has been noted that in the adoption of technologies, 
farmers consider not only impacts on crop yields but also risk effects 
(Kassie et al., 2010). This is because in most agricultural production 
processes, we can observe random production shocks only after input 
decisions have been made. This is in contrast to the standard case where 
certainty is presumed, where the only determinants of optimal input 
demands are the structure of the production technology as well as input 
and output prices facing the producer. In the presence of risk, the 
producer's risk preference structure and expectation formations are also 
important in determining optimum behavior. Although it is expected that 
all inputs contribute to increase output, some inputs may reduce the level 
of output risk, whereas others may increase it (Guttormsen and Roll, 2013). 
This situation affect the uptake of farm technologies. This paper, focus on 
analyzing the risk implications of various improved farm technologies for 
crop production in Tanzania using the parametric stochastic production 
function framework of Just and Pope (1978).  
 
The analysis identified the risk-increasing and risk-reducing effects of 
different improved farm technologies on crop production in different 
rainfall pattern of Pangani river basin in order to isolate which technologies 
are best suited to particular regions and agro-ecological niches. These farm 
technologies include maize-legume intercropping, soil and water 
conservation (SWC) practices, organic fertilizer, inorganic fertilizer and 
high yielding maize varieties. Empirical evidence regarding the effect of 
these technologies will help improve geographical targeting of improved 
farm technologies by policymakers, and development agencies as part of an 
effort to promote adaptation to climate change at the farm level.  
 
THEORETICAL FRAMEWORK  

In analyzing risks involved in farm production operations, considerable 
research has attempted to provide empirical evidence on how risk 
influences the nature of decisions in agricultural production. These 
attempts can be categorized into two groups of studies. The first group has 
aimed at estimating producer’s attitude towards risk that influence input 
allocation and output supply decisions. These studies have employed 
either the experimental or econometric approaches to elicit risk attitudes of 
individual producers. The experimental approach is based on hypothetical 
questionnaires regarding risky alternatives or risky games with or without 
real payments (Wik et al., 2004). For example, Binswanger (1981) used risky 
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games with real payments to measure peasant’s risk preferences in an 
experiment in India. The econometric approach is based on individuals’ 
actual behaviour assuming expected utility maximization. Studies that 
have used this approach to elicit producer’s risk attitudes include; Antle 
(1983), Pope and Just (1991).      
 
The second group of studies have attempted to investigate the influence of 
risk on agriculture production by directly incorporating a measure of risk 
in the traditional production functions. Such studies include work by Just 
and Pope (1979) who focused on production risk, measured by the variance 
of output, and suggested use of production function specifications 
satisfying some desirable properties. The main focus in their specification is 
to allow inputs to be either risk increasing or risk decreasing. A number of 
empirical studies such as Farnsworth and Moffitt (1981), Smale et al. (1998), 
Fufa and Hassan (2003) and Di Falco et al. (2007) have used the Just and 
Pope stochastic production function to determine the effect of inputs and 
levels of input use as well as technology on output distribution. Farnsworth 
and Moffitt (1981) used the risk flexible Just and Pope Production model to 
examine cotton production under risk in California. In this study, the Just 
and Pope stochastic production function was used to analyze the effect of 
improved farm technologies on the distribution of maize yields in Pangani 
river basin, Tanzania. The J-P stochastic production function is represented 
as: 

( )vxgy ,=  ……………………………………………………………………… (i) 
 

Where: y  is output, x  is a vector of controllable inputs (e.g. 

fertilizer, land, labour), v  is vector of non-controllable inputs (e.g., 

weather conditions), and ( )vxg , denotes the largest feasible output 

given x  and v .  
 

Of particular interest, here are the interactions between the inputs ( x , 
which include maize seeds and inorganic fertilizer) and the random 

variables ( v , which represent production uncertainty). 
 
The focus on production uncertainty as represented by the stochastic 

production function ( )vxgy ,= , where weather conditions ( v ) are not 
known at planting time, but the farmer has a subjective distribution 
regarding the weather variable. Just and Pope (1978) proposed to specify 
the production function as follows: 
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( ) ( ) ( )[ ] ( )vexhxfvxg
21

, += ……………..…………………….……. (ii) 

Where ( ).f = mean production function,  

( ).h   = variance (or risk) function,  
x   and  z  = vectors of inputs,  
e  = the exogenous stochastic disturbance or production shock (error 
term) 

( )vxg ,  = as previously defined 

( ) 0>xh  and ( )ve  = random variable with mean zero and variance 1 
 
The expected value of output is given by equation (iii) as: 
E (y) = f(x) ..........................................................................................................(iii)  
 
While the variance of y is a product of the variance of (e) and (h(x) which is 
equal to (hx). It is presented as:  

( ) ( )xfyE =  and ( ) ( ) ( ) ( ).xhxheVaryVar ==  This makes

( )
x

h

x

yVar

d

d

d

d
=

(iv) 

Then it follows that when
0>

x

h

d

d

, then the corresponding inputs (x) is risk-
increasing implying that, a rise in that variable indicates an increase of the 
variability of yield.   On the other hand if the derivative of the variance of 

output is negative (
0<

x

h

d

d

) then the input is risk-decreasing that is it 
indicates decrease of the variability production. Note that 

( ) ( )[ ]xhve behaves like an error term with mean zero and variance equal 

to ( )xh . From an econometric viewpoint, this formulation is also useful 
because the variance function can be interpreted as a heteroskedastic 
disturbance term. This can be seen by reformulating the Just and Pope 

function in equation (ii) as ( ) ma += ;xfy . 

Where u is the error term with variance 
( ) ( )[ ] 22

;var esbm xh=
 

 
EMPIRICAL SPECIFICATIONS 

In estimating the J-P function, three functional forms are used to estimate 
the production functions: Cobb-Douglas, quadratic and translog functions 
have been used for the Just and Pope Production function (Kim and Coelli, 
2009). Because of the multiplicative interaction between the mean and 
variance, a translog functional form would violate the Just and Pope 
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assumption (Kumbhakar, 1993) and for Cobb-Douglas production function 
provided poor estimate. The linear quadratic function has been the best 
functional form in different studies (Kebede and Adenew, 2011; Khanal et 
al., 2010), for two reasons. Firstly, it is consistent with JP postulates that 
there is an additive interaction between the mean and variance output 
function. Secondly, it is flexible in the sense of a second-order 
approximation of any unknown mean output function (Kumbhakar et al., 
2011). In the present analysis, linear quadratic functional form was used to 
estimate the production and variance function this production function was 
used to specify farm practices used by the farmers namely: inorganic 
fertilizer, improved maize seeds and legume intercropping, animal manure 
and soil water conservation. Due to diversity in topography, and the 
possibility of differences in weather, rainfall and altitude were included in 
the model to assess their importance in influencing maize yield and 
variability. The mean output function (f) for the representative farm is 
expressed as follows: 
 

y
i
= β0 + β1x1 + β2x1

2
+ β3x2 + β4x2

2
+ β

5
x3 + β6x3

2
+ β7x4 + β8x4

2
+ β9x5

+β10x6 + β11x1x2 +εi.........................................................................................................(vi)

 

Where: iy  = Maize yields in Kilograms per hectare (kg/ha). 

1x = Amount of fertilizer used per hectare (Kg/ha),  

2x  = amount of improved maize seeds in kilogramme per hectare,  

3x = Amount of manure applied in kilograms per hectare (kg/ha),  

 4x = Rainfall precipitation in millimeters during planting season,  

5x  = Dummy variable for legumes intercropping,  

6x  = Dummy variable for soil water conservation,  

 7x = altitude (proxy for temperature), the variance function was 
specified as: 

e
2
= β0 + β1x1 + β2x1

2
+ β3x2 + β4x2

2
+ β

5
x3 + β6x3

2
+ β7x4 + β8x4

2
+ β9x5

+β10x6 + β11x1x2 +εi.........................................................................................................(vii)

 
Where:  e2 = variance of maize yield 

All other variables are as previously defined. 
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STUDY AREA AND DATA  

The data used in this study were collected from the farmers household 
survey conducted between November 2013 and February 2014 in Pangani 
river basin. The sampling frame for the study included all smallholder 
farmers in Pangani basin which, during the last census in 2012 was about 
747,641 (URT, 2012). From the sampling frame, a representative sample size 
of 420 smallholder farmers with known confidence and risk levels was 
selected based on the work of Yamane (1967). The sample of small holder 
farmers were obtained using a multistage sampling technique. Sample 
selection for the study sites was meant to identify and accommodate a wide 
range of adaptation measures which have been adopted by farmers under 
different rainfall patterns. The first stage involved selecting 
agricultural/ecological zones based on the rainfall pattern. Based on the 
classification of rainfall as: high, moderate and low rainfall. The second and 
third stages involved selection of districts from each zone followed by 
villages (Table 1). 
 

Two villages were chosen from each of the selected districts making a total 
of 12 villages in the sample. The villages were purposefully selected with 
the assistance of staff from the District Agricultural Information and 
Cooperative Officers (DAICO) for each district within Pangani basin as 
well as staff from Pangani Basin Water Board Authority (PBWA). The last 
stage involved selection of farmers. From each village in the sample 35 
households were randomly selected from the village register of household 
heads; a total of 420 respondents were identified, and considered to have 
met the conditions for participation in the study. Data were collected from 
farmers using a structured questionnaire and face-to-face interviews.  The 
questionnaire solicited information on household profile, agricultural 
productivity, understanding of climate change, climate change adaptation 
and coping strategies on household profile, agricultural productivity, 
understanding of climate change, climate change adaptation and coping 
strategies.  
 
Table 1: Distribution of sample villages  
Region  District  Name of 

village 
Rainfall  
category 

Number of respondents 

    Male  Female  Total  

Arusha Arumeru  Samaria Low  29 6 35 

Mareu High  27 8 35 
Kilimanjaro Hai Kimashuku High 28 7 35 

Mijongweni Low  30 5 35 
Moshi Rural Sambarai High  28 7 35 

Ghona  Moderate  26 9 35 
Same Njoro Low  27 8 35 
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Mabilioni Low  30 5 35 
Tanga 
 
 
 

Korogwe Mafuleta Moderate  31 4 35 
Kwagunda Moderate  27 8 35 

Pangani  Boza  Moderate  32 3 35 

Kigurusimba Moderate 30 5 35 

Total    345 75 420 

Percentage    82.14 17.86 100 

 

Data Analysis 
The data were compiled, summarized and analyzed using Excel software 
for data management at initial stages. Stata software was used for 
descriptive statistics, and regression analysis. Descriptive statistics that 
were used to analyses the data included percentages and frequencies. 
Regression analysis involved estimation of the mean and variance of maize 
yield. There are two estimators that provide consistent estimates of the 
parameters of the production function and the variance function; the three-
stage feasible generalized least squares (FGLS) and the maximum 
likelihood (ML). The FGLS estimator has often been used in empirical 
studies of production risk (Di Falco et al., 2007; Kato et al., 2009). However, 
the ML estimator provide asymptotically more efficient estimates of the 
variance function parameters than FGLS (Harvey, 1976).  Hence it was used 
in this study.  
 
The first step when analyzing production risk using the Just and Pope 
function is to assess whether there is significant marginal output risk in 
input levels. Given that production risk is specified as being 
heteroskedastic in the J-P framework, any test for the presence of 
heteroskedasticity can be used. A failure to detect heteroskedasticity is 
regarded as evidence that production risk does not exist, and the analysis 
should follow conventional deterministic framework approach. If 
production risk is detected, there are two issues of interest in the analysis: 
the mean production function and the variance function. 
 
In the second step we predicted the residuals and then constructed squared 
residuals. The squared residual were then used as the dependent variable 
for the variance function estimation h(x) using a maximum likelihood 
estimator. The main interest is on these third-stage estimates of the 
variance function, where a positive coefficient implies risk-increasing 
effects, and conversely a negative coefficient implies a risk-decreasing 
effect of the input on crop output. 
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The analysis was implemented at the plot level because the focus of the 
study is on farm technologies that were observed at the plot level. Data for 
the dependent variable was also measured at the same level. This level of 
analysis is advantageous because it captures more spatial heterogeneity 
and also helps to control for plot-level covariates that condition crop 
production and hence help to minimize the omitted variable bias that 
would confound household-level analysis. For the full-sample estimations, 
village fixed effects were included to control for unobserved time-invariant 
characteristics that might be correlated with the dependent variable, which 
also mitigates for the problem of omitted variable bias. The results were 
presented in the forms of tables and graphs. 
 
RESULTS AND DISCUSSION 

Descriptive Results 
Findings from the survey revealed that the smallholder farmers in the 
study area used a mix of farm technologies to manage and reduce the 
sources of risk resulting from climate change.  Responses on the main on-
farm technology practices that are adopted in response to rainfall variations 
are presented in Table 2. The responses include the use of improved maize 
seed varieties, application of manure, application of inorganic fertilizer and 
soil and water conservation.   
 
Table 2: Percentage distribution of respondents using selected farm 

technologies by rainfall pattern 

 
The study revealed that, about 53.8% of the sampled households used 
improved maize variety during the 2013/14 cropping season. Further 
across the three rainfall patterns, higher adoption rate of improved maize 
varieties occurred in high rainfall areas (72.9%) compared to only 56.16% in 
low rainfall areas and 40.6% in moderate rainfall areas. The higher 
adoption rate in low rainfall areas compared to moderate rainfall areas 
should be a reflection of adaptation to climate change.  

Farm 
technologies 

High rainfall 
(N = 181) 

Moderate rainfall (N = 295) Low rainfall 
(N = 203) 

Total Sample 
(N = 682) 

Inorganic 
fertilizer 

62.43 33.56 38.92 42.82 

Improved 
maize seeds 

72.93 40.60 56.16 53.81 

Legume 
Intercropping 

58.01 29.53 29.56 37.10 

Soil water 
conservation 

37.57 36.58 40.39 37.98 

Manure 17.12 16.61 23.15 18.07 
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This differences imply that, the diffusion of improved maize seed varieties 
had strong regional biases across the three rainfall zones. Hence, promoting 
the use of improved maize varieties is important in some of the rainfall 
patterns more than in others. The result further attest that very often 
farmers cultivate more than one kind of maize variety as the distribution of 
maize varieties to hedge against rainfall shortfall. Results from focused 
group discussion revealed that farmers switch from one maize variety to 
the other variety between years depending on the expectation of rainfall. 
One of the reasons for switching was availability of government subsidy 
and income, training from extension agents and weather information. 
 
Further, the findings show that, about 37.1% of the surveyed farm plots 
practiced intercropping of maize with legumes. Leguminous plants have a 
special relationship with nitrogen fixing bacteria called Rhizobium. By 

biologically fixing nitrogen levels in the soil, legumes provide a relatively 
low cost method of replacing nitrogen in the soil, enhancing soil fertility 

and boosting subsequent crop yields (Winterbottom et al., 2013). This 
practice was found higher in high rainfall areas (58.1%) compared to 
(29.53%) and (29.56%) in moderate and lower rainfall areas respectively. 
 
Pertaining to soil fertility management, mineral fertilizers were adopted on 
42.2% of the farm plots. A higher proportion of farm plots (62.43%) in high 
rainfall areas used inorganic fertilizer compared to only 38.92% in low 
rainfall areas and moderate rainfall areas 33.56%. Low application 
ofinorganic fertilizer in Sub-Saharan Africa has been pointed as one of the 
major constraints to achieving a Green Revolution (IFDC, 2006).  
 
Majority of farmers do not use fertilizer due to the notion that their plot 
was fertile enough for maize production.  Some farmers lack funds to buy 
fertilizer. Use of manure, is another important component of a sustainable 
agricultural system, which also captures economies of scope in crop-
livestock systems. It is a major component of a sustainable agricultural 
system with the potential to sustain long-term maintenance of soil fertility 
and supply of nutrients, especially nitrogen and phosphorus (Salami et al., 
2010).   
 
Soil and Water Conservation (SWC) structures provide multiple on-farm 
benefits such as to avoid soil erosion and acidification (Kassie et al., 2008).   
In this study SWC practices were used on about 37.98% of the total plots in 
the sample being higher in low rainfall areas (40.39%) followed by high 
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rainfall areas (37.57%) and lowest was the moderate rainfall areas. The 
most dominant SWC practices were; terracing adopted on (11.5%) of the 
farm plots followed by live plants or tree belts/barriers (14.6) and contour 
bunds built using either earth or stones (11.88%).  
 
Econometric Results 
Prior to estimating the mean and variance functions, three diagnostic tests 
were taken to ensure valid results including test for multicollinearity, 
endogeneity and heteroscedasticity. The test for multicollinearity problems 
reveals that, the VIFs were less than 2.0 and the pairwise correlations were 
also less than 0.5, indicating that the standard errors were not affected by 
collinearity problems and therefore multicollinearity was not a problem. 
Concerning presence of endogeneity, Wu-Hausman test was performed to 
determine whether variables were endogenous to the model. The null 
hypothesis that the variables were exogenous was not rejected since the P-
value was very high (0.61) indicating absence of endogeneity within the 
variables to be estimated.  
 
Results from the mean function are reported in Table 3. The results showed 
that, for inorganic fertilizer the coefficient of the linear term is positive, but 
the interaction effect of inorganic fertilizer and improved maize seeds is 
negative in both high and moderate rainfall areas. However, when, 
evaluated at the sample means, the elasticity of mean maize yields with 
respect to inorganic fertilizer was 0.145, which indicates that inorganic 
fertilizer has a   positive effect on increasing maize productivity. This could 
be attributed to the low nutrient composition of the soil that cannot meet 
crop nutrient demand in the Pangani basin (Kaihura et al., 2001).  
 
Furthermore, the estimated coefficient for the use of improved seeds is 
positive but only statistically significant in high rainfall areas. However, the 
interactive effects of inorganic fertilizer and improved maize seeds 
represented by the coefficient of the interaction term was statistically 
significant in all three rainfall patterns with evidence of increasing 
marginal returns. This means   there is   good complementarity between the 
two inputs towards increasing maize productivity. 
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Table 3: Parameter estimates for the mean yield function 
 
Parameter 

Coefficient for the Mean production function 

High rainfall Moderate rainfall Low rainfall Overall  

Inorganic  fertilizer 1.01*** 2.46** 4.03** 1.39*** 

Inorganic fertilizer 
squared 

-0.01* -0.03** -0.01 0.01* 

Improved  seeds 0.57* 0.31 0.09 0.56 

Inorganic 
fertilizer×Improved 
seeds 

0.06*** 0.01 0.02 0.05*** 

Manure -0.05 -0.18 -0.30 -0.20 

Manure squared 0.001 0.002 0.003 0.002 

Precipitation  0.13 0.21* 0.11 0.20 

Precipitation squared 0.00 -0.01 -0.10 0.03 

Legumes intercropping 0.23* 0.69** 0.33 0.74** 

Soil water conservation 0.43* 1.63 0.15** 0.88*** 

Altitude 0.08 -0.06 0.01 -0.07* 

Constant  3.256*** 6.147*** 5.614 4.574*** 

Adj R-squared 0.773 0.6981 0.7926 0.7563 

 
Significance levels are denoted by one asterisk (*) at the 10 percent level, 
two asterisks (**) at the 5 percent level, three asterisks (***) at the 1 percent 
level. 
 
The results also revealed that, rainfall precipitation had a significant 
positive effect on maize yield in moderate rainfall areas only. When 
evaluated, the elasticity of maize yields with respect to rainfall 
precipitation was positive (0.178) implying that a 1 percent change in 
rainfall precipitation will change maize yield by 0.178 percent. Soil and 
water conservation showed significant positive impact in high and low 
rainfall areas.  
 
For the variance function, parameter estimates are shown in Table 4. Both 
the linear and quadratic coefficients of inorganic fertilizer were statistically 
significant in higher and moderate rainfall areas. The positive linear term 
and negative quadratic term imply that inorganic fertilizer reduces the 
variance of yields. When evaluated for the other variables, inorganic 
fertilizer decreased the yield variance by 0.124. The coefficient of the 
interaction effect between inorganic fertilizer and improved maize seeds 
was negative and statistically significant. This implies that the range of 
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values where improved maize seeds reduces risk exposure tends to 
increase with use of inorganic fertilizer, reflecting the synergy effects of 
inorganic fertilizer on improved seeds towards reducing crop failure under 
the harsh environmental conditions. However, in low rainfall areas 
fertilizer use was associated with a positive and significant effect on the 
variability of maize yield   implying that inorganic fertilizer increase yield 
variability in this area. This phenomena of increasing yield variability in 
low rainfall areas that is associated with fertilizer use, could be attributed 
to variation in application levels (rate) and management (timing and 
application methods) among farmers and also due to lower water potential 
in some areas, which limits fertilizer uptake by plants (Thierfelder and 
Wall, 2012). This is also consistent with Fufa and Hassan (2003) who argued 
that the yield response of crops to different levels of fertilizer under 
farmer’s management conditions depend on a number of interacting factors 
that include bio-physical factors such as soil type, the time and amount of 
rainfall, date of planting and management practices such as the rate and 
method of fertilizer application. 
 
Table 4: Parameter Estimates for variance function 
 
Parameter 

Coefficients for Variance function 

High 
rainfall 

Moderate 
rainfall 

Low 
rainfall 

Overal
l 

Inorganic  fertilizer -0.058* -0.012 0.0132* -0.004* 
Inorganic fertilizer squared -0.002* 0.002 -0.001* 0.002 
Improved  seeds -0.004 -0.005 0.003 -0.003 
Inorganic fertilizer× Improved 
seeds -0.001* -0.002* 0.001 0.003* 
Manure 0.003 0.001 0.007 0.009 
Precipitation 

-0.024 0.011 -0.919* 
-
0.0003* 

Precipitation squared 0.003 0.002 0.004* 0.002 
Legumes intercropping 0.188 0.384* 0.015 0.116 
Soil water conservation 0.211 0.200 -0.666* -0.182 
Altitude 0.007 0.002 0.002 0.001 
Constant  0.584 -1.466 0.284 0.593 
Adj R-squared 0.093 0.110 0.103 0.091 

Log-likelihood function 204.96     

 
Significance levels are denoted by one asterisk (*) at the 10 percent level, 
two asterisks (**) at the 5 percent level, three asterisks (***) at the 1 percent 
level. 
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The coefficient of the interaction term for improved seeds and inorganic 
fertilizer is negative and statistically significant from zero in high and low 
rainfall areas. Since the coefficient of improved seed was negative but not 
statistically significant in high and low rainfall areas, a negative and 
significant interaction term implies that the range of values where 
improved seed reduce risk exposure tends to increase with increasing use 
of inorganic fertilizer. The results further showed that rainfall had a 
negative and significant effect on the variance of maize yield implying that 
when the amount of rainfall increases maize yield stability improves and 
hence reducing the risk that farmers in that area face. In low rainfall areas, 
the coefficient for SWC was negative (0.6668) significantly different from 
zero, which means it had a risk reducing effect. This explains why SWC 
practices had a higher adoption in low rainfall areas (Table 2). Where they 
represent appropriate strategies to adapt for climate change in low-rainfall 
areas. 
 
CONCLUSION AND RECOMMENDATION 

Findings of this study provide a consistent answer that climate change 
adaptation is a successful risk management strategy that makes the 
adapters’ more resilient to current environmental risk. However, the results 
have demonstrated that although most of the selected farm technologies 
have significant, positive mean impacts on yields, they do not all show a 
correspondingly similar risk reducing effect under different rainfall 
patterns, which might explain their varied adoption rates in these areas as 
presented in Table 2.  
 
Overall, for all the three rainfall patterns inorganic fertilizer and improved 
maize seeds appear to be the most important measure for increasing the 
mean maize yield and risk reducing effects on production.  Soil and water 
conservation appear to be useful  investments in high and low-rainfall 
areas with a risk-reducing effect on production; while  intercropping grains 
with legumes do not seem to have any significant effects on reducing 
production risk in the lower rainfall areas. On the basis of these results the 
study concludes that improved farm technologies have significant impacts 
on reducing production risk in Tanzania and should be strengthened in 
country’s climate-proofing strategy. Since these technologies perform 
differently in different rainfall patterns, then a one-size-fits-all 
recommendations is not appropriate, given the differences in agro-ecology 
and other confounding factors. The performance of these technologies is 
location specific. Hence programmes aimed at promoting these 
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technologies measures as part of a strategy to adapt to climate change 
should acknowledge these differences. 
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