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Abstract

Economic Load Dispatch (ELD) and Unit Commitment (UC) are very important applications to predict the optimized cost of
load in a power system. UC determines working states for existing generating units under some operational constraints and then
optimizing the operation cost for all running units w.r.t. load demand using economic dispatch. This paper introduces Genetic
Algorithm (GA) or Dynamic Programming (DP) to solve UC and then Shuffled BAT (BAT) technique as an evolutionary based
approach is presented to solve the constrained ELD problem of thermal plants depending on the results obtained from UC
solution. The IEEE 30 bus system is used to test the demonstration of the solution quality, computation efficiency and the
feasibility of the application of BAT algorithm for ELD problem.
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1. Introduction

Thermal plants are main sources to supply electricity to loads in a power system and their primary fuels used to generate
electricity have high cost and become intermittent in the next years (Nguyen and Ho, 2016). The target of the economic operation
of generators is to ensure the ideal blend of generators associated with the power system to give the load demand. This operation
includes two separate stages to be specific Unit Commitment (UC) and on-line Economic Load Dispatch (ELD). The unit
responsibility includes the choice of units over a required time frame at minimum cost is the UC responsibility and determining a
working units supply the load to less the aggregate cost using the on-line Economic Dispatch (Surekha, 2012). UC and ELD (Pang,
1981) are notable issues in the power business and can possibly spare large money every year in expenses. The problem is an
intricate basic leadership process and it is hard to build up any thorough numerical advancement strategies fit for tackling the UC-
ELD issue for any real system. Additionally, different limitations ought to be forced that should not be abused when the optimal
arrangement is found (Surekha, 2012).

The nonlinear programming techniques are applied to solve the UC and ELD problem (conventional method).  A convex
objective function over a convex set is minimized using these techniques thus insuring a single minimum.    Newton or gradient
based search algorithms can be used to minimize these problems. These techniques may be trapped at local minima in solving
nonconvex problems that have multiple minima.  Dynamic programming has limitations due to the “curse of dimensionality” but it
may be used to solve this problem (Li, 2013). Other method for taking care of nonconvex streamlining issues is metaheuristic
advancement (Fletcher, 2013). Metaheuristic methods are perfect for nonconvex issue as they do not experience the ill effects of
confinement of continuity, convexity and differentiability. Actually numerous metaheuristic methods are used to solve ELD
problem such as Genetic  Algorithm  (GA),  Particle  Swarm Optimization  (PSO), Simulated  Annealing  (SA), Tabu search  (TS)
and  Bat  algorithm  (BA)  (Frank, 2012; Steponavice, 2012).  However these methods give a reasonable and fast solution, they do
not insure the global optimal solution in finite time (Dao, 2015).
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Numerous variations of GA have already been utilized with great outcomes to take care of ELD issues (Abido, 2003; Subbaraj,
2011; Amjady, 2010).  GA  has an advantage of using  a  chromosome coding  technique  concerned  to  the  defined problem and
the   two  basic  disadvantages  are very long execution time and the global  optimum  solution  has no  guarantee  of  convergence.
Nonconvex problems are solved also using PSO and many of its variants (Selvakumar, 2007; Thanushkodi, 2008; Gaing,
2003;Cai, 2007) There are many advantages of PSO such as easy performance and minimum adjustable parameters.  It is also very
efficient in global search (exploration).  The  main disadvantages  of  PSO  are  its  weak local search ability and it  is slow
convergence  at  refined  search  stage  (exploitation). A new  population  based  metaheuristic  algorithm is  BA  and it is the same
as   PSO  and  GA  (Yang, 2010; Yang, 2013) This calculation mirrors the echolocation capacity of smaller scale bat that they
utilize it for exploring and chasing. The bat position gives a conceivable arrangement for this issue. Wellness of arrangement is
indicated by bat’s best position to its prey. A major preferred standpoint BA different calculation is having various tunable
parameters giving a greater control along advancement procedure. BA and its variations have additionally been utilized to take
care of the ELD issue (Sidi-Bel-Abbes, 2014; Niknam, 2012; Ramesh, 2013). It has demonstrated productive in for lower
dimensional advancement issue (Fister, 2013; Latif and Palensky, 2014). BAT algorithm may be used for solving a combined
economic and emission dispatch problem as in (Nguyen and Ho, 2016; Gonidakis and Vlachos, 2015). A modified version of BAT
algorithm as an evolutionary meta-heuristic algorithm is employed to solve non-smooth ELD as in Namdari and Sedaghati (2014);
it is also used in solving nonconvex dynamic economic dispatch problem and give good results. This algorithm can easily be coded
in any programming language due to less number of operators. The performance of the algorithm compared with other algorithms
to prove its strength (Arsyad et al., 2017) and used in solving thermal unit commitment problem (Anand.and Rahman, 2014).

In this paper DP and GA is applied to select and choose the combination of generating units that commit and de-commit during
each hour. These pre-committed schedules are optimized by BAT algorithm thus producing a global optimum solution with
feasible and effective solution quality, and minimum cost. The effectiveness of the proposed technique is investigated on IEEE 30
bus system. The significance of this approach is to obtain a least cost solution for the UC-ELD problem.

2.  Problem Formulation

The scheduling problem of generators solved ideally by acquiring exhaustive trial of all solutions and best solution is chosen
amongst them. All possible units supplying a load and reserve requirements would be tested and choose the optimal solution that
have the minimum operating cost (Aruldoss, 2005). The generating units’ output power with system constraints over a time period
T and startup/shut down times at each step required to scheduling problem of generator. The  running  cost significant term of  a
thermal  units  is  the output power  of  the committed  units (Surekha, 2012). The fuel cost, FC is represented in a quadratic form
of output power in a time interval given in Equation (1).F = ∑ F (P ) = ∑ a + b p + c p $/Hr (1)

wherea ,b , c are cost coefficients of unit and p is the unit generating power. The start-up cost (SC) calculation depends on the
treatment strategy for a thermal unit during down time periods and an exponential cost curve shown in Equation (2) is its
representation. where σ , δ , τ is the  hot  startup  cost, the  cold  startup cost and the cooling time unit constant and T , is the
time at which the unit has been turned off so The total production cost, F is the sum of the operating, startup and shut down costs
for all the units illustrated in Equation (3).SC = σ + δ ∗ 1 − exp − (2)

F = ∑ ∑ FC , + SC , + SD , (3)

where N is the number of generators and different load demands number is T at estimated commitment, SD is the shutdown cost.
Some constraints should be taken into consideration to minimize F as:

(i) power balance equation  is given by Equation (4):∑ PU − (P + P ) = 0 (4)

where P is the load demand and P is the power loss of the system.
(ii) The hourly spinning reserve (R) is given by Equation (5):∑ P U − (P + P ) = R (5)

(iii) Unit rated minimum and maximum capacities as in Equation (6):
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P ≤ P ≤ P (6)

The initial conditions of each unit and Minimum up/down (MUT/MDT) time limits of units are given by Equations (7) and (8)
respectively. T , −MUT ∗ (U , − U , ) ≥ 0 (7)T , −MDT ∗ (U , − U , ) ≥ 0 (8)

where  the  unit  off  /  on  time is Toff /  Ton the and the unit off / on [0,1] status  is U , .The enhancement of ELD problem is
represented by Equation (9): F = ∑ F (P)∑ a + b p + c p $/Hr (9)

Subject to the equality and inequality constraints are given by Equations (10) and (11) respectively.∑ P = (P + P ) (10)P ≤ P ≤ P (11)

3. Modern Optimization Algorithms

The viability of the applied optimization techniques is made on an IEEE 30 bus system. For UC the control parameters for
Genetic Algorithm are total number of generations, population size, selection type, mutation and crossover rate. The chromosomes
number in a single generation is decided by the population size. A sensible number between [20,100] is chosen for population size,
24 is the population size with 0.6 crossover probability and 0.001 mutation rate of flip bit are chosen values for this system
maintaining population diversity. The DP steps are given in (Gaurav, 2015) to maintain the UC solution.

3.1 BAT Algorithm: Bats are some animals with entrancing creatures. One of its characteristics it has wings have propelled ability
of echolocation (Gherbi, 2011; Gherbi et al., 2014).
The vast majority of bats use echolocation to a defined degree; among every one of the animal types, microbats are renowned

such as microbats use echolocation widely, while megabats do not (Steponavice, 2012). Echolocation is a type of sonar used to
recognize prey by Microbats and find their perching hole oblivious. In order to portion qualities of microbats of the echolocation,
different bat-propelled calculations or bat calculations can be produced. For straightforwardness, in our approach, the
accompanying rough or romanticized guidelines were utilized:

Bats utilize echolocation for detecting separation, and they know a difference between foundation hindrances and food/prey.
Arbitrarily Bats fly by velocity vi , position xi , a settled frequency fmin (or wavelength λ), look for a prey varying frequency f (or
wavelength λ) and loudness A0. Depending on the proximity targets; the rate of pulse emission r ⊂ [0, 1] may be conformed and
thewavelength (or frequency) of their radiated beats can be modified.

There are some simplifications as changing the loudness from A0 , a large (positive), to Amin , a minimum value, and no ray
tracing is used in approximating the time delay and three dimensional topographies. Also there are some approximations for
simplicity as the frequency f in a range [fmin, fmax] related to a wavelength range [λmin, λmax]. For example, a frequency range of [20
kHz, 500 kHz] correlated to a wavelengths range from 0.7 mm to 17 mm. In simulations, normally we use virtual bats. The
positions xi and velocities vi in a d-dimensional search space and its new updates x and v at time t is given by:f = f + (f − f )β (12)v = v + (x − x )f (13)

where β ⊂ [0, 1] is an arbitrary vector and the current best location (solution) is x0 which is situated in the wake of looking at
arrangements between n bats. A product λifi is the increment velocity, either fi (or λi) is used to adjust the velocity change while
fixing the other factor λi (or fi), depending on the type of the problem of interest. For each bat, a new solution is generated locally
using: X = X + E. A (14)

where an arbitrary number E [0, 1], while = A =< A > is the loudness average of all the bats. In view of above
approximations and idealization, the BAT algorithm flow chart is summarized in Figure 1. Experimentally, once a solution is
improved the pulse emission rate and loudness are varied. The bat movement to optimal solution is given by:
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A = αA , r = r [1 − e ] (15)
where α and γ are constants (Gherbi, 2011).
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4. Simulation Model

The IEEE 30 bus system is used in this paper consists of 41 transmission lines, 6 generators and 30 buses. It has 117 MW
minimum capacity and 435 MW maximum capacity (Thenmozhi and Mary, 2004). The load demand for 24 hour time interval is
given in Table 1and the characteristics of the system (generating units cost coefficients and capacity of each one) is given in Table
2.

Table 1. Load Demand of IEEE 30 bus system
Hour Load(MW) Hour Load(MW)

1 166 13 170
2 196 14 185
3 229 15 208
4 267 16 232
5 283.4 17 246
6 272 18 241
7 246 19 236
8 213 20 225
9 192 21 204

10 161 22 182
11 147 23 161
12 160 24 131

Table 2. IEEE 30 bus Generator Characteristics
Parameters

Units A ($/W-h2) B ($/W-h) C ($) Min Power
(MW)

Max Power
(MW)

1 0.00375 2 0 50 200
2 0.01750 1.75 0 20 80
3 0.06250 1 0 15 50
4 0.00834 3.25 0 10 35
5 0.02500 3 0 10 30
6 0.02500 3 0 12 40

The test system transmission loss coefficients are given in Equation (16):
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5. Simulation Results

Control parameters of DP or GA are applied to solve UC problem. Table 3 gives the results for UC solution as (1/0) status of the
test system for 24 hour time interval. The commitment of the units varies according to varying the load demand hourly( a load of 1
means the unit is on and 0 refers to the unit is off). From the data tabulated, unit P1 is ON all the day due to its minimum value of
‘A’and units  P5 , P6  is  OFF  for  most  of  the day hours because  the  value of ‘A’ maximum for these two units. As the value
ofcoefficient ‘A’ is minimum, the unit is ON mostly because it gives minimum fuel cost and vice versa. For the forecasted power
demand, GA or DP provides a cost effective solution by using the appropriate units. After solving UC, BAT is used to solve ELD
problem. The power to be shared by units P1 to P6 for each power demand is given in Table 4. The contribution of power
generated by each unit per day is graphically represented in Figure 2. The total fuel cost in each hour is shown in Table 5 and
represented graphically using Figure 3. It can be observed that the load demand of 131 MW gives a minimum fuel cost and 283.4
MW gives a maximum fuel cost and so the operating cost is directly proportional to the power demand through the day.
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Table 3.Commitment of IEEE 30 bus system by GA or DP
Hr PD(MW) Combination of Units

P1 P2 P3 P4 P5 P6

1 166 1 0 1 1 0 1
2 196 1 0 1 1 1 1
3 229 1 1 1 1 1 0
4 267 1 1 1 1 1 0
5 283.4 1 1 1 1 1 0
6 272 1 1 1 1 1 0
7 246 1 1 1 1 1 0
8 213 1 1 1 1 1 0
9 192 1 1 1 1 0 0
10 161 1 1 1 0 0 0
11 147 1 1 0 0 0 0
12 160 1 1 0 0 0 0
13 170 1 1 0 0 0 0
14 185 1 1 0 0 0 0
15 208 1 1 0 0 0 0
16 232 1 1 1 0 0 0
17 246 1 1 1 0 0 1
18 241 1 1 1 0 0 1
19 236 1 1 1 0 0 1
20 225 1 1 1 0 0 1
21 204 1 1 1 0 0 1
22 182 1 1 1 0 0 1
23 161 1 1 1 0 0 1
24 131 1 1 1 0 0 0

Table 4. BAT results for ELD problem
Hr PD(MW) Power Generated/Unit (MW)

P1 P2 P3 P4 P5 P6

1 166 130.1031 0 22.06295 15.0176 0 12.0187
2 196 155.4972 0 23.1801 15.0221 10.009 12.0386
3 229 159.9655 0 50 15.0242 14.0503 12.0282
4 267 159.0321 66.1885 24.8229 15.0219 10.0328 0
5 283.4 161.9093 80 24.9679 15.0406 10.0172 0
6 272 163.2663 67.1902 24.9386 15.0446 10.0107 0
7 246 153.5876 57.6183 22.3557 10.0433 10.0163 0
8 213 127.2086 50.922 20.4353 10.0246 10.0070 0
9 192 50 80 50 12.4885 0 0
10 161 115.3728 33.7081 15.9716 0 0 0
11 147 116.9810 34.0319 0 0 0 0
12 160 84.0855 80 0 0 0 0
13 170 136.6549 38.7800 0 0 0 0
14 185 123.7691 67.0960 0 0 0 0
15 208 135.3853 80 0 0 0 0
16 232 172.9976 47.5824 20.2924 0 0 0
17 246 177.3546 55.3996 22.8679 0 0 12.0254
18 241 173.1598 54.1568 22.5796 0 0 12.0050
19 236 168.8771 53.1387 22.1627 0 0 12.0113
20 225 88.8233 80 50 0 0 24.6147
21 204 68.8696 80 50 0 0 16.4022
22 182 123.5043 41.2668 18.3858 0 0 12.0623
23 161 50 80 50 0 0 21.4925
24 131 90.5023 27.9899 15.0798 0 0 0
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Table 5. Operating Cost for IEEE 30 bus System
Hour Demand (MW) Operating cost using

BAT
Operating cost using

PSO (Surekha P,
October 2012).

1 166 546.8259 754
2 196 674.8398 877.1272
3 229 855.7722 1003.6
4 267 847.4716 1088.6
5 283.4 918.5618 1169
6 272 868.2019 1109
7 246 735.6475 999.7102
8 213 612.9562 873.7686
9 192 535.0097 801.6312

10 161 391.4492 694.9884
11 147 365.1030 670.7778
12 160 405.4985 718
13 170 437.5226 758.2500
14 185 487.1330 737.6875
15 208 566.9452 792.9700
16 232 627.1455 852.2500
17 246 718.4746 1028.6
18 241 698.9065 1005.2
19 236 679.5739 982.4672
20 225 637.8642 934.1477
21 204 561.3279 847.8409
22 182 485.4036 765.8500
23 161 416.8895 693.6478
24 131 303.695 594.2260
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Figure 2. Power generated by each unit using BAT for Six- unit System

Figure 3. Operational cost for Six- unit System
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6. Conclusions

Economic Load Dispatch (ELD) and Unit Commitment (UC) are very important study as a large amount of money is optimized
and saved in electric utilities which improve system reliability. This paper introduces GA or DP to solve UC and then BAT
algorithm is applied to solve the ELD problem at 24 hours with different load demands. The  optimal solution  in  terms  of  total
fuel  cost and  algorithmic  efficiency is proved by comparing the cost  with PSO results. Results obtained for different daily hour’s
to the test system show the robustness, consistency, quality and efficiency of the algorithm as it generates optimal solution through
repetitive runs. In  future, modern optimization algorithms as Population-based incremental learning,  Stud  Genetic  Algorithm,
Bio-Geography  based  algorithm  ,Intelligent water drop algorithm, and  hybrid combination of these paradigms may solve the
UC-ELD problem taking into consideration real  time constraints  which contain network security,  spinning  reserves and
emission  constraint  to new enhancement systems.

Nomenclature

UC Unit Commitment.
ELD Economic load dispatch.
DP Dynamic Programming.
GA Genetic Algorithm.
TS Tabu search
PSO Particle  Swarm  Optimization
BA Bat algorithm
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