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ABSTRACT  
 

Every statistical procedure carries with it certain assumptions that must be at least approximately true 
before the procedure can produce reliable and accurate results. Researchers often apply a statistical procedure 
to their data without checking on the validity of the assumptions of the procedure. If one or more of the 
assumptions of a given statistical procedure are violated, then misleading results will be produced by the 
procedure. It is important that those who analyze data be fully aware of the details of the statistical procedure 
they are using, including its companion assumptions. If one or more assumptions are violated, an alternative 
procedure must be used to obtain valid results. This article aims at highlighting some basic assumptions in 
statistical analyses of data in biomedical sciences. 
© 2008 International Formulae Group. All rights reserved. 
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INTRODUCTION 
Assumptions refer to basic principles 

that are accepted on faith, or assumed to be 
true, without proof or verification. It is 
frequent and common experience that a 
researcher will apply a statistical method to a 
set of data without thoroughly checking that 
the assumptions of the method are valid. This 
may be especially true in diagnostic 
biomedical experiment because of the nature 
of the data involved. Measurements such as 
fetal abdominal circumference, fetal blood 
flow velocity, femur length, age of the fetus, 
biparietal diameter of the fetal head, 
ascending aortic cross-sectional area, etc, 
often follow a normal distribution as can be 
seen by the bell-shape of the histograms. 
For example, if a researcher wants to compare 
two  means,  he/she  might  apply  the  two 
sample t –test to the corresponding samples 
without checking the assumptions that go 
along with the test. Although the two sample 
t-test is designed to compare the means of two 

continuous populations, if the assumptions of 
the test are not true, then the results of the 
statistical analysis may be misleading.  It is 
evident that when independent samples from 
two populations deviate drastically from 
normality (normality as in assuming that equal 
standard deviations exists and the sampled 
sized 1n  and 2n are both less than 30) as a 

result of the fact that the samples (data) are 
ranked or ordinal in nature, then the use of t-
test in testing for hypothesis about the 
difference between two population means may 
lead to false result.  

Example 1: Presented in table 1 below 
are the lengths of time in seconds it took 
random samples of male and female students 
to perform a certain task. Should we conclude 
on the basis of these data that male students 
perform the task in shorter time than female 
students? Use 5% as level of significance to 
test the null hypothesis (Oyeka, 1996). 
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Table 1:   Length of Time in Seconds Taken 
by Random samples of male and female 
students to perform a certain Task. 
 
Male students Female students 
17 45 
13 30 
12 48 
35 10 
15 35 
44 13 
25 35 
56 89 
10 30 
 21 
 43 
 85 
 40 
Source: Oyeka, 1996. 
 
Solution 
Test of hypothesis 

H0 = The median length of time taken 
by male students to perform the task is less 
than or equal to the median length of time 
taken by the female students. 
H1 = The median length of time taken by the 
male students is greater than that of female 
students. 
When the sample sizes n1 and n2 are both 8 or 
more, the statistic U is approximately 

normally distribution with mean  1 2

2
n n

U −  

and standard  deviation 

( )1 2 1 2 1
12

n n n n
µδ

+ +
=   

Hence, the corresponding Z-score for the 
Mann-Whitney U-statistic is calculated as 

u

u

U U
Z

δ
−= = 1 2

2
n n

U − ÷

( )1 2 1 2 1
12

n n n n+ +
 

Z-test is preferred for use here because the t-
test is only used for paired comparison when 
the sample size is small. Meanwhile the data 
presented in table 1 are not in pairs or not 
matched. Therefore, the assumption for the 
use of t-test is violated. In other words, 

applying the t-test on the data, will lead to 
result that is contrary as can be seen below. 
t-test of hypothesis 

0 1 2 0:H dµ µ− ≥
1 1 2 0:H dµ µ− <  

Here �1- �2 indicates difference between two 
population means. 0d =some specified value 

that may be zero. From the example 1, 
represents male population mean while   is 
female population mean. In particular when 
do is zero, this is equivalent to testing the null 
hypothesis �1=�2 against the alternative 
hypothesis �1� �2 
 To test this hypothesis, we select two 
independent random samples (male and 
female students), one of size n1 from one 
population, and the other of size n2 from the 
second population. We then compute their 

respective sample means; and 1X   and 2X  

find the difference 0 1 2d X X= − .   In using 

t-test, the  population standard deviations   �1 
and �2  are  unknown and so are computed 
from samples while the sample sized n1 and n2 
are small (both are less than 30). If it is 
assumed that the two samples came from 
normally distributed populations with equal 
standard deviations, ps . The t-test statistic 

)( )(1 2 1 2 1 2 0

2 2

1 21 2

1 1
p p

p

X X X X d
t

s s s
n nn n

µ µ− − − − −= =
++

    where ps  is the pooled estimate of the 

common population standard deviation. If H0 
is true, then t-distribution has n1 + n2-2 
degrees of freedom, where 

( ) ( )2 2
1 1 2 22

1 2

1 1
2p

n s n s
s

n n

− + −
=

+ −
. For the 

purpose of analysis, recall from table 1 above 
the lengths of time in seconds taken by male 
students represented as 1X  and female 

students as 2X . 

The calculation of the standard 
deviations for male and female students is 
shown in table 2. 
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Table 2:  Calculation of the standard deviations for male and female students. 
 

1X  2X  ( )1 1X X−  ( )2 2X X−  ( )2

1 1X X−  ( )2

2 2X X−  

17 45 -8.22 4.69 67.57 21.99 
13 30 -12.22 -10.31 149.33 106.29 
12 48 -13.22 7.69 174.77 59.13 
35 10 9.78 -30.31 95.65 918.69 
15 35 -10.22 -5.31 104.45 28.19 
44 13 18.78 -27.31 352.69 745.84 
25 35 -0.22 -5.31 0.0484 28.19 
56 89 30.78 48.69 947.41 2370.71 
10 30 -15.22 -10.31 231.65 106.29 
 21  -19-31  372.87 
 43  2.9  8.41 
 85  44.9  2016.01 
 40  -031  0.0961 
Totals=227 524   2123.58 6782.706 
Source: Oyeka, 1996. 
 
 

where
1

227
25.22

9
X = = , 1 9n = ,

( ) 2

1 12
1

1
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235.95

9

X X
s

n

−
= = =� . 

Also,
2
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40.31
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X = = ,

( )2
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2

2
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1 1 2 22
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20.1849ps = .    

But
1 2 0

1 2

25.22 40.31
1.7241

1 1 1 1
20.1849

9 13p

X X d
t

s
n n

− − −= = = −
+ +

 

1.7241t = . Since the hypothesis indicates 

a one-sided test, the null hypothesis is rejected 
at the given 5% level of significance when 

1 21 ; 2n nt t α− + −≥ otherwise, 0H  is accepted 

but 
1 21 ; 2n nt α− + − is 1 0.05;9 13 2 1.7247t − + − = . 

Hence 0H  is, therefore accepted at the 5% 

level of significance since 1.7241t =  is less 

than 1.7247. We conclude that the median 

length of time taken by male students is at 
most equal to that of the female students. This 
result almost would have deviated (since the 
calculated absolute t that is 1.7241 is a little 
less than the tabulated t which is 1.7247) from 
the result obtained when Mann-Whitney U-
statistic was applied on the data in which case 
the conclusion would have been on the 
contrary. Medical researchers are advised to 
take caution in using t-test as it may lead to 
invalid results when wrongly applied. The test 
above is called small sample test. 

In order to ensure that the right test is 
applied, the data of table 1 requires analysis 
by ranking using a non-parametric test called 
(this will be explained in the next subheading) 
Mann-Whitney U-test because of the failure 
of some normality assumptions particularly 
that standard deviation/variances are not 
equal. To test the null hypothesis using the 
Mann–Whitney U-test we first combine the 
two samples and rank the  observations from 
the smallest to the largest, assigning the rank 1 
to smallest value, the rank 2 to the next 
smallest value, and so on. The ranks assigned 
to the observations in the two samples after 
their combined ranking are shown below 
(Table 3).  
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   Table 3: Ranks of the observations in the two samples. 
 

Rank of lengths of time for male students  Ranks of length of time for female students 
7 18 
4.5 10.5 
3 19 
13 1.5 
6 13 
17 1.5 
9 13 
20 22 
1.5 10.5 
 8 
 16 
 21 
 15 

Sum ( )1R  = 81  

   1n =9 

2R  =172 

2n = 13 

    Source: Oyeka, 1996. 
 
 
Since the sum of the ranks assigned to the 
observations in the male sample is calculated 
as 1R  = 81, we evaluate the Mann-Whitney 

U-statistic as  
( )

( )( ) ( )( )

1
1 2 1 1

1
2

9 10
9 13 81 81

2

n
U n n n R

+
= + −

= + − =

 

The mean of the U-statistic is 
( )11 2 1

58.5
2 2

nn n
Uµ

+
= =  and its standard 

deviation is 
( ) ( ) ( ) ( )1 2 1 2 1 9 13 9 13 1

14.9
12 12

n n n n
µδ

+ + + +
= = =

 
Hence, the normal z -score corresponding to 
U = 81, is calculated from 

81 58.5
1.50

14.97
u

u

U U
z

δ
− −= = =  

Because the alternative hypothesis implies a 
one-sided test, the null hypothesis cannot be 
rejected since 1.50 is less than 1.64, the 
critical value for the standard normal 
distribution corresponding to a 0.05 
significance level. We therefore, conclude that 
the median lengths of time taken by male 
students to perform the task is at most equal to 
the median time have for female students. 

This result may have been on the contrary if t-
test was used without checking to know if the 
data does not violate some of the normality 
assumptions. Some researchers always apply 
3 sigma rule to check for normality of data. In 
this situation, for a normally distributed data 
which would benefit from a parametric test, 
the range of data would be approximately 
equal to mean ±  3SD (Ugwu , 2007).      
 Every statistical test or estimation 
procedure has some basic assumptions that go 
along with it. It is important, when conducting 
statistical procedures, to check the validity of 
these assumptions. If one or more of the 
assumptions of a given statistical procedure 
are not true, then an alternative procedure or 
approach must be taken to obtain valid results.   
Basic assumptions must be attached to each 
statistical procedure because the assumptions 
enable researchers to formulate a coherent and 
effective method of analyzing the data; 
otherwise, a practical method of analyzing the 
data would not be achievable. 
 
PARAMETRIC AND NON-PARAMETRIC 
TEST 
 There is a set of statistical methods 
called non-parametric which do not require 
assumptions   of   any   form   of   probability 
distribution from which measurements come. 
They are otherwise   called   distribution - free 



U.M. OKEH and A.C. UGWU / Int. J. Biol. Chem. Sci. 2(3): 373-388, 2008 
 

 377 

method because inferences are not about 
population parameters, their knowledge or 
estimation is not required and no assumptions 
are made about them. However as noted 
above, parametric tests often require certain 
assumptions about the populations from which 
the samples are drawn. For example, the use 
of the t distribution to test the statistical 
significance of the difference between two 
population means, when the samples are 
small, requires that the two samples be 
independently drawn from populations with 
normal distribution and equal variances. 
Similarly, the use of the F distribution to 
compare the means of several populations 
requires that the samples be independently 
drawn from normally distributed populations 
with equal variances. Although these tests are 
sufficiently robust (insensitive to departures 
from the assumptions that underlie them) and 
can still be used even when some of the 
assumptions are not satisfied, the assumptions 
are nevertheless restrictive. On the other hand, 
non-parametric tests do not require these 
restrictive assumptions and may therefore, be 
used in situations where we would be justified 
in employing parametric test as well as in 
instances where the parametric tests are not 
applicable because the necessary assumptions 
may not be satisfied by the data. However, if 
both the parametric and the non-parametric 
test are equally applicable, then the parametric 
test will be more powerful as in having higher 
statistical power (Schefler,1984) than the non-
parametric test in that the later has a greater 
probability of accepting a false hypothesis 
(committing a Type II error).  Non- 
parametric tests are also found most suitable 
for analyzing ranked or ordinal data which 
often deviate, drastically from normality and 
therefore, may not be suitable for parametric 
tests (Oyeka, 1996). Consider in a one-way 
analysis of variance where the parametric F-

test may be used to test the null hypothesis 
that several group means are equal. In this 
case, F-test requires that the sampled 
populations be normally distributed with equal 
variances which are rather restrictive 
assumptions in the sense that when they are 
not satisfied may invalidate the results of the 
F-test. In a situation of this nature, an 
alternative non-parametric procedure for one- 
factor analysis that may be used when the 
assumptions of the F- test are not satisfied and 
also when the assumptions are satisfied is the 
Kruskal-Wallis one-way analysis of variance 
by ranks. The primary difference in procedure 
between this test and the usual F-test for one-
way analysis is that the Kruskal-Wallis test is 
based on a test statistic computed from ranks 
determined for pooled sample observations 
rather than from the observations themselves.   
It is an extended version of the Mann-Whitney 
U-test used when there are only k=2 groups 
involved in the one-way analysis of variance. 

Example 2: The data below (Table 4) 
are weights of food (in grams) consumed per 
week by four species of fish (Oyeka, 1996). 
Test, at the 5 percent significance level, the 
null hypothesis that food consumption is the 
same for the four fish species.  

The null hypothesis of no difference 
between quantities of food consumed by the 
four fish species will be tested using the 
Kruskal-Wallis one-way analysis of variance 
test procedure (Table 5). The above 
observations are first combined into one 
sample and ranked from the largest to the 
smallest, assigning the largest values a rank of 
1 and the smallest value a rank of 22, since 
there are altogether total of n=5+6+5+6=22 
observations. Tied observations are assigned 
their mean ranks. Table 3 shows the ranks 
assigned to the observations in each of the 
four fish species (Oyeka, 1996). 

 
Table 4:  Food consumptions (in gram) by species. 

Species 1 Species 2 Species 3 Species 4 
340 350 290 285 
345 360 300 296 
336 335 275 258 
358 360 240 230 
 385 305 295 
 287  348 

          Source: Oyeka, 1996. 
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Table 5: Ranks of fish food consumption data. An illustration of the Kruskal-Wallis One-Way 
Analysis of Variance test. 
 

Species 1 Species 2 Species 3 Species 4 
9 5.5 16 18 
8 2.5 13 14 
10 11 19 20 
4 2.5 21 22 
5.5 1 12 15 
 17  7 
Total 1,iR R =36.5 2R  =39.5 3R  = 81 4R  =96 

Source: Oyeka, 1996. 
 
The Kruskal-Wallis test statistic, H, is 
calculated from Tables 3 and it is given by  

( ) ( )
2

1

12
3 1

1

k
i

i i

R
H n

n n n=

= − +
+ �  

( )
( ) ( ) ( ) ( ) ( )

2 2 2 236.5 39.5 81 9612
3 23

22 23 5 6 5 6
= + + + −  

( ) ( )0.024 3374.69 69

80.99 69 11.99

= −
= − =

 

Since there are at least 5 observations in each 
of the K =4 groups, H may be assumed to be 
approximately chi-square distributed with 4-
1=3 degrees of freedom under the null 
hypothesis. Therefore, given 5 percent 
significance level, the critical chi-square value 

is 2
0.95,3 7.82x = . Since H= 11.99 >7.82, we 

reject Ho at the 5% significance level and 
conclude that food consumption by the four 
fish species are different. From the above 
example, it is seen  that  Kruskal-Wallis test 
takes account of both the direction  and 
magnitude of observation thus, utilizing more 
information about the data of interest than 
another non-parametric test called median test 
which can be extended to situations in which 
there are more than two groups and can be 
used in place of Kruskal-Wallis test. Median 
test is less powerful than Kruskal-Wallis test 
because it considers only the direction of 
observations (Oyeka, 1996).  
 It is in general recommended that non-
parametric tests be employed in such 
situations when the assumptions for 
parametric tests are seriously violated, or 
when the nature of the data makes it 
unadvisable to apply parametric tests. In the 
following sections, the basic assumptions of 
the standard parametric statistical procedures 
are discussed, a description of how to check 

those assumptions is given, and 
recommendations of what to do if the 
assumptions are not met are provided. A great 
deal of the Mathematical theory of statistics 
assumes the existence  of populations and 
further assumes that for any given variable 
‘true’ values of certain measures used to 
characterize a population exists. These ‘true’ 
values are called parameters. It is note worthy 
that one seldom has data for entire 
populations, and nearly always has to rely on 
samples to draw conclusions about 
populations. Hence, parameters are rarely ever 
calculated or exactly known. However, by 
drawing representative samples of 
populations, parameters can be estimated very 
well. An estimate of a population parameter is 
called a sample statistic, or sample. A statistic 
is calculated on the basis of only those data 
that are actually observed. It is conventional 
in statistics to represent population parameters 
by Greek letters (e.g. population mean 
represented as µ ) and sample statistics by 

Roman letters (e.g. sample mean as X ). 
Parameters are constant for a given 
population, but statistics vary from sample to 
sample for repeated samples drawn from the 
same population. Thus, there could be several 
sample statistics corresponding to a given 
population parameter. But since we use 
sample statistics as estimates of population 
parameters and to draw conclusions about 
populations, it is important that we select 
‘best’ estimates in the sense that they possess 
certain desirable properties (Oyeka, 1996). 

Example 3:  Find the arithmetic mean 
of the marks obtained by 10 students of a class 
in  mathematics  in  a  certain examination.  
The  marks   obtained  are:  25, 30, 21, 55, 47, 
10, 15, 17, 45 and 35 (Oyeka, 1996).  
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Solution: 
Let x  be the average mark obtained. 

This is otherwise called the sample statistic or 
the estimate of the population parameter. 
Hence sum of all the observations 

25 30 30 21 55 47 1015 17 45 35 300x= + + + + + + + + + =�  

Number of students n=10             

   300
30

10

x
x

n
= = =�  

 
REPRESENTATIVE SAMPLE  

One of the most important assumptions 
for any statistical procedure is that the sample 
be representative of the population being 
studied. In this way, the characteristics of the 
sample will be typical of the characteristics 
possessed by the study population. When the 
sample is not representative of the population 
under study, conclusions derived or drawn 
from the sample will not be valid for the study 
population. An example of this kind of error 
can be found in an article by Pearl (1929) 
where a negative correlation between presence 
of cancer and presence of tuberculosis in a 
sample of autopsy cases was assumed to be 
valid for live patients. So Pearl conceived a 
study to treat patients with terminal cancer 
with tuberculin (the protein of the tubercle 
bacillus) thinking the cancer would be 
arrested. The experiment failed; Pearl did not 
realize that an association found in autopsy 
cases should not be extrapolated to live 
patients unless all deaths are equally likely to 
be autopsied. 
 In principle, one can ensure a 
representative sample of the study population 
by taking a simple random sample of the 
population, namely, one for which every 
individual (or, more generally, experimental 
unit) has the same chance of being selected in 
the sample. The best way to ensure a simple 
random sample is to use a    random number 
generator or a random number table 
(Nwabuokei, 1989; McClave et al., 1997). In 
many instances, a true random sample is not 
feasible, so researchers obtain a 
“convenience” sample.For instance, a 
researcher in Abakaliki, Ebonyi State may 
study the average fetal blood flow for 
Nigerian mothers by obtaining a sample of 
mothers in Abakaliki area hospitals. To   
the extent   that  hospitalized   Abakaliki  area 
mothers are not representative   of  all 

Nigerian  mothers,  because not only that the 
sample size is very small and inadequate, it 
will give biased information about the entire 
Nigerian mothers, and  the  conclusions drawn 
from  the sample  are invalid for Nigerian 
mothers, since only one state can never 
represent the entire Nigeria in terms of 
opinion. 

However, inadequate randomization is 
often times experienced in the Lottery method 
of ensuring randomness of sample selection 
from the population of interest (Fienberg, 
1970). These biased results and personal 
prejudice are often noticed if the slips are not 
of identical size, shape and colour. Lottery 
method is a very popular method of taking a 
random sample. Under this method, all items 
of the universe are numbered or named on 
separate slips of paper of identical size and 
shape. These slips are then made of the 
number of slips required to constitute the 
desired sample size. The selection of items 
thus depends entirely on chance. The method 
would be quite clear with the help of an 
example. If we want to take a sample of 10 
persons out of a population of 100, the 
procedure is to write the names of the persons 
on separate slips of paper, fold these slips, 
mix them thoroughly and then make a 
blindfold selection of 10 slips (Gupta, 2001). 

Generally, whether a collection of 
observations is a population or a sample 
depends on the study objectives. For example,  
a farmers’ association may wish to compare 
the costs of pest control to the costs of other 
farm management and services. The purpose 
of the study determines whether the 
populations would comprise costs for an 
entire country, for a state or simply, for a 
small administrative area or community. If the 
population of costs covers all farms treated 
during a particular month in a calendar year, 
then the costs for all farms treated on a single 
day would constitute a sample. The costs for a 
single farm treated during the entire month 
would also constitute a sample, of the same 
population. If the farmers association is 
interested only in the costs for farms treated 
on a particular date, then those data would 
constitute populations rather than samples. 
Similarly, if the costs at different farms are to 
be compared, then the costs at any one farm 
would be a separate population. 
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INDEPENDENCE 
For many statistical procedures, the 

observations are assumed to be independent. 
That is, one cannot predict the outcome for 
one experimental unit given the outcome of 
any other experimental unit. Suppose, for 
example, that you wish to study the head 
circumference of a random sample of 1- year -
old babies. If a set of twins is included in the 
sample, then the head circumference 
measurements for those two babies would be 
correlated, violating the independence of the 
observations. As another example, consider an 
article by Himes (1991) where the mean 
weights of three groups of men were 
compared using a one-way analysis of 
variance. The three groups were formed in 
such a way that many of the men were 
classified in two or all three of the groups, so 
their weights appeared in more than one 
group. Consequently, observations in one 
group were correlated with observations in 
another group. Because the one-way analysis 
of variance requires independent samples (i.e. 
observations in one group must be 
independent of observations in any other 
group) the results of the analysis are invalid. 
In biological experiments and field studies, 
correlated t-test or paired t-test are applicable. 
They can also be applied to paired data or two 
samples obtained from the same population at 
two different times and conditions (i.e. 
independent samples). Each individual gives a 
pair of observation. The paired or correlated t-
test can otherwise be called t-test for two 
sample means. The t-test for correlated data 
provides the significance of the difference 
between the two correlated means (Rastogi, 
2007).  

Example 4: The percentage of water 
content in two varieties of watermelons was 
measured and the results obtained are 
presented in table 6. Find out whether there is 
significant difference in water content of two 
varieties.  
 
 
 

Solution: 
Identification of problem: To find out 
difference in the content of two varieties of 
watermelons. 
Data Given:  

 
1 2

2 2

1 2

12 15

15 19

92 84

n n

s s

x x

= =
= =
= =

 

Step 1: Calculation of standard deviation 
( ) ( ) ( ) ( ) ( ) ( )2 22 2

1 1 2 2

1 2

1 1 12 1 15 15 1 19 2475 5054 7525
301.16

2 12 15 2 25 25
n s n s

s
n n

− + − − + − += = = = =
+ − + −

 
Step 2: calculation of t-value.   

1 2

2 2
1 1

1 2

92 84 8
1.22

225 361 15.75 2406
12 15

X X
t

s s
n n

− −= = = =
+++

 
Therefore, 1.22t =  
step 3: critical value: 

(1) Hypothetical value of t from 
distribution table =1.708 

(2) Calculated value of t from 
observations=1.22  

Inference:   Observation of estimated t value 
1.22 is less than hypothetical value of t which 
is 1.708. Therefore, it can be concluded that 
there is no significant difference in water 
content in two varieties of watermelons. 
Hence, null hypothesis is applicable or true 
for this case. 
 
NORMALITY 
 Many statistical procedures require that 
the outcome variable be normally distributed. 
Theoretically this means that a histogram of 
the outcome variable for the entire study 
population must be bell shaped. A practical 
way of checking this assumption is to study 
the histogram of the sample. If it is not 
substantially non normal, then the parametric 
procedure will provide an adequate analysis. 
Of course, one may ask, “What constitutes a 
substantial lack of normality?” This is a 
subjective judgment to some extent: two 
statisticians may give two different  

Table 6: The percentage of water content in two varieties of watermelons 
 

Variety  Average water 
content 

No of watermelons 
(n) 

Standard 
Deviation (s) 

A 92% 12 15% 
B 84% 15 19% 

     Source: Rastogi, 2007 
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answers for the same data set. There are tests 
of normality called goodness of fit test 
(Oyeka, 1996), which can be used to help 
determine whether the underlying population 
is approximately normal, but experience at 
dealing with such questions or knowledge 
about the underlying population distribution is 
the best way to resolve such questions. One 
good example of test of normality using chi-
square test is the goodness of fit test. 
Goodness of fit test indicates the closeness of 
observed frequency with that of the expected 
frequency. If the curves of these two 
distributions do not coincide or appear to 
diverge much, it is said that the fit is poor, if 
two curves do not diverge much the fit is less 
poor. Thus it helps to answer whether 
something (physical or chemical factors) did 
or did not have an effect. If observed and 
expected frequencies are in complete 
agreement with each other then the chi-square 
value will be zero. But it rarely happens in 
biological experiments.  There is always some 
degree of deviation.  

Example 5: In a chemical treatment, 
the patients were tested to see the effect of a 
potential hypertensive drug. The 50 patients 
were assigned to receive the active drug and 

other 50 the placebo at random. Their 
response to treatment was categorized as 
favorable or unfavorable (Rastogi, 2007). The 
data is given in table 7. 
Test the hypothesis that drug has a significant 
effect. Use 0.05α =  
Solution:  
Step 1: Problem identification: The 
hypertensive drug has a significant effect or 
not. 
Step 2: Data: Given in the table. The attributes 
are arranged in two-way table or contingency 
table, i.e. two rows and two columns (Table 
8).  
Step 3: Hypotheses 

1. Null hypotheses ( 0H ) stands for that 

drug does not have significant effect. 
2. Alternative hypothesis (HA) proposes 

that the effect of dug is significant 
Step 4: level of significant =0.05 and Degree 
of freedom = (2-1) x (2-1) =1 
Step 5: Calculation of expected frequency for 
each by using following formula: Expected 

frequency ( ) Row total x Column total
Grand total

E =      

       
                                             
Table 7:  Result of the effect of hypertensive drug (observed frequency). 
 
Treatment  Response Total 
 Unfavorable Favorable  
Placebo  
Drug  

41 
16 

9 
34 

50 
50 

Total  57 43 100 
Source: Rastogi, 2007. 
 
 
Table 8:  2 X 2 contingency table showing expected frequencies. 
 

Effect of drug or response Treatment 
Unfavorable Favorable 

Row total 

Placebo 57 X 50        100      

 
= 28.5 

43 X 50
100  

 
= 21.5 

50 

Drug 57 X 50        100  

= 28.5 

43 X 50        100  

= 21.5 

50 

Column total 57.0 43.0 100 
Source:Rastogi,2007. 
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Step 6  calculation of the difference between the observed and expected (0-E) values: 
Unfavourable Favourable 
41- 28.5 =12.5 9- 21. 5 =12.5 
16 –28.5 = 12. 5 34- 21.5 =12.5 
Source:Rastogi, 2007. 
 

Step 7 calculation of 2χ  value  
Groups �0-E�-0.5 2

0.5O E� − − ���
 

 

   

2
0.5O E

E

�� − −� �  

1 
2 
3 
4 

12.5-0.5 =12 
12.5-0.5 =12 
12.5-0.5 =12 
12.5-0.5 =12 
 
 

(12) 2=144 
(12) 2=144 
(12) 2=144 
(12) 2=144 

144
5.05

28.5
144

5.05
28.5

=

=
 

144
6.70

21.5
144

6.70
21.5

=

=

 

Source:Rastogi,2007. 
 
 

2

2

2

0.5
5.05 5.05 6.70 6.70 23.50

23.50

O E

E
χ

χ

�� − −� �= = + + + =

∴ =

�

 
Here the first two values represents  
unfavourable  response  while  the  last  two  
represents  favourable  response .The general 
formula 

2
2 ( )O E

E
χ −=�  was not used because 

the degree of freedom for the above problem 
is 1 since it is a 2x2 contingency table. We 
actually approximated the theoretical chi-
square distribution (which is continuous) 
because we calculated the chi-square statistic, 

2χ , from the observed frequencies which is 
discrete in nature (Oyeka,1996).This method 
is called Yates correction for continuity. 
Step 8: Degree of freedom = (No of rows-
1)(No of columns-1) i.e.  
d.f = (2-1)(2-1)=1 

Expected value of  2χ  from table at 0.05 
level =3.84. 

Value of 2χ from calculations =23.50 

Inference: The calculated or observed value of 
2χ is 23.50. It is much higher than the critical 

value of 2χ . Therefore, the null hypothesis is 
rejected. The conclusion is that the hyper drug 
has significant effect.   
 
MEASURES OF DIVERGENCE FROM 
NORMALITY 

Most statistical procedures involve the 
deviation of outcome variable from the 
normal distribution curve. These divergences 
can be studied by skewness and kurtosis. 
When the frequency distributions of the 
outcome variable, is asymmetrical, the 
distribution is known as skewed. Data may be 
skewed to the left or right. In normal 
distribution curve, skewness is zero. In 
skewed curve; mean, median and mode do not 
fall in the middle of the normal distribution 
curve and the skewness is called negative or 
positive respectively. Several instances are 
available in biomedical sciences where 
frequency distribution is skewed. Take the 
case of population density, which increases 
exponentially but not in time (Rastogi, 2007). 
In the same manner, kurtosis is the relative 
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flatness or peakedness of the frequency curve. 
According to kurtosis, the frequency curves 
can be platykurtic curve (when the frequency 
distribution curve is flatter than the normal 
bell shaped curve), Leptokurtic curve (when 
the frequency distribution curve is more 
peaked than the normal bell shaped curve) and 
Mesokurtic curve (i.e. the normal bell-shaped 
distribution curve). 
 
POWER 

In many statistical procedures, power is 
seen as the ability of the research design to 
defect relationships among variables. 
Precision contributes to the power of a design. 
Power is also increased when a large sample 
is used. One other aspect of a powerful design 
concerns the construction or definition of the 
independent variable. For both statistical and 
theoretical reasons, results are clearer and 
more conclusive when the differences 
between groups that are being compared are 
large. The aim here is to maximize group 
differences on the dependent variables by 
maximizing differences on the independent 
variable. In other words, the results are likely 
to be more clear-cut if the groups are as 
different as possible. This advice is more 
easily followed in experimental than in non-
experimental processes. In experiments, the 
investigator can devise interventions that are 
distinct and as strong as time, money, ethics, 
and practicality permit. However, even in non 
experimental processes, there are frequently 
opportunities to operationalize the 
independent variables in such a way that 
power to detect differences is enhanced 
(Denise and Bernadette, 1995). 
 
POWER ANALYSIS 

Many published and unpublished 
studies in biomedical sciences result in non 
significant findings, that is, one or more of the 
researcher’s hypotheses are not supported. 
Although standard statistical texts pay 
considerable attention to the problem of Type 
I errors (wrongly rejecting a true null 
hypothesis), little attention has been paid to 
Type II errors (wrongly accepting a false null 
hypothesis). Power analysis represents a 
method for reducing the risk of Type II errors 
and for estimating their occurrence. The 
statistician called the probability of 
committing a type I error as level of 

significance or alpha (α) while the probability 
of a type II error is beta (β), the complement 
of (I-β) is the probability of obtaining a 
significant result and is referred to as the 
power of a statistical test ( Eze et al., 2005; 
Denise and Bernadette, 1995). 
   Example 6: Suppose we fix the level 

of significance ( )α  of a test at 5% and the 

mean of the random variable x follows normal 
distribution with mean, 80  and variance, 4, 

otherwise written as ( )80, 4 .x N�  We can 

obtain the critical value of the mean c at this 

level of  α , the type Π  error  ( )β  and the 

power of the test ( )1 β− . Note that C which 

is called the critical region of the test is the 
subset of the sample space which in 
accordance with a prescribed test, leads to the 
rejection of the null hypothesis ( 0H ) under 

consideration (Eze  et al., 2005). 

Solution: ( )/ op x c H> =α =p(Rejecting  

Ho/Ho is true)=
80

0.05
2

c
p Z

−� �> =� 	

 �

, 

Thus ∅(c-80)/2=0.05  Where ∅  is  the  
value  of  5%   from  table and c-80/2 =1.65 

�  C=80+2 (1.65)=83.3 
Hence   we   reject   Ho   when 
  

83.3 when 1.65
x U

x or n
δ
−� �> >� 	


 �
 

The performance of the test in terms of its 
ability to reach a correct decision is gauged by 
an evaluation of β  - the probability of type 

∏ error.  
β = (accepting Ho/ Ho is false) = p( x  is  in  
the  acceptance region (A) when it is actually 
in (R)) 

              

( )
( )
( )

( )

1

/

/ : 85

83.3 / 85

83.3 85
2

0.85 0.1977

p x A x R

p x c H U

p x U

p Z

p Zβ

= ∈ ∈

= ≤ =

= ≤ =

−� �= ≤� 	

 �

= ≤ − =
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That   is,  the  test   will  fail  in  about  
19.77%   to  correctly  discriminate  between  
H0 and H1. In other words, the power of the 
test to yield a correct decision is given by 1- 
β =1-0.1977=0.8023.  
 In performing a power analysis, there 
are four components, at least three of which 
must be known to or estimated by the 
researcher or experimenter; power analysis 
solves for the fourth component. The four 
major factors are as follows: 

1. The significance criterion and other 
things being equal, the more stringent 
this criterion, the lower is the power. 

2. The sample size, n. As sample size 
increases, power increases.  

3. The population effect size, gamma 
(γ). Gamma is a measure of how 
wrong the null hypothesis is, that is, 
how strong the effect of the 
independent variable is on the 
dependent variable in the population. 

4. Power, or I –β. This is the probability 
of rejecting the null hypothesis. The 
two purposes for power analysis are 
to solve for the sample size needed in 
a study to increase the likelihood of 
demonstrating significant results and 
to determine the power of statistical 
test, after it has been applied. 

 
SAMPLE SIZE 
 In most statistical procedures, the 
assumptions that must be made depend largely 
on the sample size available. For instances, if 
the sample size is quite large, then, as a result 
of the Central Limit Theorem (Parzen, 1960), 
the normality assumption need not be made in 
many procedures. But if the sample size is 
relatively small, the normality assumption 
must be true for the results to be valid. A 
number of formulae have been devised for 
determining the sample size depending upon 
the availability of information. A few 

formulae are given below: 
2

Z
n

d
δ� �=� 	


 �
 

Where n= sample size, Z= value at a specified 
level of confidence or desired degree of 
precision. 
S= Standard deviation of the population, d= 
Difference between population mean and 
Sample mean. 

Example 7: Determine the sample size 
if 6,δ =  population mean = 25, sample 
mean =23 and the desired degree of precision 
is 99 percent (Gupta, 2001).  
Solution:  

2
Z

n
d
δ� �=� 	


 �
 

n=?, d=25-23=2,� =6 
Z =2.576(at 1% level the Z value is 2.576)  
Substituting the values:  

2
22.576 6

7.728 59.72
2

x
n � �= = =� 	


 �
 

In the same manner, the sample size (n) can 
be determined from the formula for 

determining the standard error of mean i.e. 
22

2 orX X
X

n
nn

δ δ δδ δ
δ
� �

= � = = � 	

 �

     

Therefore, if δ  is 10 and  2.25,Xδ =  n 

shall be  ( )
2

210
4 16

2.25
n � �= = =� 	


 �
  

Also from the formula for calculating standard 
error of proportion, the sample size can be 
determined from the fact that if   

2
2p p

p

pq pq pq
or or n

n n
δ δ

δ
= = =            

      If   p=.5, q=.5 and  

( )2

0.5 .5
.005, 10,000

0.005
p nδ ×= = = .  

More details regarding the determination of 
sample size are seen in Gupta (2001) and 
Khamis (1988). 
 
PARAMETER SPECIFICATIONS 

Sometimes a statistical procedure 
makes assumptions about one or more 
parameters. For instance, in tests involving 
two or more populations, it may be required 
that the variance of the outcome variable be 
the same for all populations. There is a 
statistical test to help one make a judgment 
about the equality of variances and this is 
called hypothesis testing concerning two 
population variances – see hypothesis 10 in 
the next section. 
 In the one-way analysis of variance and 
linear regression analysis (see hypotheses 12 
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and 13 in the next section), the most common 
way to check assumptions is to study the 
residuals (the difference between the observed 
response and the response predicted from the 
model). These residuals can be used to check 
the normality assumption, the equal variance 
assumption, and even independent of the 
observations, depending on the available data. 
The details of residual analysis are beyond the 
scope of this article, but the interested reader 
is referred to McClave et al. (1997). 
 
Specific assumptions in the elementary 
(parametric) statistical tests 
 For 13 of the elementary statistical test, 
the null hypothesis is specified along with 
other information about the sampling 
situation, followed by the assumptions of the 
parametric statistical test appropriate for the 
hypothesis. In the following list, µ represents 
a population mean, ρ a population proportion, 
δ2 a population variance, and β a linear 
regression coefficient. A general discussion of 
the terminology and concepts of hypothesis 
testing can be found in articles by Khamis 
(1987) , Khamis and Warner (1997). 

1. HO: µ= µo, n ≥ 30 (Z-test) 
Assumption: simple random sample 
from the study population  

2. HO: µ= µO, n < 30 (t-test) 
Assumptions: simple random sample 
from the study population, normality 
of study population. 

3. Ho: P = Po (Z-test for a binomial 
proportion) Assumption: simple 
random sample from the study 
population of binomial (“Yes/No”) 
responses: Po±3δ0 does not include 0 
or 1, where δo= (Po 
I – Po� / +n)1/2  

4. Ho: δ2=δ2
0 (chi – squared test of 

variance) Assumptions: simple 
random sample from the study 
population: normality of the study 
population. 

5. HO: µ1=µ2= Do, n1 ≥ 30 and n2 ≥ 30 
(two-sample Z-test) Assumptions: 
random, independent samples from 
the two study +populations. 

6. HO: µ1 = µ2 = Do, n1 < 30 or n2 < 30 
(two–sample t-test or pooled–sample 
t-test) Assumptions: random 
independent samples from the two 
study populations; normality for each 

population: population variances are 
the same. 

7. HO: µ1= µ2= = Do, Observations from 
the two samples are paired according 
to one or more criteria. Number of 
paired differences is at least 30 
(paired Z-test). Assumptions: paired 
difference form a random sample 
from the population of paired 
difference  

8. HO: µ1= µ2 = Do, Observations from 
the two samples are paired according 
to one or more criteria: number of 
paired differences is less than 30 
(paired t-test). Assumption: paired 
differences form a random sample 
from the population of paired 
differences: normality for the 
population paired differences. 

9. Ho: P1–P2=0 (Z-test for the equality 
of two binomial proportions). 
Assumptions: simples random 
samples from the study populations 
of binomial (“Yes/No”) responses p1 
± 3δ1, does not include 0 or 1 where 
δ1 = {p1 (I –p1) /n1}1/2 and p2 +3δ2 
does not  include 0 or 1 where δ2 = 
[p2 (1 –p2)/n2]1/2  

10.  Ho: δ2 /δ2
2 =1 (F-test for equality of 

variances). Assumptions: random, 
independent samples from the study 
populations: normality for each 
population 

11.  Ho:µ1 =µ2 = µ3=………. =µk, n≥ 30 
for all K groups (large sample one-
way analysis of variances  for K 
groups) Assumptions: random, 
independent sample for all K groups 

12.   Ho: µ1, = µ2 = µ3=…………= µk, n 
< 30 for at least one group (one-way 
analysis of variance for K groups). 
Assumptions: random, independent 
sample for all K groups. Normality 
of each population: the variances for 
all K groups are the same. 

13. Ho: β= βo (t-test for linear 
regression: Y=  α + βx+ε ). 
Assumptions: random sample of (x, 
y) pairs; normality and equal 
variances for Y values at each level 
of X.  
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What to do if one or more assumptions are 
violated 
 (Non-parametric Tests) 
 Each of the tests listed will be reviewed 
for the case in which one or more of the 
assumptions is violated. Because randomness 
and independence of observations is 
fundamental for any test procedure, they will 
continue to be assumed true. Most of the 
alternative tests listed below are non-
parametric tests (McClave et al., 1997). 

1. No alternative approach is needed 
because there are no assumptions 
beyond that of a simple random 
sample from the study population. 

2. If the underlying populations are 
severely non-normal, use the Sign 
Test to determine whether the 
population median is equal to µo. 

3. If   po +3δ0   contains 0 or 1 exact 
binomial probabilities must be   
computed   (McClave et al., 1997). 

4. No practical alternative.  
5. No alternative approach is needed 

because there are no assumptions 
beyond that of simple random 
samples from the study populations. 

6. If the normality assumptions or the 
equal variance assumption is 
violated, use the Wilcoxon Rank 
Sum Test to test for a difference in 
population distributions. 

7. No alternative approach is needed 
because there are no assumptions 
beyond that of simple random 
samples from the study populations. 

8. If normality of the population of 
paired difference is violated, use the 
Wilcoxon Signed Rank Test. 

9. No practical alternative.   

10. If normality of the populations is 
violated, use Levene’s Test 
(Snedecor and Cochran, 1980). 

11. No alternative approach is needed 
because there are no assumptions 
beyond that of simple random 
samples from the study populations. 

12. If the normality or equal variance 
assumptions are violated, use the 
Kruskal-Wallis H-Test to compare 
the population distributions. 

13. If the normality assumptions is 
violated, use a non-parametric 
regression technique (Birkes and 
Dodge, 1993) or the Spearman 
Rank correlation coefficient to 
determine the linear association 
between X and Y.  By way of 
summary, the table 9 is a list of the 
parametric tests along with their 
non-parametric counterparts. Unless 
otherwise indicated, all tests are 
discussed in McClave et al. (1997). 
Note that the above 13 assumptions 
and information as to what will be 
done when these assumptions are 
violated were discussed in greater 
details in those references contained 
in them. 

 
Conclusion 
 In the standard statistics classes, 
students are told which statistical procedure to 
use for each kind of data analysis problem. 
For instance, to compare two population 
means, you may use the two-sample t-test to 
compare several means, you may use a one-
way analysis of variance, to compare two 
variances, you may use an F-test, etc. An easy 
way to identify the correct statistical 
procedure for each of the more  common  data  

 
Table 9: Parametric tests and their non-parametric counterparts. 
 
Parameter  Parametric Test  Non-parametric Test 
One mean  
Two means,  independent   samples  
Two means, dependent    samples  
Two   variances  
Several   means, independent   samples   
Linear regression coefficient   

“t-test” for µ 
Two sample  “t-test” 
“Paired  t-test”  
“F-test”  
One-way ANOVA  
“t–test”  for  β 

“Sign  Test” 
“Wilcoxon Rank Sum test”  
Wilcoxon signed Rank test  
“Levene’s Test” 
 “Kruskal–Wallis H Test” “Non-
parametric regression” 
or  “Spearman  Rank  Correlation 
Coefficient”. 

Source: McClave, 1997. 
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analysis problem is given by Khamis (1992). 
However, it is emphasized in that article that 
each of the statistical procedures carries with 
it certain assumptions that must be verified 
before applying the procedure. 
 Many of the parametric procedures 
listed earlier are robust against violations of 
the assumptions (i.e. even if a given 
assumption is violated, the procedure provides 
approximately accurate results). For instance, 
the analysis of variance is robust against 
modest violations of the normality and equal 
variance assumptions. So, generally, one need 
not resort to the non-parametric procedure 
except when there are severe violations of 
these assumptions. If you are uncertain about 
which procedure to use in a given case (i.e., 
you are uncertain about the extent of the 
violation of a given assumption), you might 
try applying both the parametric (one-way 
analysis of variance) and the non-parametric 
(Kruskal-Wallis) tests to the data set. If the 
results agree, or approximately agree, then the 
conclusion can be made with no 
inconsistencies. If the results clearly disagree, 
further analysis of the data is required, to 
discover the reason for the inconsistency (Zar, 
1996). 
 It may seem that the basic assumptions 
attached to the various statistical procedures 
are prohibitive (i.e. very few data sets would 
qualify for the given procedure) or artificial. 
However, in practice, the standard statistical 
procedures cover an enormous number of data 
analytic problems, especially given that they 
are applicable even when violations of the 
assumptions occur. Only when the violations 
are severe does one need to resort to 
alternative approaches. For instance, in the 
case of the normality assumption, as long   as  
 the   sample data   are unimodal with no 
extreme outliers, the parametric procedure is 
probably adequate (Prabhakara, 2006). 
 Many of the tests listed earlier involve 
a cut-off of 30 for the sample size. That is, the 
nature of the assumptions in these instances 
depends on whether the sample size falls 
below 30. This cut -off value is determined by 
the central limit Theorem as a good criterion 
for these tests.  Although many data sets in 
biomedical research tend to be well behaved 
distribution ally, it is still important to check 
the validity of many assumptions associated 
with the statistical test procedure to be 

applied. By doing so, and modifying the 
approach to the data analysis accordingly, 
reliable and accurate rate conclusions can be 
made from your data, and misleading or 
incorrect results can be minimized. 
 Whenever working with research data, 
it is a good idea to consult with an applied 
statistician or biostatistician to ensure that the 
handling of the data and experimental design 
is done properly. 
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