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ABSTRACT 

  
β-galactosidases are a class of enzyme widely used as biocatalysts in the food, dairy, and 

fermentation industries. However, due to their biological origin, enhancement of these enzymes is generally 

necessary. The effect of temperature upon enzymes is a mandatory stage in rational enzyme engineering. The 

present work was devoted to Rhynchophorus palmarum Linn. β-galactosidase (Rpbgal) as part of the 

investigation of insect-derived enzymes for biotechnological applications. The thermal behaviour of Rpbgal has 

been studied in the temperature range 303-353 K by measuring enzymatic activities in presence of oNPG as 

substrate. Equilibrium model which gives complete and quantitative description of the effect of temperature on 

enzyme activity has been used to analyze experimental data. A satisfactorily agreement between the calculated 

results and the experimental data was obtained. The thermodynamic parameters provided by this model were 

given. Results showed that Rpbgal is relatively stable and active at 323 K. Temperatures over 330 K produce a 

significant decrease in the enzyme activity. In the temperature range 331 - 339 K, Rpbgal showed the best 

thermal stability compared to a commercial β-galactosidase from Aspergillus oryzae. 

© 2022 International Formulae Group. All rights reserved. 
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INTRODUCTION 

The use of enzymes in various 

industries such as food industry is increasing 

rapidly due to reduced processing time, low 

energy input, cost effectiveness, nontoxic and 

eco-friendly characteristics (Singh et al., 

2016). Enzymes are ubiquitous in nature 

(plants, animal organs, bacteria, yeasts, fungi, 

etc.) (Dué et al., 2008; Akpalo et al., 2021; 

Elian et al., 2021; Olakusehin and Oyedeji, 

2021). It has been pointed out that enzymes 

from insects or insect-associated 

microorganisms are highly demanded by the 

food industry to reduce food incompatibilities 

such as celiac disease or to eliminate potential 

anti-nutritive factors (Mika et al., 2013). 

Rhynchophorus palmarum L. (Coleoptera: 

Curculionidae) is an insect pest widely 

distributed in the tropical regions and in 

agrosystems exploiting oil palms (EPPO 
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Bulletin, 2005; EPPO Bulletin, 2007). The 

larvae of R. palmarum feed on the growing 

tissue in the crown of the palm, during which 

it makes a gallery, often destroying the apical 

growth area and causing eventual death of the 

palm. R. palmarum produces various 

hydrolases including β-galactosidase which 

are involved in digestive processes (Yapi et 

al., 2007).  

β-galactosidases have interesting 

applications in the food, dairy and 

fermentation industries (Panesar et al., 2006). 

They specifically catalyze two reactions such 

as hydrolysis and transglycosylation reaction 

(Alikkunju, 2016). During hydrolysis they 

cleave the disaccharide to monosaccharides 

which enter into glycolysis and 

transgalactosylation reaction. The reactions 

products are called galactooligosaccharides 

(GOSs), which are useful in human health 

care as prebiotic food constituents (Anisha, 

2017; Saqib et al., 2017). In addition to their 

clinical applications, β-galactosidases also 

play a vital role in food processing and 

biosensor for specific lactose determination in 

milk, treatment of lactose malabsorption, and 

production of lactosehydrolyzed milk (Asraf 

and Gunasekaran, 2010; Chanalia et al., 

2018). 

As a part of investigation of insect-

derived enzymes for biotechnological 

applications, the present work is devoted to R. 

palmarum Linn. β-galactosidase (Rpbgal). To 

the best of our knowledge, the only data 

relating to Rpbgal are from Yapi et al. (2007). 

They presented the influence of temperature 

on enzyme activity which is among the 

important factors in the control of 

bioprocesses in biotechnology (Najafpour, 

2015; Goswami and Stewart, 2016). Yapi et 

al. (2007) used the classic approach based on 

application of the well-known Arrhenius 

equation to describe the temperature-

dependence of enzyme activity. In this 

approach so called “classical model”, 

parameters defining enzyme thermal behavior 

are activation energy (Ea) and thermal 

inactivation rate constant (kinact) (Peterson et 

al., 2004).The weaknesses of this classical 

model have been mentioned several times in 

literature and highlighted by 3D plot of rate 

versus temperature versus time: apparent 

optimum temperature decreases with 

increasing time during the assay, very shallow 

maxima throughout the region, and an 

inexplicable abrupt rise in the rate at high 

temperatures (Patnaik, 2002; Peterson et al., 

2004; Eisenthal et al., 2006; Daniel et al., 

2008; Daniel and Danson, 2010). The 

Equilibrium model (EM) (Daniel and Danson, 

2001; Peterson et al., 2004; Lee et al. 2007; 

Peterson et al., 2007; Daniel et al., 2008; 

Weinberg, 2008; Daniel and Danson, 2010; 

Daniel and Danson, 2013; Lee et al., 2013) 

has been formulated to correct these 

weaknesses in order to give complete and 

quantitative description of the effect of 

temperature on enzyme. In our recent work 

(Kambiré et al., 2021), this model has been 

used satisfactorily to analyze the thermal 

inactivation data of the β-glucosidase from 

Rhynchophorus palmarum larvae. 

In the present work, the effect of 

temperature on enzymatic activity of Rpbgal 

in presence of o-nitrophenyl-β-D-

galactopyranoside (oNPG) is investigated. 

Then, experimental data are analyzed using 

Equilibrium model. The main purpose was to 

provide a set of reliable thermodynamic 

parameters which could be used for the 

enzyme optimization.  

 

MATERIALS AND METHODS 

Enzyme samples 

Extraction, purification and 

biochemical characterization of β-

galactosidase from the digestive juice of the 

palm weevil Rhynchophorus palmarum larvae 

(Rpbgal) targeted in this work, have been 

already performed and presented in details 

(Yapi et al., 2007).  

 

Influence of temperature on enzymatic 

activity 

Experimental 

The effect of temperature on enzymatic 

activity of Rpbgal is studied using oNPG as 

substrate. 50 μL of conveniently diluted 

enzyme and 75 μL of 5 mM oNPG are 

dissolved in 150 μL of 100 mM sodium 

acetate buffer (pH = 5.6). The reaction 

medium is incubated over a period of 60 min 
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with a sampling rate of 5 min and at 5 K 

intervals from 303.15 K to 353.15 K using a 

thermostatically controlled water bath 

(Thermomix BM-S, B. Braun Biotech 

International, Melsungen, Germany). Enzyme 

concentration in the reaction mixture is 9.09 

nM. The reaction is stopped by adding 3 mL 

of 1 M sodium carbonate and the absorbance 

is measured at 410 nm. One unit is defined as 

the amount of enzyme that hydrolyzes 1 

µmole per min of oNPG to o-nitrophenol at 

310.15 K. All chemicals used in this study 

(oNPG, buffers, etc.) are analytical grade and 

are purchased from Merck KGaA® 

(Darmstadt, Germany). 

Modeling 

Data modeling is performed using 

Equilibrium model (EM) extensively 

described in literature (Lee et al., 2007; 

Peterson et al., 2007; Daniel et al., 2008; 

Daniel and Danson, 2010). This model yields 

the following expression (Eq. (1)) for the 

variation of enzyme activity with temperature, 

expressed as Vmax (maximum velocity of 

enzyme): 

eq
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Where kB is Boltzmann constant (1.380510-

23 J K-1), h is Planck constant (6.625610-34 J 

s), T is the absolute temperature, R is 

universal gaz constant (8.314 J K-1mol-1), 
*

catG is the Gibbs free enthalpy of the 

catalytic reaction, 
*

inactG  is the Gibbs free 

enthalpy of the thermal inactivation process, 

eqH is the enthalpy of the equilibrium and 

Teq is the equilibrium temperature. 

           The quantitative expression of the 

dependence of rate on temperature and time 

can be described by the relationship presented 

below (Peterson et al., 2007; Daniel et al., 

2008; Daniel and Danson, 2010). 
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From Eq. (6), the “classical” optimum 

temperature (Topt) can be deduced (Peterson et 

al, 2004; Daniel et al., 2008): 
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Topt is the graphical optimum temperature of 

the enzyme at time zero (Lee et al., 2007; 

Daniel et al., 2008). Although, this parameter 

does not reflect an intrinsic enzyme property 

since it depends on assay conditions (Almeida 

and Marana, 2019), it is still considered in 

most enzyme characterization studies. 

In order to access to the EM 

parameters (
*

catG , 
*

inactG , 
eqH  and Teq), 

experimental data are analyzed using 

SigmaPlot version 14.0 software with 

iterations number of 200, step size and 

tolerance equal to 1 and 10-12, respectively. 

Firstly, values of these parameters (except 

for
*

inactG ) are estimated from initial rate vs. 

temperature (Eq. (6)). Then, the obtained 

values are used as initial values during the 

complete optimization (rate vs. time vs. 

temperature). 3D plot has been also done by 

the same software.  

 

RESULTS 

The initial rate versus temperature (Eq. 

(6)) is fitted satisfactorily using the 

equilibrium model (R2 = 0.972) as shown in 

Figure 1. Thermodynamic parameters 

(
eqH , 

*

catG  and Teq) deduced from this 

plot are presented in Table 1 altogether with 

the final optimized parameters obtained from 

3D plot of velocity vs. time vs. temperature. 

The 3D plot with a determination coefficient 

of R2 = 0.977 is shown in Figure 2. As already 

mentioned (Klein et al., 2018), this 

representation is an innovative approach in the 

field of thermal inactivation of enzymes, 

offering the possibility to evaluate the 

interaction of time and temperature on 

enzyme activity. For a better analyze of the 

thermal stability of Rpbgal, EM parameters 

are used to plot activity versus time (Figure 

3). 

In order to assess the possibilities that 

Rpbgal could offer in food processing 

industries from the thermal properties point of 

view, it is compared to a commercial β-

galactosidase from Aspergillus oryzae. 

Recently, the thermal inactivation of this 

enzyme (CAS Number: 9031-11-2) was 

studied by Klein et al. (2018) in the 

temperature range 331 - 339 K using oNPG as 

substrate in an acidic buffer. The temperature 

dependence of tR obtained for Rpbgal is 

compared with that of the commercial β-

galactosidase in Figure 4. tR is defined as the 

necessary time to the enzyme activity decays 

90% of its initial activity. 

  

 
Figure 1: The effect of temperature on the initial (zero-time) rate of reaction of Rpbgal: Equilibrium 

model (Eq. (6)) compared with experimental data. 
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Table 1: EM parameters for Rpbgal ([E0] = 9.09 nM). 

 

Parameters Initial rate 

(Eq. (6)) 

Entire time course 

(Eq.(5)) 

*

catG  (kJ mol-1) 59.4 ± 0.2 59.62 ± 0.04 

*

inactG  (kJ mol-1) --- 106.9 ± 0.2 

eqH  (kJ mol-1) 159.5 ± 0.9 159 ± 3 

Teq (K) 331.5 ± 0.8 332.4 ± 0.2 

Topt (K)a 328.9 --- 

eqS  (J K-1mol-1)b --- 479 ± 10 

a : Graphical optimum temperature of the enzyme at time zero. b : Equilibrium entropy deduced from Teq and ΔHeq. 

 

 

 

 
Figure 2: 3D plots of rate versus time versus temperature obtained by Equilibrium model (solid 

lines) for β-galactosidase from larvae of R. palmarum surperimposed with experimental data (full 

black circles) (pH = 5.6, substrate: oNPG). 
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Figure 3: Temperature stability of Rpbgal simulated from Equilibrium model. 

 

 

 
 

Figure 4: Evolution of the necessary time to the enzyme activity decays 90% of its initial activity 

(tR) with temperature.  
Aobgal: commercial β-galactosidase from Aspergillus oryzae (CAS Number: 9031-11-2) (Klein et al., 2018); Rpbgal: 

Rhynchophorus palmarum β-galactosidase (this work).  
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DISCUSSION 

From the plot of Rpbgal activity vs. 

time (Figure 3), it can be observed that, the 

smallest variation in activity with temperature 

is obtained for 323 K. Only a change of 18% 

is noted after 10 h. The highest activity is 

exhibited for 328 K during about 150 min (2.5 

h). Rpbgal keeps about 50% of its initial 

activity at 338 K for up to75 min (1.25 h). 

Over this temperature, the enzyme becomes 

very sensitive to heat. For the same time (75 

min) at 343 K, the enzyme loses more than 

76% of its catalytic capacity and it is 

completely inactivated after 3.5 hours. At 293 

K (predicted values), only 9% of the highest 

activity of Rpbgal (328 K) is obtained. 

Therefore, it can be concluded that Rpbgal is 

not active at low temperatures. Accordingly, 

this enzyme is not a psychrophilic β-

galactosidase.  

On the other hand, from the high value 

of the Gibbs free enthalpy of the thermal 

inactivation process (
*

inactG ) of Rpbgal 

(106.9 ± 0.2 kJ mol-1) compared to other 

enzymes from different sources under 

different assay conditions (type of substrate, 

medium pH, etc.) (Peterson et al., 2004; Lee 

et al. 2007; Daniel et al., 2008; Lee and 

Peterson, 2008; Daniel and Danson, 2010; 

Kambiré et al., 2021), it can be deduced that 

this enzyme exhibits a high thermal stability. 

In addition, the relatively low value of the 

enthalpic change associated with the 

conversion of active to inactive enzyme 

(ΔHeq) of Rpbgal (159 ± 3 kJ mol-1) suggests 

eurythermal behavior, i.e. the ability of the 

enzyme to function at relatively high activity 

in an environment with large temperature 

fluctuations (Lee et al., 2007). Taking into 

account the value of equilibrium temperature 

(Teq) (332.4 ± 0.2 K), Rpbgal could be 

considered as mesophilic enzyme (Lee et al., 

2007; Ansari and Satar, 2012). This kind of 

enzyme is of great biotechnological interest 

due to its ability to function under conditions 

that normally denature thermophilic enzymes 

(Ansari and Satar, 2012). 

The values of the necessary time to the 

enzyme decays 90% of its initial activity (tR) 

for Rpbgal are at least nine times higher than 

those of the commercial β-galactosidase 

(Figure 4). Therefore, Rpbgal has higher 

thermal tolerance than the commercial β-

galactosidase and it could be a potential 

candidate for biotechnological applications as 

a safe enzyme in food industry (lactose 

hydrolysis whey, formation of 

oligosaccharides, etc.). Indeed, stability at 

high temperature is very important for 

controlling and preventing potential microbial 

risk during the hydrolysis process (Daniel and 

Danson, 2010; Zolnere and Ciprovica, 2017). 

 

Conclusion 

The thermal behaviour of β-

galactosidase from larvae of Rhynchophorus 

palmarum (Rpbgal) has been performed using 

oNPG as substrate in the temperature range 

303 - 353 K. Experimental results have been 

analyzed using Equilibrium model (EM). A 

satisfactorily agreement between the 

calculated results and the experimental data 

was obtained. Thus, once again, EM showed 

its ability to account for thermal behavior of 

enzymes. It is worthy to notice that, this is the 

first application of EM to a β-galactosidase. 

This study revealed that β-galactosidase 

extracted from the digestive juice of the larvae 

of Rhynchophorus palmarum (Rpbgal) is more 

resistant to thermal inactivation at high 

temperatures as compared to a commercial β-

galactosidase from Aspergillus oryzae. The 

highest thermal stability exhibited by Rpbgal 

is obtained at 323 K. The present results are 

encouraging and open new perspectives for 

development of safe β-galactosidases in food 

applications. Due to its biological origin, 

Rpbgal could have different operational 

characteristics from those required for 

conventional industrial processes. Therefore, 

its enhancement should be necessary. In these 

conditions, the thermodynamic parameters 
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obtained in this work, which provide useful 

thermal information, will be very important in 

assessing structure-stability relationships. 
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