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Abstract

Optimal power flow (OPF) is defined as the optintiza of operating states of a power system and:tineesponding settings
of control variables. In this paper, a particle swaptimization (PSO) with an aging leader and leimglers (ALC-PSO) is
applied for the solution of OPF problem of powestsyn. This study is implemented on modified IEEEbB8 test power
system with different objectives that reflect miiation of either fuel cost or active power losssum of total voltage
deviation. The results presented in this paper detnate the potential of the proposed approachshow its effectiveness and
robustness for solving the OPF problems over theratvolutionary optimization techniques surfagethe recent state-of-the-
art literature.
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1. Introduction

The main purpose of OPF is to schedule the p@eaeration in such a way that minimizes the fust evhile satisfying all
the equality and inequality constraints. In additio the minimization of fuel cost, the OPF mayodte used to achieve the other
benefits such as reduction of system loss, impreveraf voltage profile or system security. Thug tibjective of OPF is to find
steady state operating point which minimizes gerracost, system loss, voltage deviation etc whikgntaining an acceptable
system performance in terms of limits on generatesd and reactive powers, line flows, outputvafious compensating devices
etc.

In recent years, many heuristic algorithms suclyersetic algorithm (GA) (Deveraj & Yegnanarayana 200mproved GA
(IGA) (Lai & Ma 1997), enhanced GA (EGA) (Bakirtzet al. 2002), evolutionary programming (EP) (Somasundagaral.
2004), differential evolution (DE) (El@t al. 2010), particle swarm optimisation (PSO) (Abido02)) biogeography-based
optimization (BBO) (Bhattacharya & Chattopadhyayl 2)) gravitational search algorithm (GSA) (Dunetnal. 2012) etc have
been proposed for solving the OPF problem withawt @estrictions on the shape of the cost curves fEsults reported were
promising and encouraging for further researcthis direction.

Specially, PSO has received increased attention fesearchers because of its novelty and searchipapility. PSO algorithm
is one of the swarm intelligence techniques basedimulating the food-searching behaviour of bi(lennedy & Eberhart
1995). However, constant emphasis is being givethbyresearchers’ pool towards its improvementdrfqgmance, since the
original PSO proposed in (Kennedy & Eberhart 199%rone to suffer from the so-called “explosiotiemomena.

Recently, many improved versions of PSO viz. PSt ailaptive inertia weight (PSO-w), PSO with a ¢octson factor (PSO-
CF), mixed integer PSO (MIPSO), hybrid PSO (HPSi¢rete PSO (DPSO) etc were proposed in (Shi &lre1998; . Clerc
& Kennedy 2002; Gaing 2005; AlRashidi & El-Hawa§®; Gomez-Gonzalez al. 2012).
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It is the general law of nature that every organisitihe earth ages and has a limited lifespan. Wighpassage of time, leader of
the colony becomes old and feeble. And this oldidedhas no longer the capability to lead the colonless or otherwise it is
challenged by a new and young challenger with giteat of enthusiasm and motivation to accomplistagetargets. Thus, aging
provides opportunities for the other individualstioé colony to challenge the leadership capahilityhe leader. Based on these
concepts, a modified PSO called as PSO with agiaddr and challenges (ALC-PSO) is representeceitiitdrature (Cheet al.
2013).

In ALC-PSO (Cheret al. 2013), the lifespan of the leader is adaptivehetliin accordance with the leader’s leading poifer.
leader shows strong leading power, it lives lonenttract the swarm toward better positions. Qtfe, if a leader fails to
improve the swarm and gets old, new particles eenévgchallenge and claim the leadership, whichdsrim diversity. In this
way, the concept “aging” in ALC-PSO actually senassa challenging mechanism for promoting a swétééshder to lead the
swarm. In this way, natural aging mechanism ofdtganism has been modelled into ALC-PSO.

In the present work, the ALC-PSO is applied for sséution of OPF problem of power systems. ModifieEE 30-bus power
system is adopted as standard power network wh&de @oblem is solved with the objectives as (a} comimization, (b)

transmission active power los$(,ss) minimization and (c) reduction of sum of totalltagie deviation (TVD). The results are
compared to other computational intelligence-badselniques surfaced in the recent literature.

The rest of this paper is organized as followsSéttion II, mathematical problem of the OPF worlpliesented. Section I
describes the basic PSO. In Section IV, ALC-PS@aisated. Simulation results are discussed in @ed&ti Finally, conclusions
of the present paper are drawn in Section VI.

2. Problem formulation of OPF

The objective of OPF is to minimize the objectiwadtion while satisfying all the equality and inatity constraints of power
system. The different individual objective functiomay be formulated as in (Alsac & Stott 1974; ARidi & El-Hawary 2007).

2.1 Minimization of fuel cosffhe aim of this type of problem is to minimize téal fuel cost and it may be formulated as in (1)

NG
Minimize FC(PG):(Zai"'b%i"'(Fé) 1)
i=1

2.2 Minimization of transmission lodgtathematical formulation of this type objective &tion is given as in (2).
o NTL > 2
Minimize P oss= X G(Vi +V; —2| Vi”\/j‘cosdij ) 2
k=1
2.3 Minimization of TVDThis problem aims to minimize the voltage deviataf all the bus from 1.0 p.u. and may be formuate
asin (3).
N
Minimize TVD= Y, ‘v, ~ Vs ‘ 3)
i=1
The equality and inequality constraints of OPF gobmay be formulated as in (4) and (5), respelstive
NG ]
Poi = Ri = X |V[[V{|(G cosg + B sin )
J:

NG (4)
Qi = = 2 V[V |(G sing - p cogf )
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V(r;?mSViS max i=1, 2L ,NG
RO < p < R i=1,2L ,NG
N <Q < QU™ i=1,2L ,NG
VTSV S\ =12l N :
5 < $nax i=1,2 ,NTL
QUM< Q< QU™ i=1,2L ,NC

where,
FC(PRs) : total fuel cost in $/h.
Poss :the total power losses,

NG, NL: number of generator and load buses respectively,

NTL : number of transmission lines
NT : number of regulating transformers,
NC : number of shunt compensators,

a,,b;, G : cost coefficients of th generator as in TABLE |,

Vi, Vi : voltage of thé-th and thg-th bus,

Psi» Qg : active and reactive power of théh generator, P;,Q,; : active and reactive power of the i-th load bus,
Gjj,Q;, 9 : conductance, admittance and phase differenoeotibges between the i-th and th¢h bus.

The scripts “min” and “max” denote the correspoigdiower and upper limits, respectively.

Table 1 Cost Coefficients for Modified IEEE 30-Bus System

. Unit
Coefficients 1 5 3 7 5 6
a 0.00375 0.0175 0.0625 0.00834 0.025 0.025
bi 2 1.75 1 3.25 3 3
G 0 0 0 0 0 0

3. Particle swarm optimization and discussions

PSO (Kennedy & Eberhart 1995) is a swarm intelligemased algorithm inspired by the social dynamicd an emergent
behaviour which arises in socially organized casniPSO algorithm exploits a population of indiguto probe promising
regions of search space. In this context, populatsocalledswarm and individuals are callegarticles or agents In PSO
algorithms, each particle moves with an adaptaklecity within regions of decision space and retaégnmemory of the best
position it has ever encountered. The best positiegr attained by each particle of the swarm ismamicated to all other
particles.

PSO is initialized with a population of particlesndomly positioned in @-dimensional search space. Each particle in the
population maintains two vectors viz. a velocityctee and a position vector. During each generateath particle updates its
velocity and position by learning from the partislewn historically best position and the best posifound by the entire swarm

I I
so far. Let,V, (t){{f( 9, r\(z( ..., vj(t)} and X; (t){(\)?( D, gfz( ). Iifj (9} be thei-th particle’s velocity vector and position vector
att-th iteration, respectively, antip be the number of particles in a population. Indhiginal PSO, update rules for the velocity

and the position vectors are
V(1) WX Y (0 g% § % (pgest = F (DI 6% b X {Xggedk = ¥ (1)} (6)
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rﬁ"(t+1)~ X/ (1) +v) (t+1) (7

where k’pBes‘ (1‘2[,,365F pBes,‘. ....... ngesf) is the historical best position of particlei(i=12 ..., Np),

relative |mportance ofl?'DBesq and !(QBest, respectively, r) and r,) are random numbers uniformly distributed in [0, aijd

j(j =121l d ) represents thpth dimension of the search space. The symbkdIrépresents the component-wise product of the

corresponding vectors. In (5w is the inertia weight, which controls the degreattthe velocity of a particle at iteratidn
influences the velocity of that particle at iteoatit + 1) and its value atth iteration is determined by (8).

Initialize all positions

*
Update §

pBes t

kLeader +

64—0

Every particle updates
velocity and position

v

Update ;(JpBest and ieader

I

Adjust the lifespan ©

Generate a

> = |

< >
No | ¢ wenger as the
Yes ~— No
\4
NFFES <NFFE gy Set The status
YEST challenger of the
swarm is
Report the best +
solution found i
00
+ 0-0-1
) 5

Figure 1. Flow chart of the ALC-PSO

wWt) « {Wmax — Ymax ™ Wnin X tJ (8)

Tm ax



127 Singh and Ghoshal./ International Journal of Engirieg, Science and Technology, Vol. 7, No. 3, 2pp5,123-132

where, Tax IS the maximum number of iterations. In PSO modetording to (6) and (7), particles share inforamathrough
swarm attractod‘(gB%t and evoke memories by partingeSt.

4.PSOwith an aging leader and challengers

In ALC-PSO (Chen et al. 2013), it is assumed that leader of the swarm ages within a limited liespThe lifespan is
adaptively adjusted according to the leader’s leggiower. When the lifespan is exhausted, the teiadehallenged and replaced
by newly generated particles. Therefore, the leaueLC-PSO is not necessarily being tli’gBest but a particle with adequate

leading power guaranteed by the aging mechanism.
To differentiate the leader in ALC-PSO from t&’@Best of original PSO (Kennedy & Eberhart 1995), the kraid denoted by

B (Rt s Readel s oo Reased ). The velocity update rule of () is, thus, chahe

r r oy S _ -
vl (t+1) — wt)x ' (O+gx § x{ppest ~ ¥} + &% b X Xieaget = K} (9)
The flowchart of ALC-PSO is illustrated in Figureafid the steps involved are given as (Céieal. 2013)
Step 1. Initialization: The initial positions of all the particles are randy generated within their respective minimum
and maximum values with velocities initialized toHdstorical best position of the particIeEF{BesF) are

calculated. The best particle among the swarmlést as th&',_eader. The age of the leader is initialized&o
= 0 and the lifespa® of the leader is set to an initial valug,.

Step 2. Velocity and position updating/elocity and position of each particle are update@ccordance with (9) and
(7), respectively.

Step 3. UpdatinglfpBest andk ..qe : For particle i (i=12 N,), if the newly generated positiox is better than

!ZpBeSr then x becomes the nefis'/pBesF . In addition, if the best position built in thigiation is better than

theX| cager. then thek ..qer is updated to be the best position in this iteratin this sense, this step is similar to
that of the conventional PSO, but thg.,qer represents the best solution generated by pariitieng the

leader’s lifetime.

Step 4. Lifespan contral After the positions of all particles are updatémd leading power of the leader to improve the
entire swarm is evaluated. The lifespais adjusted by a lifespan controller (Ctetral. 2013). The agé of
the leader is increased by 1. If the lifespan isagisted, i.e§ > © go toStep 5 otherwise, go t&tep 7.

Step 5. Generating a challengerA new particle is generated and is used to chg#ethe leader whose lifespan is
exhausted.

Step 6. Evaluating the challengerThe leading power of the newly generated challeigevaluated. If the challenger
has enough leading power, it replaces the old teadéd becomes the new leader. The age and lifespthe
new leader are initialized &= ® and6 = ®,. Otherwise, the old(JLeader remains unchanged and will continue

to lead the swarm.
Step 7. Termination condition checkindf the number of fitness function evaluations fNES) or iteration cycles is
larger than a predefined NFFRIEFE,,,, ) or maximum number of iteration cycles, the algon terminates.

Otherwise, go t&tep 2for a new round of iteration.

According to the above procedure of the ALC-PS@, alging mechanism mainly involves three tasks ajzdesign of the
lifespan controller for adjusting the lifespan betleader according to its leading power, (b) gati@m of a new particle to
challenge and replace the old leader and (c) useitefion to decide whether the generated partele be accepted as a new
leader. For elaborate discussions Step 4(life span control), Step 5 (generating a challehgand Step 6(evaluating the
challenger), the work of Chest al. (Chenet al.2013) may be referred.

5. Simulation results and discussions

In the present work, ALC-PSO is applied to modifledEE 30-bus test system for the solution of OP&bfem. The line and
bus data and the minimum and maximum limits on rmbntariables for the test system have been addpbea (Alsac & Stott
1974; Yuryevich & Wong 1999). The software is veiitin MATLAB 2008a computing environment and applan a 2.63 GHz
Pentium IV personal computer with 3 GB RAM. Theualof NFFE,,«is set to 500 for all the test cases. Discussians o

simulation results of the present work are preskhtdow. Results of interest aveld facedin the respective tables to indicate the
optimization capability of the ALC-PSO algorithnm. this study, 30 test runs are performed solveXtRE& problem.
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Figure 2. Convergence profile of fuel cost for fuel cost miization objective of modified IEEE 30-bus systeithout valve
point effect

Table 2 Best Control Variable Settings for Fuel Cost Miidation Objective for Different Techniques

S:r?;rb‘i'es Base case PSO EGA-DQLF ALC-PSO
Pg.1(p.u.) NR NR NR 0.5160

Ps-2(p.u.) 0.80 0.790 0.800 0.7999
Ps.s(p.u.) 0.50 0.500 0.500 0.4999
Ps.s(p.u.) 0.20 0.350 0.350 0.3499
Ps.11(p.u.) 0.20 0.295 0.300 0.2999
Ps.13(p.u.) 0.20 0.361 0.400 0.3999
V; (p.u.) 1.00 1.000 1.044 1.0500
Vs (p.u.) 1.00 0.996 1.044 1.0474
Vs (p.u.) 1.00 0.978 1.025 1.0285
Vs (p.u.) 1.00 0.980 1.035 1.0360
Vi1 (p.u.) 1.00 1.032 1.070 1.0500
Vi3 (p.u.) 1.00 1.042 1.043 1.0500
Te-o (p.U.) 1.00 0.900 1.038 0.9930
Te-10(p-U.) 1.00 1.000 0.925 0.9406
Ta1o(p.u.) 1.00 0.950 0.975 0.9764
Tag.o7(p.u.) 1.00 0.937 0.975 0.9669
Qc.10(p.u.) 0.00 0.050 0.050 0.0346
Qc.12(p.u.) 0.00 0.050 0.030 0.0054
Qc.1s(p.u.) 0.00 0.030 0.000 0.0494

Qc.17(p.u.) 0.00 0.040 0.010 0.0454
Qc20(p.U.) 0.00 0.050 0.040 0.0179
Qc.1(p.u.) 0.00 0.020 0.020 0.0495
Qc.s(p.u.) 0.00 0.020 0.050 0.0365
Qc.24(p.u.) 0.00 0.060 0.050 0.0498
Qc.2e(p.U.) 0.00 0.040 0.050 0.0221
Fuel cost ($/hr)  902.9 956.5967.86 967.77

Ploss (MW)  6.168 3.629 3.201 3.1700

TVD (p.u.) NR NR NR 0.8088

CPUtime (s) NR NR NR 10.235

NR™ means not reported

5.1 Minimization of fuel cosbptimum control parameter settings of ALC-PSO &thm are given in TABLE II. A statistical
comparison of the simulation results for this objex function of the given test system is reportedTABLE Il showing
minimum, average and maximum costs as yielded &ygtmparative optimization algorithms. Figure 2whohe convergence of
minimum fuel cost as yielded by the ALC-PSO apphodkhe result obtained from the proposed algorittrnompared to the
other methods like PSO (. Abido 2002), GSA (Duman2) and BBO (Bhattacharya & Chattopadhyay 201tljndy be noted
that a fuel cost reduction 4f452% (from previous best result of 798.675143 $/hr&morted by GSA in (Dumaet al. 2012)) to
787.0758%/h) is accomplished by using the proposed ALC-RBfroach.

Table 3. Comparison of Different OPF Methods for Fuel Qdstimization Objective
Methods Fuel cost ($/h) Simulation




129 Singh and Ghoshal./ International Journal of Engirieg, Science and Technology, Vol. 7, No. 3, 2pp5,123-132

Minimum Average Maximum time (s)
Gradient Method (Leet al. 1985) 804.85 NR NR 4.32
MDE (Sayah & Zehar 2008) 802.38 802.38  802.40 23.25
Enhanced GA (Bakirtzist al. 2002) 802.06 NR 802.14 76
Improved GA (Lai & Ma 1997) 800.81 NR NR NR
PSO (Abido 2002) 800.41 NR NR’ NR
EADDE (Vaisakh & Srinivas 2011) 800.20 800.24  8@0.2 3.32
EADHDE (Vaisakh & Srinivas 2011(a)) 800.16 NR NR NR'
DE (Elaet al.2010) 799.29 NR NR' NR’
BBO (Bhattacharya & Chattopadhyay 2011) 799.12 199. 799.21 11.02
GSA (Dumaret al.2012) 798.68 798.91  799.03 10.76
ALC-PSO 787.08 788.45  789.57 10.46

NR™ means not reported

5.2 Minimization of transmission losgroposed approach is applied for minimization r@ngmission loss as one of the
objective function for this test system. The obt¢gimptimal values of control variables yielded g proposed ALC-PSO method
are given in TABLE IV. The results obtained by fireposed ALC-PSO algorithm are compared to thogerted in the literature
like base case (Kumari & Maheswarapu 2010), PSOm@u & Maheswarapu 2010), EGA-DQLF (Kumari & Mahesapu
2010). The obtained minimum real power loss from plhoposed approach is found to3&7 MW. The value ofP s (MW)
yielded by ALC-PSO i9.0308 MW (i.e. 0962%) less than compared to EGA-DQLF-based best restiBs2008 MW reported
in (Kumari & Maheswarapu 2010). ALC-PSO based cogerce profile of minimum value of . (MW) for this test power

system is presented in Figure 3. The proposed ABC-Based convergence profile of real power losg¢hisrtest system is found
to be promising one.

Table 4. Best Control Variable Ssettings fer,,, Minimization Objective for Different Techniques

Control Base case PSO  EGA-DQLF ALC-PSO
variables

Ps.1(p.u.) NR NR NR 0.516
Pg.2(p.u.) 0.80 0.791  0.800 0.799
Pa.s(p.u.) 0.50 0.500  0.500 0.499
Pg.s(p.u.) 0.20 0.350  0.350 0.349
Ps.11(p.u.) 0.20 0.295  0.300 0.299
Ps.13(p.u.) 0.20 0.361  0.400 0.399
V: (p.u.) 1.00 1.000 1.044 1.050
Vs, (p.u.) 1.00 0.996 1.044 1.047
Vs (p.u.) 1.00 0.978 1.025 1.028
Vs (p.u.) 1.00 0.980 1.035 1.036
Vi1 (p.u.) 1.00 1.032  1.070 1.050
Vi3 (p.u.) 1.00 1.042  1.043 1.050
Te-o(p.U.) 1.00 0.900 1.038 0.993
Te-10(p.U.) 1.00 1.000 0.925 0.941
Ta1(p.u.) 1.00 0.950 0.975 0.976
Tog27(p.U.) 1.00 0.938 0.975 0.967
Qc.10(p.u.) 0.00 0.050  0.050 0.035
Qc.12(p.u.) 0.00 0.050  0.030 0.005
Qc.s(p.u.) 0.00 0.030 0.000 0.049
Qc.7(p.u.) 0.00 0.040 0.010 0.045
Qc.20(p.u.) 0.00 0.050  0.040 0.018
Qc.1(p.u.) 0.00 0.020  0.020 0.049
Qc.2s(p.u.) 0.00 0.020  0.050 0.037
Qc.24(p.u.) 0.00 0.060  0.050 0.049
Qc.2o(p.U.) 0.00 0.040  0.050 0.022
Fuel cost ($/hr) 902.9 956.45967.86 967.77
Ploss (MW)  6.168 3.6294 3.2008 3.1700
TVD (p.u.) NR NR’ NR 0.8088
CPUtime (s) NR NR’ NR 10.235

NR™ means not reported
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2.3 Minimization of TVD:
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Figure 3. Convergence profile of . for R .minimization objective of modified IEEE 30-bus ssst

The proposed ALC-PSO approach is applied for theimization of TVD of this test power network. Thesults yielded by the
proposed ALC-PSO are presented in TABLE V. Theltssibtained by the proposed algorithm are comp#retiose reported in
the literature like DE (El&t al. 2010), BBO (Bhattacharya & Chattopadhyay 20113 &8SA (Dumaret al. 2012). From this
table,2.218%improvement in TVD may be recorded by using theppsed ALC-PSO based algorithth@312 p.u) as compared
to GSA counterpart (0.093269 p.u.) as reporteddnfanet al. 2012). ALC-PSO based convergence profile of T\pu() for
this power system is presented in Figure 4. Theogwed ALC-PSO based convergence profile for the TiiDimization
objective of this test system is promising one.

3

Table 5. Best Control Variable Settings for TVD Minimizati Objective for Different Techniques
Control

. DE BBO GSA ALC-PSO
variables
Pg.1(p.u.) 1.8313 1.7367 1.7332 1.4420
Pg-(p.u. 0.4744 0.4906 0.4926 0.3721
Pss(p.u.) 0.1873 0.2177 0.2158 0.4309
Psg(p.u.) 0.1615 0.2327 0.2327 0.1799
Pg.11(p.u.) 0.1189 0.1384 0.1377 0.2147
Pg.13(p.u.) 0.1651 0.1198 0.1196 0.2720
Vy (p.u.) 1.0490 1.0185 1.0269 1.0018
Vs, (p.u.) 1.0335 1.0048 1.0099 1.0169
Vs (p.u.) 1.0117 1.0145 1.0143 1.0185
Vg (p.u.) 1.0043 1.0092 1.0087 1.0076
Vi1 (p.u.) 1.0432 1.0510 1.0503 1.0066
Vi3 (p.u.) 0.9931 1.0184 1.0163 1.0100
Te.o(p.U.) 1.0439 1.0718 1.0713 1.0090
Te.20(p.u.) 0.9230 0.9000 0.9000 0.9021
Ta12(p.u.) 0.9345 1.0000 0.9965 0.9848

Tago7(p.U.) 0.9616 0.9710 0.9732 0.9619
Qc.10(p-U.) 0.0365 0.0420 0.0414 0.0245
Qc.12(p.u.) 0.0038 0.0370 0.0356 0.0236
Qc.15(p.u.) 0.0409 0.0500 0.0500 0.0500
Qc.17(p.u.) 0.0294 0.0000 0.0000 0.0081
Qc.20(p.u.) 0.0479 0.0500 0.0500  0.0500
Qco1(p.u.) 0.0447 0.0500 0.0500 0.0487
Qc23(p.u.) 0.0382 0.0500 0.0500 0.0500
Qc.oa(p.u.) 0.0420 0.0500 0.0498  0.0499
Qc.oo(p.U.) 0.0126 0.0300 0.0259  0.0205
Fuel cost ($/hr) 805.262805.758 804.315 852.13

Ploss (MW) 10.441 10.18 9.7659  7.7800

TVD (p.u.) 0.135 0.095 0.0933 0.0912
CPUtime (s) NR NR’ NR 10.232
NR™ means not reported
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4. Conclusions

In this paper, OPF problem is formulated as alinear optimization problem with equality and inedjty constraints of the
power network. ALC-PSO algorithm has been, sucaéigsimplemented to solve the OPF problem of powgstem for three
individual objectives viz. minimization of fuel dpseal power loss and TVD. The proposed ALC-PS@ssed on modified IEEE
30-bus test systems to demonstrate its effectigefdse simulation results indicate the robustnesssaiperiority of the proposed
approach to solve the OPF problefie results obtained from the simulation in thespre paper obviously demonstrate that the
proposed ALC-PSO yields better-quality solutioncomparison to other results reported in the restte-of-the art literature.
Thus, the proposed ALC-PSO may be recommendedvasygoromising algorithm for solving some more cdexpengineering
optimization problems for the future researchers.
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