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ABSTRACT 
 

Collinearity of predictor variables is a severe problem in the least square regression analysis. It 
contributes to the instability of regression coefficients and leads to a wrong prediction accuracy. Despite these 
problems, studies are conducted with a large number of observed and derived variables linked with a response 
variable. The aim of this study is to highlight a better understanding of the misleading effect of collinearity 
introduced by derived variables and the efficiency of alternative methods. Twelve variables selection models 
were subjected to five parameter estimation methods characterized by their ability to reduce the collinearity 
effect. The response variable and eight anthropometric variables and two derived variables were collected with 
200 children of 5 to 10 years old. We found that the selection methods do not mitigate the collinearity of 
selected subset variables, the size of selected subset variables depends on the collinearity of data samples and 
no significant correlation exists between sample and selected subset data collinearities. The analysis show that 
predictive quality did not improve with the introduction of derived variables. The alternative methods did not 
result in significant efficiency of prediction quality. We recommend avoiding the introduction of derived 
variables for the establishment of regression equation for prediction use. 
© 2015 International Formulae Group. All rights reserved. 
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INTRODUCTION 

Multivariate regression is often used to 
make predictions. However, the quality of 
some established equations is often questioned 
because this lead to illusions so caution is 
advisable (Armstrong, 2012). The main reason 
advanced of poor prediction quality is the 
selection of explanatory variables in the 
model. In many studies, a large number of 
variables are collected regardless their quality 
as their influence on the response variable. As 

pointed out by Sauerbrei et al. (2008), the key 
task is the identification of relevant variables 
influencing the response variable. 

In fact, for a matrix X of predictor 
variables and y  the response variable, the 

model is :   εβ += Xy  

With β , the unknown vector of regression 

coefficients and ε  the residual vector. The 
estimated coefficients obtained with the least-
square method computed as 
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yXXX ′′= −1)(β̂  is characterized by a 

minimum variance according to Gauss-
Markov theorem defined as follows: 
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The estimated mean square error β̂CM of β  

is (Gruber, 1998): 
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with )( XXtr ′ the trace of correlation matrix 

of X, 2σ̂  the estimated residual variance, k  

the number of predictor variables, and il  the 

thi eigenvalue. When the predictor variables 
are correlated, some eigenvalues are closed to 

zero and increase the β̂CM . The 

consequences are the instability of regression 
coefficients, standard errors on estimates 
inflated, the change of their sign and 
consequently inference statistics biased 
(Tomassone et al., 1992; Tormod and Bjorn-
Helge, 2001; Dobson, 2002; Feng-Jenq, 2008; 
Smith et al., 2009; Woolston et al., 2013; 
Akossou and Fonton, 2013; Dormann et al., 
2013). Some studies pointed out the excessive 
adjustment quality and optimism for 
prediction quality (Copas, 1983; Fonton, 
1995). It is well known that the reliability of 
least-square or maximum-likelihood 
estimators gets worse as linear relationships 
between predictors become more acute 
(Lauridsen and Mur, 2006; Yakubu, 2009). 

Despite the relevance of the 
collinearity, what kind of interest including in 
the predictor variables some variables 
computed from others and therefore 
introducing multicollinearity? It is most 
commonly used to include in a prediction 
equation all variables which are known or 
derived to affect the response variable. The 

reason is supported by biological concepts or 
theories frequently used as predictor variables 
in regression analyses. While the inferences 
based on ordinary least-squares regression 
were strongly influenced by the collinearity, 
some alternative methods were proposed to 
reduce the effect of collinearity on the 
prediction quality of regression equations. 
Many of them are based on the selection of 
variables and the other on the estimation of 
regression coefficients. They are ranging from 
clustering of predictors, threshold-based pre-
selection, through latent variable methods to 
shrinkage (Dormann et al., 2013) and the 
conditional likelihood method to control 
selection bias (Miller, 1990). 

The aim of this paper is to explain the 
misleading effect of introducing derived 
predictors and the capacity of some 
alternatives methods to reduce collinearity 
effect. The following hypothesis are tested: 
(1) the collinearity of data samples governs 
those of selected subset variables, (2) the size 
of selected subset variables depends on the 
collinearity of data samples, (3) the efficiency 
of alternative methods depends on the data 
structure, (4) the quality of prediction is  
improved with the introduction of derived 
variables. 
 
MATERIALS AND METHODS 
Study data and sampling 

The data was obtained from a study to 
establish regression equations to predict the 
basal metabolism rate (BMR) of children. Two 
hundred children from a primary school in 
southern Benin (West Africa) aged between 5 
and 10 years were sampled. The first data 
configuration (configuration I) involved age 
and seven anthropometric variables: weight, 
height, mid-upper arm circumference, folds of 
biceps, triceps, subscapularis and suprailiac. 
These eight predictor variables are essential to 
understanding the basal metabolic rate 
(Lovegrove, 2003). The second data 
configuration (configuration II) consisted of 
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ten independent variables, those of the first 
configuration and two derived variables. The 
two derived variables BMI and MA were 
supported by biological concepts theories. 
BMI is the Body Mass Index of QUETELET 
which is the ratio between the weight and the 
square of the height. The variable MA is 
derived from the relationship between the 
folds of triceps and the circumference of the 
forearm. 

Two sampled sizes n  of data were 

chosen: 15=n and 30=n  for nk /  
located at 2/6 and 4/6. Twenty independent 
samples of data were generated for each data 
configuration and size. This sampling was 
done using the command SAMPLE of 
MINITAB 14.1 software. For each sampled 
data, the collinearity index was computed and 
observations excluded (prediction 
observations) were used to assess prediction 

quality. The collinearity index (IC ) is the 

average of the inverse of the eigenvalues il of 

the correlation matrix of k predictor variables 
and computed as: 

∑
=

=
k

i ilk
IC

1

11
 

It is also the trace of the inverse of the 
correlation matrix divided by the number of 
variables. This design was adopted because 
the response, the sample size and the sampling 
variations govern the impact of collinearity on 
the parameter estimations (Woolson et al., 
2013). 
 
Prediction models 

Twelve selection models were 
subjected to five coefficients estimation 
methods, giving sixty prediction models. The 
twelve selection models consisted of four 
selection methods at three probability levels 
of selection: 15%, 5% and 1.5% which 

correspond respectively to 2,5.1 == tt  

and 5.2=t of Student’s t parameter. Two 

commonly used selection methods: the 

stepwise (sw) and forward (fw ) methods 

were used; their selection models were 
designated respectively by 

5.2,2,5.1 swswsw  and 

5.22,5.1 fwfwfw . The two other 

selection methods used were alternative to the 
least-squares method based on a parameter 
that controls the amount of shrinkage (Bondell 
and Reich, 2007; Ejaz et al., 2011). They are 
based on testing the significance of regression 
coefficients with the t-test. For these, a 
completed regression including all the 

k potential predictors was performed using 

the value 1d  proposed by Hoerl et al. (1975) 

and, secondly, the value 2d  proposed by 

Lawless and Wang (1976). The parameters 

1d  and 2d were computed as follows: 

( )AApd ββσ ˆˆˆ '2
1 =  and 

( )AAAA XXpd ββσ ˆˆ ''2
2 =  with 2σ̂ the 

estimated residual variance of the least-
squares regression. The significance tests 
were based on three probability levels 

5.1( =t , 2=t , )5.2=t  and non-

significant variables were discarded. Those 
selection models were designated by 

2,5.1 hkbhkb  and 5.2hkb  in the case of 

1d  and ,2,5.1 lwlw and 5.2lw  for 2d . 

The regression coefficients of the best 
subsets, A, selected by the selection models 
were estimated by the ordinary least-squares, 
designated by LS: 

yXXX AAAA
'1' )(ˆ −=β  

The following three shrinkage methods were 
the ridge regression and simple shrinkage. The 
ridge regression was computed as: 

)0()()(ˆ '1' ≥+= −
iAiAAiA dyXIdXXdβ

 
The two ridge regression methods used were 
designated respectively by HKB and LW. The 
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fourth method was the simple shrinkage 
method based on the estimator of James and 
Stein (Stein, 1962) identify as JS: 

AA cJS ββ ˆ)(ˆ =  

with 
obspFpn

pnp
c

)1(

)1)(2(
1

+−
−−−−= , obsF  the 

ratio of regression mean square and residual 

mean square, Aβ̂  the least-squares estimation 

and p  the number of selected subset 

variables. The latter estimation method was 

the conditional likelihood estimation (ML ). 
It was based on the adjustment the regression 
coefficients to the estimated selection bias 
(Miller, 1990; Fonton, 1995). 
 
Statistical parameters and analyses 

A total of 240 subsets of variables were 
selected and 1200 regression equations were 
established by data structure. For each set of 

sample data the collinearity index IC , the 
number p  of selected subset variables A and 

their collinearity AIC  were determined. The 

correlation coefficient between IC  and AIC   

was tested according to the null hypothesis 

0:0 =ρH
 
against 0:1 ≠ρH . For each 

data structure, the sizes of selected subset 
variables were compared using Generalized 

Linear Model according to IC and AIC . 

Those two analyses were intended to address 
the two first hypotheses. 

The statistical parameter used to 
evaluate the predictive accuracy of regression 
equations was the mean square error of 
prediction (MSEP), computed as follows: 

P

n

i
ii nyyMSEP

P

/)ˆ(
1

2
∑

=

−=  

with iy  the observed value andiŷ  the 

predicted value for the observation i, pn  the 

number of prediction observations. For each 

data structure, ANOVA was used to compare 
the regression methods. The later statistical 
methods were used to address the hypotheses 
3 and 4. 
 
RESULTS 
Descriptive analysis of data 

The descriptive statistics were 
presented in Table 1. The average metabolic 
rate (BMR) was 2.55 with a standard deviation 
of 0.38 and collinearity index of the predictors 
of 7.2. The correlation coefficient between the 
response variable BMR and each predictor 
variable ranged from -0.04 to 0.62. The 
correlation coefficients of BMR with BMI and 
MA were 0.40 and 0.54, respectively. The 

coefficient of determination 2R  of the 
completed model (including all the predictors’ 
variables) was 0.45 for the two data 
configurations (I and II). The introduction of 
derived variables did not increase adjustment 
quality of the completed model. 
 
Analysis of collinearity index  

The averages of IC  were 5.19  (± 

0.7) and 1.8  (± 0.1), respectively for sample 

sizes 15=n  and 30=n  for data 
configuration I, while for the configuration II, 

it increased to 4.1896  (± 39.5) and 0.410  (± 

8.0) for 15=n  and 30=n  respectively 
(Table 2). For both configurations, the 
collinearity decreased with the increase in 

sample size )(n . 

For all data structures, the correlation 

coefficient ),( AICICr  between the 

collinearity index of sampled data (IC ) and 
the collinearity index of selected subsets 

( AIC ) was 007.0=r  with a probability 

value of 0.125. A similar result was found 
with the ordinary stepwise selection method 

( 060.0=r and 518.0=valuep ). We 

obtained for any significant correlation 
between the collinearity of sampled data and 
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the collinearity of selected subset variables 
whatever the data structure irrespective of 

8=k  and 30=n . The correlation 

coefficient ),( AICICr  and the ratio k/n 

were inversely proportional (Figure 1). This 

explained that when nk /  increased the 
correlations decreased and changed the sign. 

For the data structure nk / = 8/30 (low value 

of nk / ), ),( AICICr was 0.3, while for the 

other structures it was close to 0. 
 
Analysis of the sizes of selected subsets 

The size of selected subsets decreased 
when the significance selection level 
increases, irrespective of the selection method 
and data configuration. The sizes p  of the 

selected subsets variables ranged from 0 to 5 
for the configuration I, and from 0 to 8 for 
configuration II. The percentages of data 

samples leading to 0=p  were 6.8% and 

16.7% for configuration I, 16.7% and 20.8% 

for configuration II, respectively for 30=n  
and 15=n  (Figure 2.a). The case 

0=p was characterized by strong 

collinearity of data samples mainly for 

15=n  as showed by the Figures 2.b and 2.c; 
the lead regression equation was the mean 

model yy = . The subsets with 1=p were 

the most represented (Figure 2.a) with 45.0% 
and 52.5% for configuration I and 37.5% and 
41.7% for configuration II, respectively for 

15=n  and 30=n . The same trend was 

observed with 2=p . It might be assumed 

that the size of selected subsets is inversely 
proportional to the collinearity of data sample. 
The ANOVA performed for the comparison 

of p showed a significant difference for IC  

whatever the data structure except for 8=k  

and 30=n  as presented in Table 3. A 
significant difference between sizes of select 

subset variables for AIC was also observed 

whatever the data structure. 
The analysis of variance for 

2≥p showed no-significant difference 

between the sizes of subsets of variables 
selected regardless to the data structure. About 
70% of the data samples were characterized 

by 0=p  and 8=p  with the shrinkage 

selection methods (Figure 3). The stepwise 

method was characterized by 5≤p  and 

more represented (39%) with 1=p . This 

was followed by the forward selection method 
with 38%. The selection method of Lawless 
and Wang was more representative for 

52 ≤≤ p  (41% to 63%). 

 
Prediction quality of established equations 

The analysis of prediction quality 
showed that the MSEP were ranging from 
0.27 to 0.77 (Table 4). On average, for the 

same configuration ( 8=k  or 10=k ), the 
prediction quality was better when n is higher. 
Also, for the same number of observations n, 
the best predictive value was obtained with 
the configuration of low collinearity. 

The maximum value of MSEP was 

obtained with 15,10 == nk  about twice 

the standard error. This indicates the 
introduction of additional variability resulting 
in the consequence of instability of regression 
coefficients. For this structure 12.2% of 1200 
equations were characterized by an additional 
variability, while it was only 8.8%, 0% and 

0.5%, respectively for 158 == nk , 

308 == nk  and 3010 == nk . The 

selection method presenting more variability 

was hkb while for parameters estimation it 

was JSmethod. 
As presented in Table 5, models for 

predicting basal metabolism highlighted a 
significant difference between data structures 
except 308 == nk . Irrespective to all 

data structure the difference was statistically 
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significant for selection models. The 
interaction between selection models and 
estimation methods was not significant 
irrespective of the data structure. 

For all models, improved predictive 
quality of data configuration I compared to 
those containing derived variables were 

5.10% and 1.50%, respectively for 15=n  
and 30=n . The analysis revealed that the 
best predictive model equation was 

5.1* lwLw . Comparing this regression 

model to LS* 5.1sw , the improvements of 
predictive quality were 3.0%, 2.6%, 7.3% and 

1.6%, respectively for 158 == nk , 

308 == nk , 1510 == nk  and  

3010 == nk . 

 

 
Table 1: Summary statistics of eight predictor variables, two derived predictor variables (BMI 
and MA) and the response variable (BMR) and the correlation coefficients (r) between the 
response variable and the predictor variables. 

 
 

Variables 
 

Mean 
Standard 
deviation 

Correlation 
coefficient (r)  

Age (months) 90.2 16.7 0.454 
Weight (kg) 20.9 4.0 0.631 
Height (cm) 119.8 9.2 0.598 
Circumference of forearm (cm) 16.7 1.4 0.470 
Folds of  biceps (10g/mm2) 4.0 0.8 -0.035 
Folds of triceps (10g/mm2) 6.3 1.4 -0.048 
Folds of subscapularis (10g/mm2) 5.3 1.0 0.238 
Folds Suprailiac (10g/mm2) 3.04 0.6 0.159 
BMI (Index of QUETELET) 14.4 1.1 0.395 
MA 17.5 2.9 0.542 
BMR 2.55 0.38  

 
 

Table 2: Statistics (mean, minimum, maximum and CIσ̂ ) of the collinearity index for 

sampled data for different data structures. 
 

 Data structures 
 8=k  10=k  
 15=n  30=n  15=n  30=n  

Mean 19.5 8.1 1896.4 410.0 
Minimum 6.3 4.9 406.1 215.3 
Maximum 67.5 13.5 3189.5 943.4 

CIσ̂  0.7 0.1 39.5 8.0 

k is the number of predictors and n  is the number of observations, and CIσ̂  the standard error of mean. 
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Table 3: Comparison of subset sizes (p) for collinearity indexes of sampled data (IC) and 

subset variables ( AIC ). 

 
  Data structures 

  15,8 == nk  30,8 == nk  15,10 == nk  30,10 == nk  

IC  valueF  4.50 1.79 2.70 2.69 

 
valueP  0.001*** 0.18 ns 0.009*** 0.013** 

AIC  valueF  9.83 39.27 35.63 7.32 

 
valueP  0.000*** 0.000*** 0.000*** 0.000*** 

ns = not significant, ** : high significant difference, *** : very high significant difference. 
 

 
 
 

Table 4: Prediction mean square error by data structure. 
 

k n Mean Minimum Maximum 
8 15 0.324 0.278 0.446 
8 30 0.301 0.273 0.373 
10 15 0.340 0.269 0.766 
10 30 0.306 0.268 0.417 

k is the number of predictor variables and n the number of observations. 

 
 
 

Table 5: Fvalues and their significant tests (Pvalues) for the comparison of regression models 
estimation methods, selection models, selection methods and significant levels. 

 
 

k 
 

n 
Regression 

models 
Estimation 

methods 
Selection 
models 

Selection 
methods 

Significant 
levels 

8 15 2,80 (***) 1,95 (ns) 12,46(***) 19,10 (***) 20,68 (***) 
8 30 0,69 (ns) 0,79 (ns) 2,95 (***) 2,12 (ns) 5,48 (**) 
10 15 2,02 (***) 2,33 (ns) 8,34 (***) 27,48 (***) 3,74 (*) 
10 30 6,04 (***) 1,72 (ns) 27,68 (***) 94,80 (***) 2,33 (ns) 

ns = not significant, * : significant difference, ** : high significant difference, *** : very high significant difference.
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Figure 1: Trend of the correlation coefficients between collinearity indexes of data samples and 
subset selected variables according to the ratio k/n. 
 
 

 
a) Percentage of size (p) of selected subset variables by data structure. 

 
 

b) Sample data mean collinearity index by subset size for configuration I 
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c) Sample data mean collinearity index by subset size for configuration II 

 

Figure 2: Characterization of selected subset variables: relation between the percentage of size of 

subsets selected variables and the collinearity index ( IC ) by data structure. 
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Figure 3: Percentage of selection models for each size of selected subsets variables for all data 
structures confused. 
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DISCUSSION  

The results showed no relationship 
according to collinearity index between data 
samples and the selected subsets variable 

unless for 308 == nk . The collinearity 

index of the selected subset could be 
considered as the effect of the selection 
method because shrinkage methods were 
based on the monitoring the collinear 
variables. This situation might stem from the 
fact that the collinearity is a parameter that 
allows testing the degree of robustness of 
those methods. The proposed ridge regression 

( hkb and lw) is a technique for coping with 

difficulties arising from multicollinearity 
(McCabe, 1978) by shrinking the ordinary 
least square estimator towards zero 
(Tibshirani, 1996). On the contrary, classical 
selection methods such as stepwise and 
forward selection have been less affected by 
this increased collinearity. 

The collinearity of data samples do not 
determined the collinearity of selected subset 

variables. The ratio nk / was inversely 

proportional to the correlation between 

IC and AIC . When n  increases for a given 

value of k , the correlation increases. With 

respect to the collinearity of data samples, the 
comparison of the sizes of the subsets of 
selected variables showed the existence of 

differences. For 1≤p  data samples were 

characterized by high collinearity. It can then 
be assumed that the size of selected subset 
variables depends on the collinearity of 
predictors variables. Nevertheless, the results 

showed that for 1>p , the data samples 

collinearity were statistically equal. 
The accuracy of regression models for 

the establishment of equations is strongly 
influenced by the selection model. That was 

the wrong trajectory of regression with the 
stepwise methods as pointed out by Harell 
(2001) and Meloun et al. (2002). This 
explained the promotion of new techniques 
combining variables selection and shrinkage 
of coefficients of penalized regression (Efron 
et al. 2004). The prediction quality did not 
improve with the introduction of derived 
variables. The MSEP of configuration II was 
5.10% higher compared to configuration I 
(lowest collinearity). The shrinkage methods 
improved the prediction quality more than the 
LS for highest muticollinearity and lowest 
number of observations. This is consistent 
with penalised regressions in presence of 
multicollinearity and where the number of 
predictors is greater (Avalos, 2009). Hastie et 
al., (2009) confirmed this result and 
concluded that shrinkage of coefficients 
towards zero leads to smaller prediction error 
due to decreased variance. In the same way, 
Arezoo and Habshah (2009) proposed two 
robust estimators in order to address 
multicollinearity problems. Those methods are 
more complex for a simple user of statistical 
tools. We think that the solution is not quite 
easy with an implicit multicollinearity. 
 

Conclusion 
In the light of the foregoing, the 

introduction of derived variables affects the 
size of selected subset variables with no 
significant efficiency in prediction. So, if 
possible, we recommend avoiding any such 
process for prediction use. 
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