Anticoccidial activity of *Carica papaya* and *Vernonia amygdalina* extract

Hervé Brice DAKPOGAN1, Serge MENSAH2, Sabbas ATTINDEHOU1, Christophe CHYSOSTOME3, André ABOH2, Muriel NACIRI4, Sahidou SALIFOU1 and Guy Apollinaire MENSAH2

1National Veterinary Parasitology Laboratory, Polytechnic School of Abomey-Calavi P.O. BOX 2009, University of Abomey-calavi, Benin.
2National Agricultural Research Institute of Benin (INRAB), 01 P.O. BOX 884, Cotonou, Benin.
3Faculty of Agronomic Sciences 01 P.O.BOX 526, University of Abomey-calavi, Benin.
5Corresponding author; E-mail: dakpogan2002@yahoo.fr; Tel: (00229) 94 62 58 36.

ACKNOWLEDGMENTS

The Benin Ministry of high Education and Scientific Research is to be thanked for the technical and financial support.

ABSTRACT

The anticoccidial effect of *C. papaya* and *V. amygdalina* crude juice was tested on 100 *Eimeria tenella* experimentally infected day-old Isa-brown male chicks in a completely randomized design, as an alternative coccidiosis control measure. Each chick received 3×10^7 *E. tenella* oocysts doses. The first and the second groups were orally treated with papaya and vernonia juice, for consecutive 5 days. The third and the fourth groups were medicated (sulfadimidine) and unmedicated controls. The papaya treatment improved the survivability by 20% compared with the unmedicated control group. Neither death nor bloody feaces were found in the medicated control chick group. Similar body weight gains were observed in all groups at the end of the second week post inoculation. However, the papaya and vernonia effect represents only 59.31 and 40.78% of the medicated control efficacy, respectively, in terms of oocysts excretion reduction. *Carica papaya* did demonstrate in this first herein preliminary study an anticoccidial effect, however, the active substance need to be extracted and its dose and toxicity threshold to be further investigated.

© 2018 International Formulae Group. All rights reserved.

Keywords: Coccidiosis, chick; anticoccidiant, medicinal plant, oocysts.

INTRODUCTION

Coccidiosis is one of the most expensive and common disease of poultry production systems (Dakpogan and Salifou, 2013; Lucas and Zainab, 2016), in spite of advances in chemotherapy, management, nutrition and genetics (McDougald, 2003). The disease is caused by a protozoan parasite belonging to the Apicomplexa phylum, the family of the Eimeriidae and genus of *Eimeria*. There are 7 species of coccidia of pathological importance in
chicken: *E. acervulina*, *E. brunetti*, *E. maxima*, *E. necatrix*, *E. tenella*, *E. praecox* and *E. mitis*. The macroscopic lesions in the digestive tract are some predisposing factors to many gastrointestinal bacterial poultry diseases such as clostridiosis, salmonellosis and colibacillosis (Bostvironnois and Zadjian, 2011). Coccidiosis is also exacerbated by certain immunosuppressive viral diseases such as Infectious bursal disease, Marek disease and chick anemia infectious viral disease (Lanckriet et al., 2010). It remains a big concern for commercial chicken production, because of the high costs of its control. Sørensen et al. (2006) estimated by extrapolation the total cost of loss due to coccidiosis, its clinical and subclinical forms and its control, at 2.3 Billion € world-widely, with 70% of the loss attributable to the unapparent sub-clinical form of the disease that depress considerably weight gain and feed conversion ratio. Various anticoccidial feed additives; predominantly ionophorous antibiotics have been developed and used (Chapman et al., 2005). The routinely use and misuse of these drugs, in one hand, has led to coccidial parasite drug resistant strains (Shirley et al., 2007) and on the other hand, is prejudicial to consumer health because of the presence of anticoccidial drug residues in poultry products (Cannavan et al., 2000; Youn and Noh, 2001; Mortier et al., 2005; Danaher et al., 2008). The recent introduction of live drug-tolerant anticoccidial vaccine used in rotational basis with anticoccidial drugs (Chapman et al., 2005; Lee et al., 2009; Tewari et al., 2010; Berezin et al., 2010) is of great advantage for poultry industries in terms of effectiveness, but the vaccine in its ability to replicate in bird intestinal tract constituted a predisposing factor to other opportunistic disease agents (Bostvironnois and Zadjian, 2011). The pharmaceutical industry has shown little interest in developing new products for anti-parasitic use, and it is unlikely that we will have replacements for the products already available (McDougald, 2003). Medicinal plants are considered as alternative new tools to control coccidiosis. The incorporation of dried leaf of *Andrographis paniculata* at 10, 20, 30 and 40% in feed proved to be efficient on mortality reduction (Sujikara, 2000). Among the 15 medicinal plants tested by Youn and Noh (2001), only *Sophora flavescens* was more efficient in reducing bloody diarrhea, lesion scores and oocysts excretion. Arczewska and Światkiewicz (2010) tested the extracts of *Allium sativum*, *Salvia officinalis*, *Echinacea purpurea*, *Thymus vulgaris* and *Origanum vulgare* on *Eimeria tenella* coccidiosis and obtained similar result compared with that of the conventional anticoccidiostatic in terms of weight gain and oocyst production. The anthelmintic effect of *Carica papaya* (Ekanem et al., 2004; Okeniyi et al., 2007; Sacramento et al., 2010) and *Venonlia amygdalina* (Huffman, 2003; Hamil et al., 2003; Ojiako and Nwanjo, 2006; Erasto et al., 2007; Arhohro et al., 2009) was reported. These herbs are classified in the group of medicinal plants used by rural communities to cure many human and animal diseases in Benin (Attindehou et al., 2011). The aim of the current study was to test the anticoccidial effect of *Carica papaya* and *Venonlia amygdalina* fresh leaves extract on chick *Eimeria tenella* coccidiosis.

MATERIALS AND METHODS

Day-old chick

One hundred (100) day-old Isa-brown male chicks were used. The birds were housed in a deep litter-floured starting pen, under 22 hours lighting and held at initially 27 °C up to 20 day-old before being transferred in experimental cages. The chicks had free access to feed and drinking water. Vaccination against Newcastle disease, Infectious bronchitis and Infectious bursal disease was the basic applied biosecurity measures.
Eimeria tenella and inoculation

Eimeria tenella oocysts preserved in 2% potassium dichromate solution were generously provided by the infectiology laboratory of INRA, Tour, France and kept in a refrigerator (2-5 °C) until use. All the feces produced by each cage of birds, during the 24 h preceding the experimental infection, were examined to confirm the absence of any oocysts. Each coccidia-free chick was challenged orally with a dose of 30,000 oocysts.

Herb extracts and anticoccidial drug

Herb extracts were obtained by hand squeezing and pressing of the fresh green leaves of Carica papaya and Venonia amygdalina (1 g of leave for 2 ml of drinking water) to obtain the crude juice after sieving. Sulfadimidine was the conventional anticoccidial molecule used. Each chick in the treatment group received orally 1 ml of the leaves juice three times per day with 4 hours time period between each treatment and this, during 5 days after challenge. Sulfadimidine was given following the drug administration protocol.

Experimental groups and collected data

Twenty five experimentally infected male Isa-brown day-old chicks were used (5 per cage with 5 replications) per group. There were papaya, venonia, medicated and unmedicated control groups. The effectiveness of herb extracts was accessed on the basis of bloody diarrhea, survival rate, oocysts excretion and body weight gain. The proportion of blood in feces from the third to seventh day post inoculation was evaluated. The survival rate was estimated from the number of surviving chicks divided by the number of initial chicks. Oocysts excretion (Soulsby, 1986) was recorded from 6 to 14 day post inoculation. Chick body weights in each group were recorded at the starting of the experiment and at the end of the first and the second week after challenge.

Statistical analysis

The descriptive and inferential analyses applied to oocyst excretion and body weight gain, were made using the General Linear Model (GLM) procedure of SAS (vo. 9.2). Frequency procedure with fisher test was used for survivability estimation and comparison.

RESULTS

The survivability of the infected medicated control (100%) and _C. papaya_ (80%) treated chicks were significantly higher (p < 0.05) than that observed in _V. amygdalina_ treated chicks (65%) and the infected unmedicated control groups (60%). Bloody feces of all experimental and control groups were observed from the fourth to sixth day post infection with _Eimeria tenella_ oocysts. There were no bloody feces the third and the seventh day post infection. No bloody feces were ever found in the infected medicated control group. In the groups treated with the extract of _C. papaya_ and _V. Amygdalina_, the extent of bloody diarrhea was similar but milder than that observed in the infected unmedicated control group.

At the end of the first week following _E. tenella_ oocyst inoculation, the average body weight gain in the medicated control group, _C. papaya_ and the unmedicated control chick groups were significantly higher than that of the _V. amygdalina_ treated chick group (p < 0.05). At the end of the second week post infection, the body weight gain of all groups were statistically similar.

Lower excreted oocysts were observed with the medicated control (18,814) and higher with the infected unmedicated control chick group (349,935). The oocysts per gram in the groups treated with _C. papaya_ and _V. amygdalina_ were milder and statistically similar (p > 0.05).
Table 1: Survivability, Oocysts Per Gram and Body Weight Gain (mean ± SE).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Survivability (%)</th>
<th>Oocysts Per Gram</th>
<th>Body Weight Gain (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Week 1</td>
</tr>
<tr>
<td>Medicated control</td>
<td>100a</td>
<td>18814a ± 3716</td>
<td>54a ± 7.4</td>
</tr>
<tr>
<td>C. papaya</td>
<td>80b</td>
<td>153547b ± 53312</td>
<td>50a ± 9.2</td>
</tr>
<tr>
<td>V. amygdalina</td>
<td>65c</td>
<td>214,904b ± 88109</td>
<td>22b ± 7.5</td>
</tr>
<tr>
<td>Unmedicated control</td>
<td>60c</td>
<td>349935c ± 104560</td>
<td>48a ± 10.1</td>
</tr>
</tbody>
</table>

SE: Standard Error. (values in the same column that not share the same superscript letters are significantly different, p < 0.05)

Table 2: Proportion of bloody feces.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Proportion (%) of blood in feces (day after infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Medicated control</td>
<td>0</td>
</tr>
<tr>
<td>C. papaya</td>
<td>0</td>
</tr>
<tr>
<td>V. amygdalina</td>
<td>0</td>
</tr>
<tr>
<td>Unmedicated control</td>
<td>0</td>
</tr>
</tbody>
</table>

DISCUSSION

Carica papaya treatment reduced significantly the oocysts per gram down to 56.13% compared with the unmedicated control oocysts per gram. This result is in line with previous experiments showing similar activity of papaya latex, seeds and leaves against intestinal worm (Arvind et al., 2013). In an experimental infection, Ekanem et al. (2004) observed a significant reduction effect of petroleum-ether extract of seeds of C. papaya against a protozoan fish parasite Ichthyophthirius multifilis, with a reduction rate of 90% in vivo and 100% in vitro, compared with the untreated control. Likely, C. papaya seeds were found efficacious in treating human intestinal parasites, without significant side effects, with a parasite clearance rate of 76.7% (Okeniyi et al., 2007). The anthelmintic activity of papaya seed might be ascribed to carpaine, carpasemine (Kermanchai et al., 2001) and proteolytic enzymes such as cysteine proteinases (Stepek et al., 2005) and papaine (Arvind et al., 2013) from the fruit. Furthermore, C. papaya is known to have an anti-inflammatory properties, certainly due to its riches in Vitamin A, used against tumors, ulcers and can accelerate wound healing (Beuth et al., 2001). The oocysts per gram reduction induced by C. papaya crude juice treatment might be ascribed in one hand to the direct E. tenella protozoits digestion by a synergistic action of pancreas chymotrypsin and papaine. The anti-inflammatory property of the C. papaya concentrated vitamin A on the other hand might act in caecal epithelium cell protection, detrimental to the coccidia reproductive activities. This can justify the improvement of survival rate recorded in C. papaya treated chick group compared with that of the infected untreated control.
and V. amigdalina treated chick groups. The C. papaya anticoecidial effect was significant in oocysts excretion and mortality reduction. However, the observed oocysts per gram reduction of C. papaya constituted only 59.31% of the infected medicated control oocysts reduction. V. amigdalina treatment reduced significantly the infected unmedicated control group oocysts per gram down to 38.6%. This reduction was slightly lesser than that observed in C. papaya treatment. Works done by Ademola and Eloff (2011) in vitro, revealed that the extract of V. amigdalina inhibited egg hatching and inhibited larval development and killed larvae of Haemonchus contortus in a concentration-dependent manner. Best-fit 50% lethal concentration (LC(50)) values were 957.0, 76.0, 524.0, 309.0 and 224.0 μg/ml for the acetone extract, and the butanol, hexane, chloroform and 35% water in methanol fractions, respectively, when tested against nematode eggs. Huffman (2003) noted that multiple parasitic affected chimpanzees chewed V. amigdalina pith. Further analyses have revealed chemical compounds such as sesquiterene lactones (Cimanga et al., 2004), vernoniosides and flavonoids, namely: luteolin, luteonin 7 – O – β – glucuronoside and 7 – O – β – glucoside, which are known for their anti-tumor activities (Prabhakar et al., 2006). The bitterness and the chemical compounds especially the alkaloids of V. amigdalina might enhance the gastrointestinal enzymes (chymotrypsin) production and the digestion of the sporozoits. In addition the vernonioside antiparasitic activity against Eimeria is also possible, for, many antiparasitic effect of V. amigdalina have been reported. Antiprotozoan and anthelmintic properties (Abosi and Raseroka, 2003; Adiukwu et al., 2011; Ogni et al., 2014), anti-tumour properties (Izevbegie et al., 2004; Sweeney et al., 2005; Song et al., 2005; Opata and Izevbegie, 2006), hepato-protective activity (Ojiako and Nwanjo, 2006; Arbogbro et al., 2009) and anti-bacterial effect (Hamil et al., 2003; Bolou et al., 2011) have been demonstrated. It is also reported hat V. amigdalina provide anti-oxidant benefits (Erasto et al., 2007) and enhance the immune system through cytokines and chemokines regulation (Sweeney et al., 2005). The herein observed V. Amygdalina anticoecidial effect was only significant in oocysts excretion. However, this constituted 40% of the infected medicated control efficacy in terms of oocysts excretion reduction.

The treatment effect was significant on body weight gain in the first week following experimental infection and parallels previous reports (Youn and Noh, 2001). Bloody diarrhea was only affected by the conventional anticoecidial drug.

Conclusion

This preliminary anticoecidial activity study of Carica papaya and Vernonia amigdalina fresh leaves aqueous extract did reveal a Eimeria tenella oocyst reduction potential. But some parameters pertaining to the effective dose, the effective extraction procedure, the most effective part of the plant in terms of antiparasitic activity and the toxicity threshold need to be further investigated.

REFERENCES

Arczewskas-Wiłosek A, Świątkiewicz S. 2010. Response of Chickens Infected With Coccidiosis to Herbal Extracts
Mix Fed Singly or In Combination with Additives. XIIIth European Poultry Conference pp: 45- 50.

(Fabaceae) and Carica papaya (Caricaceae) against the protozoan fish parasite Ichthyophthirius multifilis. Parasitology Research, 92(5): 361-6.

Sacramento TI, Mensah GA, Adote HS. 2010. Effet antiparasitaire des graines de papaye (Carica papaya) chez l’aulacode (Thryonomys swinderianus Temminck, 1827) d’elevage : cas des

