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ABSTRACT 
 

In this research work, we employed cramer‟s rule to develop a fifth order composite integrator scheme capable of solving 

initial value problems in ordinary differential equation of the form: 

 

                                                   
 

We examined the convergence and consistency nature of our integrator and it is found to be consistent. We equally 

implemented our composite integrator formula on an initial value problem in ordinary differential equations. Our results 

compared favorably with the existing method. We therefore recommend the method for use by ODE solvers and for 

researchers currently working in this area. 

 

Keywords: Differential Equation, Rational, Polynomial, Integrator Error 

 

INTRODUCTION 

This research work is centered on the solution of initial – valued problem in ordinary differential equation of the form:   

                                                    

                                                               (1.1) 

 

Initial-valued problems in ordinary differential equations (ODEs) can be seen in such diverse and fascinating problems 

from physical situations, chemical kinetics, (Abhulimen and Otunta, 2007), biological simulations (Ademiluyi and Kayode, 

2001), engineering construction works, nuclear reactors (Elakhe, 2010), the diagnosis of diabetes, the spread of gonorrhea 

(Braun, 1993) and practical realities. 

 

Euler‟s rule is the simplest among all numerical methods in ordinary differential equations because of its explicit and one-

step nature. It requires no additional starting values and readily permits a change of step length during computation. 

 

In an attempt to extend the approximation method of Euler, Runge in 1895 worked on Euler method to give a more 

elaborate scheme which was capable of greater accuracy. According to Agbeboh (2006), the Runge –Kutta method which 

ISSN: 2315 - 5388 

 

E-ISSN: 2384 - 681X 



                                              
 

 

69 

                                         
 

 

      AASHIKPELOKHAI & AKEREJOLA, IJBAIR, 2018, 7(3): 68-82 

is one of the methods of solving numerical problems, represents an important family of implicit and explicit iterative 

methods for approximation of ordinary differential equations in numerical analysis. The general explicit one-step method is 

of the form: 

 

                      (1.2) 

 

Exponential integrators have become active area of research, according to Fatunla (1982), exponential integrators form the 

class of numerical methods for solutions of stiff differential equations and also partial differential equations which include 

hyperbolic as well as parabolic problems such as heat. This class of integrators can be constructed to be explicit or implicit 

for numerical ordinary differential equations or serve as the time integrator for numerical partial differential equations. 

Examples of published works in this area include the works of Fatunla (1978, 1980). 

 

Various scholars have worked extensively on the area of rational integrators, providing encouraging results in the solution 

of problems arising from mathematical formulation of physical solutions in population models, mechanical oscillations, 

process control and electrical circuit theory which often lead to initial valued problems (IVPs) in ordinary differential 

equation. 

 

Among these scholars include, the work of Aashikpelokhai (1991), who developed a class of rational integrator that 

handles singular, stiff and oscillatory initial valued problems in ordinary differential equations.  

 

Following closely the work of Aashikpelokhai (1991), Otunta and Ikhile (1997), developed a new class of rational 

integrator for stiff and singular initial valued problem in ODEs based on the rational interpolants of Fatunla (1980) and 

Lambert (1973).  

 

Aashikpelokhai and Momodu (2008) designed a quadratic base integration scheme for the solution of singulo – stiff 

differential equation. 

 

Elakhe (2011) developed a cubic base (polynomial of degree 3) singulo oscillatory – stiff rational integrator. 

 

Still on rational integrator, Ukpebor (2016), analyze the Region of Absolute Stability of an order 19 Rational Integrator. 

The list is endless. 

 

The modification of old composite formulae have been made to suite modern trend, for example, Agbeboh (2006), 

Momodu (2006) and Elakhe (2011), Abhulimen (2014), were extension of Lambert and Shaw (1965). 

 

However, Fatunla (1982) developed a class of k-steps method; this class is not composite as it is the case with Lambert and 

Shaw (1965), Momodu (2006) and Elakhe (2011). The k-step methods at each stage consist of solving Simultaneous Linear 

Algebraic Equations (SLAE). 

 

Aashikpelokhai (1991) followed the steps of Fatunla (1982) by developing a class of one-step rational integrator of order 

    , where   is any arbitrary positive integer. 

 

It is easy to find the composite function for     from Aashikpelokhai (1991), however for composite formula with    

and above, in as much as composite function may be desired in algebraic approach, derivation in this class of integrators 

involved solving Linear Algebraic Equations (LAE) at each stage from another transformation of the initial valued problem 

(IVP) into matrix of coefficients.  

 

The composite integrator formula for     from Aashikpelokhai (1991) is given by:  

    

       
  

 

     
    

                                                            (1.4) 
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 `````````````````````````````````````````````````````````````````````````````````````````````                            (1.3.1)  

Which is the same as Lambert and Shaw (1965) with s = 0 and Fatunla (1982) with   

k =1. Aashikpelokhai (1991) also obtained result for k = 2 given as follows: 

     
      (        

   ) 

                         (1.5) 

 

Where:       
       

     
        

     
        

        
     

       
     

    

 

Our concern here is to choose    , derive the composite integrator formula using Cramer‟s rule and compare our results 

with the existing method. We shall also examine the convergence and consistency of the new integrator.  

 

It should be noted here that earlier formulae in computational ODE were mainly in composite forms as exemplified by 

Euler rule, Modified Euler rule, Trapezoidal rule, Runge – kutta method and linear multi – step method. This is as a result 

of its simplicity in implementation of initial valued problems.  

 

2.0  EXISTENCE AND UNIQUENESS OF A SOLUTION 
 

From a practical point of view of scientific modeling, it is very important to examine whether there exists a solution to an 

initial value problem and if it exist, whether it is unique. 

 

Theorem 2.1: Aashikpelokhai et al (2011) 

 

Consider the initial value first – order linear differential equation: 

     
  

  
                                              

 

It has a unique solution in the interval [   ] in which it is defined on the real line. 

 

Proof: 

 

By the method of integrating factor, the general solution is given as; 

 

  [    ( ∫
     

     
  )] [  ∫ {

    

     
   (∫

     

     
  )}   ]                                

 

where A is the integration constant.   

 

Existence:  

 

Select any point     in [   ] and any value      along the Y – axis. Substitute the pair         into (2.1), solve for 

the constant A. 

 

This value of A yields a particular solution        obtained from (2.1). For every choice of arbitrary      in the 

interval [   ] and any      values chosen along the Y – axis, when the pair         is substituted into the result (2.1) 

we obtain a new particular A which in turn yields a corresponding new solution. Hence every initial value problem above 

has at least one solution in the interval[   ].   
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Uniqueness: 

 

To prove uniqueness, we wish to prove that if any two solutions are given, then they must be identical. Let       be such 

solutions of the given initial value problem. In this case we have for each       

 

     
   

  
                              

 

Implying, by linearity of the differential operator 

 

     
          

  
                                  

 

                                   and                                

 

Hence        is a solution of the homogenous initial value problem       

     
  

  
                                     

 

However, the solution to the homogenous ivp is given by: 

 

      ( ∫
     

     
  )                               

 

Where A is our arbitrary constant of integration. 

 

Hence, 

             ( ∫
     

     
  )                             

i.e                                                       (2.3) 

 

Substituting         into equation (2.2), we obtain 

 

                          ( ∫
     

     
  )                                                                                          

 

but then 

                                ( ∫
     

     
  )                                                                                              

 

for every value of x on the real line.  

 

Hence,    , meaning that equation (2.2) we now have     as the solution to the ivp. But by equation (2.3),        
   , hence           and so      .  

 

3.0      DERIVATION OF OUR METHOD 

 

Preliminaries 

 

The theoretical basis on which rational integrators work is the operator transform. Consider the general rational operator 
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           (3.1) 

 

Defined by the identity 

 

                    (3.2) 

 

Where       and       are real polynomials defined by  

 

      ∑    
  

        (3.3) 

 

      ∑    
  

        (3.4) 

 

The definition U(x) is by Pade׳ and it is used by Pade׳Approximants which then give rise to Pade׳Integrators. Lambert 

(1973) 

 

The approximation using the infinite series of the function U is given by  

 

        ∑    
 
   

 
              

    
   

  
    (3.5) 

 

We can therefore write 

 

             
        

        
                               (3.6) 

 

Main derivation  

 

Employing the rational interpolating function (3.6) where       and    , we have 

   

     
          

        
        (3.7) 

 

           ∑      
 
      

   
   and               ∑      

 
   

 
    

 

Following the work of Aashikpelokhai (1991), we obtain the parameters          , by solving      where: 

 

    
         

        

             
           and        

        
      

           
     ,                and      

 

Therefore; 
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In matrix form: 

 

  

[
 
 
 
 
 
    

   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

   
   

      

    
   

    
   

   
   

      
  ]

 
 
 
 
 

    

[
 
 
 
 
  

  

  ]
 
 
 
 

           

[
 
 
 
 
 
     

   

    
   

     
   

    
   

     
   

    
   ]

 
 
 
 
 

   (3.8) 

 

We move now to find solutions to                 through the use of crammer‟s rule. 

From equation (3.8), we let; 

        

     (i)      

[
 
 
 
 
 
    

   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

   
   

      

    
   

    
   

   
   

      
  ]

 
 
 
 
 

   ,                (ii)     

[
 
 
 
 
 
     

   

    
   

     
   

    
   

     
   

    
   ]

 
 
 
 
 

                 (3.9) 

  

Thus 

 | |  
|

|

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

    
   

   
   

      

    
   

    
   

   
   

      
  

|

|
 

 

 

  
    

   

    
   

|
|

    
   

    
   

   
   

      

   
   

      

  

|
|  

    
   

    
   

|
|

    
   

    
   

   
   

      

    
   

    
   

  

|
|                  

 
    

   

    
   

|
|

    
   

    
   

    
   

    
   

    
   

    
   

   
   

      

|
|              

Simplifying: 

 

                                  
    

   

    
   

(
    

         (  
   )

 

   
   

)  
    

   

   
   

(
    

           
     

   

   
   

) 

  
    

   

   
   

(
     

     
       (  

   )
 

    
   

) 

 

Further simplification gives, 

 

| |    
  

     
   

[
     

     
     (  

   )
 
  

       (  
   )

 

     
     

     
      (  

   )
 ]    (3.10)     

  



                                              
 

 

74 

                                         
 

 

      AASHIKPELOKHAI & AKEREJOLA, IJBAIR, 2018, 7(3): 68-82 

Replacing the first column of (3.9) (i) by the column vector (3.9) (ii); 

  

|  |  

|

|

     
   

    
   

    
   

    
   

    
   

    
   

     
   

    
   

    
   

    
   

   
   

      

     
   

    
   

   
   

      

  

|

|

 

 

Leading us to:  

                      
    

   

    
   

|
|

    
   

    
   

   
   

      

   
   

      

  

|
|  

    
   

    
   

|
|

     
   

    
   

   
   

      

     
   

    
   

  

|
|  

    
   

    
   

|
|

     
   

    
   

    
   

    
   

     
   

    
   

   
   

      

|
| 

Simplifying; 

 

   
    

   

     
   

(
    

         (  
   )

 

   
   

)  
    

   

   
   

(
     

           
     

   

    
   

) 

  
    

   

   
   

(
     

     
         

     
   

    
   

) 

This leads to: 

|  |  
  

     
   

[
 (  

   )
 
  

         
     

        
   (  

   )
 
      

     
   

   (  
   )

 
  

        
     

     
   

]                               (3.11)      

 

Next, we replace the second column of (3.9) (i) by the column vector (3.9) (ii); 

 

|  |  

[
 
 
 
 
 
 
    

   

    
   

     
   

    
   

    
   

    
   

    
   

    
   

     
   

    
   

   
   

      

    
   

    
   

     
   

    
   

  ]
 
 
 
 
 
 

 

 

  
    

   

    
   

|

     
   

    
   

   
   

      

     
   

    
   

  

|  
    

   

    
   

|

    
   

    
   

   
   

      

    
   

    
   

  

|  
    

   

    
   

|

    
   

    
   

     
   

    
   

    
   

    
   

     
   

    
   

| 

 

Evaluating, we have; 

  
    

   

    
   

(
     

     
          

   

    
   

)  
    

   

     
   

(
    

           
     

   

   
   

)

  
    

   

   
   

(
     

     
       (  

   )
 

     
   

) 
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This leads to; 

 

|  |  
  

      
   

[
    

     
     

   
    (  

   )
 
     

     
     

         
     

   

   (  
   )

 
  

        
   (  

   )
 ]                             (3.12) 

 

 

To compute for|  |, we replace the third column of (3.9) (i) by the column vector (3.9)(ii);     

 

|  |  

|

|

    
   

    
   

    
   

    
   

     
   

    
   

    
   

    
   

    
   

    
   

     
   

    
   

    
   

    
   

   
   

      

     
   

    
   

|

|

 

  

  
    

   

    
   

|
|

    
   

    
   

     
   

    
   

   
   

      

     
   

    
   

|
|  

    
   

    
   

|
|

    
   

    
   

     
   

    
   

    
   

    
   

     
   

    
   

|
|  

    
   

    
   

|
|

    
   

    
   

    
   

    
   

    
   

    
   

   
   

      

|
| 

 

Leading to; 

  
    

   

    
   

(
    

     
         

     
   

    
   

)  
    

   

   
   

(
     

     
       (  

   )
 

     
   

)

  
    

   

     
   

(
     

     
       (  

   )
 

    
   

) 

 

This gives; 

|  |  
  

      
   

*
    

   (  
   )

 
     

     
     

      (  
   )

 
   (  

   )
 
  

   

     
     

     
   

+                                 (3.13) 

 

By crammer‟s rule:    
|  |

| |
            , hence we employ this relation in results (3.10), (3.11), (3.12) and (3.13) to 

obtain; 

 

 

   
 

     

[
 
 
 
 

 (  
   )

 
  

         
     

        
   (  

   )
 
      

     
   

   (  
   )

 
  

        
     

     
   

     
     

     (  
   )

 
  

       (  
   )

 
     

     
     

      (  
   )

 

]
 
 
 
 

  (3.14) 

 

 

   
  

    
   

[
 
 
 
     

     
     

   
    (  

   )
 
     

     
     

         
     

   

   (  
   )

 
  

        
   (  

   )
 

     
     

     (  
   )

 
  

       (  
   )

 
     

     
     

      (  
   )

 

]
 
 
 
 

  (3.15) 

 



                                              
 

 

76 

                                         
 

 

      AASHIKPELOKHAI & AKEREJOLA, IJBAIR, 2018, 7(3): 68-82 

 

   
  

    
   

[

    
   (  

   )
 
     

     
     

      (  
   )

 
   (  

   )
 
  

   

     
     

     
   

     
     

     (  
   )

 
  

       (  
   )

 
     

     
     

      (  
   )

 ]          (3.16) 

 

Suppose:  

 

       
     

     (  
   )

 
  

       (  
   )

 
     

     
     

      (  
   )

 
   (3.17) 

be the common denominator for    
|  |

| |
,           If at any point      | |    and therefore the test for ill-

conditioning at any stage is when    .  

 

The corresponding numerators are: 

     (  
   )

 
  

         
     

        
   (  

   )
 
      

     
   

   (  
   )

 
  

        
     

     
   

             (3.18) 

 

      
     

     

   
    (  

   )
 
     

     
     

         
     

   

   (  
   )

 
  

        
   (  

   )
                           (3.19) 

 

      
   (  

   )
 
     

     
     

      (  
   )

 
   (  

   )
 
  

   

     
     

     
   

                          (3.20) 

 

Hence;  

 

   
  

      
        

   

     
   

   
   

     
   

      Provided                               (3.21) 

 

Computing for    and   , we have; 

 

   ∑
  

               

            
                

 
    ,      where        ,     and      

 

That is: 

 

   
  

    

    
                      (3.22) 

 

   
  

     

   
   

 
  

    

    
                       (3.23) 

 

Using equation (3.21), then equation (3.22) and (3.23) becomes; 

 

    
  

    

    
   [

  

      
] 

 

This simplifies to: 

 

   
 

      
[    

       ]          Provided               (3.24) 
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Similarly; 

   
  

     

   
   

 
  

    

    

[
  

      

]    *
   

     
   

+                                                            

 

Leading to; 

   
  

       
[     

        
       ]         Provided      (3.25) 

 

By equation (3.7), we have: 

 

     
             

 
   

            
 
       

 
   

     (3.26) 

 

 

Substituting equation (3.21), (3.24), (3.25) and       in equation (3.26), we have;  

 

      
   

 

  
[    

       ]  
  

   
[     

        
       ]

  
  

  
 

   

   
 

   

   

 

 

Simplifying; 

 

     
         (    

       )           
        

        

                  
 

 

 

Further simplification leads us to our composite integrator formula       given hereunder as; 

 

     
               

                      (3.27)   

 

Where:         
     

     (  
   )

 
  

       (  
   )

 
     

     
     

      (  
   )

 
 

 

     (  
   )

 
  

         
     

        
   (  

   )
 
      

     
   

   (  
   )

 
  

        
     

     
   

 

 

      
     

     

   
    (  

   )
 
     

     
       

         
     

   

   (  
   )

 
  

        
   (  

   )
  

 

      
   (  

   )
 
     

     
     

      (  
   )

 
   (  

   )
 
  

   

     
     

     
   

 

      
                                                                                                          

   

                              
        

        .                       (3.29) 
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4.0   CONVERGENCE AND CONSISTENCY ANALYSIS OF OUR SCHEME 

 

Convergence is a vital property any given numerical formula must attain. Hence, researcher like Lambert (1995) asserts 

that convergence is a minimal property to expect of a numerical method and that convergence must take place for all initial 

value problems. Lambert (1995) went on to state that one-step method is said to be convergent if, for all initial value 

problem satisfying the lipschitz condition then;  

 

   
   

   
     

‖        ‖                                                  

 

However, convergence of one-step method implies the consistency of the method, though the converse is not true Lambert 

(1995). Therefore to show our method is convergent and consistent, we need only to show its convergent which then 

implies its consistent. 

 

Theorem 3.1:  The one-step composite integrator: 

 

     
               

                 
                                                   

 

where the functions a, b, c, d, e, and f are specified by (3.17), (3.18), (3.19), (3.20), (3.28) and (3.29) respectively is 

consistent and convergent. 

 

Proof  

 

We wish to show that:         
       

 
    

             

Therefore, from the integrator (3.30), we have: 

        
               

                 
    

 

 

        
              

                  
        

        

                 
    

 

 

 
         (    

       )     (     
        

       )                       

                 
 

 

Simplifying; 

 

        
       

         
          

                       
  

                 
 

 

 

       

 
 

     
         

          
         

 

                 
 

 

 

   
   

[
       

 
]  
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[
       

 
]    

             

 

Hence our integrator is consistent. 

 

 

5.0  DEMONSTRATION 

 

Here, we implemented of our new integrator in solving an initial value problem in ordinary differential equations given 

below: (Problem from Aashikpelokhai, 1991) 

 

*
  

   

  
   

+  [
         

   
] [

  

  
]  [

 
 
],    [

     

     
]  [

 
 
],            

 

Theoretical solution: 

 

[
  

  
]  [

                      

                     
] [

   

       ]  [
     

     
] 

 

 

Table A:  Solution for the First Component at H = 0.01. Each Solution is multiplied by     

 

 

 

 

  

X THEORETICAL  

SOLUTION 

AASIKPELOKHAI (1991)      

K = 3 

COMPOSITE 

INTEGRATOR 

FORMULA, K = 3 

   

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 

3.0 

 

3.5 

 

4.0 

 

4.5 

 

5.0 

 

6.1038 

 

6.9655 

 

7.6365 

 

8.1592 

 

8.5663 

 

8.8834 

 

9.1303 

 

9.3226 

 

9.4724 

 

9.5891 

 

6.1046 

 

6.9961 

 

7.6370 

 

8.1596 

 

8.5663 

 

8.8836 

 

9.1305 

 

9.3326 

 

9.4726 

 

9.5891 

 

 

2.06256  
 

2.85022 

 

3.50510 

 

4.04258 

 

4.47905 

 

4.83045 

 

5.11141 

 

5.33480 

 

5.51163 

 

5.65112 

 

50 

 

100 

 

150 

 

200 

 

250 

 

300 

 

350 

 

400 

 

450 

 

500 
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Table B:  Solution for the Second Component at H = 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index:              

 

 

Discussion of Results Generated by our method 
 

Whenever a numerical method is used to solve a differential equation, the idea is to produce accurate solution that will 

override the theoretical solution with minimum error. For instance, if we denote the exact solution as       at some 

point  , then the numerical solution at that point    is denoted as   . Therefore we are interested in the error given as: 

 

                                      |        |                           (5.1) 

 

As a matter of fact, we do not expect to be able to know the error      exactly at given intervals because we do not have the 

exact solution in general. Hence, it will be of interest to derive a formula that can approximate the solution of IVPs in 

ODEs whose error accumulates within a specific interval. 

 

 

   X  

THEORETICAL 

SOLUTION 

        Error      

AASHIKPELOKHAI 

(1991),  k = 3 

 

COMPOSITE 

INTEGRATOR 

FORMULA, K = 3 
   

 

 

0.5 

 

 

1.0 

 

 

1.5 

 

 

2.0 

 

 

2.5 

 

 

3.0 

 

 

3.5 

 

 

4.0 

 

 

4.5 

 

 

5.0 

 

 2.2099 

 

 

 3.9327 

 

 

 5.2745 

 

 

 6.3195 

 

 

 7.1335 

 

 

 7.7674 

 

 

 8.2612 

 

 

 8.6457 

 

 

 8.9452 

 

 

 9.1785 

 

 

2.2100(-4) 

 

 

3.9327(-4) 
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A close look at the result on table „A‟ above generated by our method (composite integrator formula at k = 3) reveals that 

the method maintain a reasonable steady low error level throughout the steps even with the increase in step length. 

However, for the table „B‟ above, we observed that the difference between the numerical solution and the theoretical 

solution was minimal, and the error level varies at different steps due to the inaccuracy inherent in the formula and the 

arithmetic operations adopted during the computer implementation. 

 

In totality, it is seen that the composite integrator formula was able to produce results that are as accurate as those of other 

existing methods as our integrator compares favourably with Aashikpelokhai (1991). 

 

Conclusion 

 

In this work, we have been able to derive a composite integrator from Aashikpelokhai (1991) at    , analyzed its 

consistency nature and implemented our integrator on a selected initial value problem in ODEs. Our method compared 

favorably with the existing methods. However, for derivation of composite integrator at    , Cramer‟s rule may not be 

appropriate, hence researchers in this line could explore other methods.      

 

Recommendation  

 

Having derived and implemented a new composite integrator formula from Aashikpelokhai (1991) at     , capable of 

solving problems in initial value problems arising from first order in ODEs, we therefore recommend the method for use by 

ODE solvers and for researchers currently working in this area. 
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