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Abstract

The problem of visco-elastic micro-polar fluid layer heated from blow in the presence of uniform vertical magnetic field with
Hall current in porous medium is discussed here and obtained a dispersion relation using normal mode analysis. From this
dispersion relation, the medium permeability 1K  has destabilizing effect, the coupling parameter K has stabilizing effect. the micro-polar
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1. Introduction

   B' Walters (1964) and Beard and Walters (1964) investigated the behavior of visco-elastic prototype fluid and Sen (1978) studied
the behavior of visco-elastic fluid over an infinite porous plate with constant suction. Singh and Singh (1983) have studied the
magneto-hydrodynamic flow of visco-elastic fluid past an accelerated plate. The flow of visco-elastic and electrically conducting
fluid past an infinite plate has been studied by Sherief and Ezaat (1994). Gupta (1967) studied the stability of a small amplitude
falling flim of visco-elastic. Shaqfeh et al. (1989) had shown that the visco-elastic property has destabilizing effect for small
Reynolds number. However, the viscoelstic property possesses a primarily stabilizing effect on the film flow for moderate
Reynolds numbers. Omokhuale et al. (2012) studied the effects of concentration and Hall current on unsteady flow of a visco-
elastic fluid in a fixed plate. Chaudhary and Das (2013) studied viscoelastic unsteady MHD flow between two horizontal parallel
plates with Hall current.. In view of the fact that the study of visco-elastic fluid in a porous medium may find applications in
geophysics and chemical technology. However, in this paper, an attempt has been made to examine the effect of Hall current on
MHD flow of visco-elastic (Rivlin-Ericksen type) micro-polar fluid layer heated from below on porous medium and  the nature of
the components like medium permeability, heat conduction, visco-elasticity, Hall current and Magnetic field are analyzed and to
the best of my knowledge this problem is uninvestigated so far.

2. Mathematical Formulation

   Consider an infinite, horizontal, incompressible electrically non-conducting visco-elastic micro-polar fluid layer of thickness d.
A cartesian coordinate system (x, y, z) is chosen such that origin is at the lower boundary and the z-axis is vertically upward. This
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fluid layer is assumed to be flowing through an isotropic and homogeneous porous medium of porosity  and medium
permeability . The lower boundary at z=0 and the upper boundary at z = d are maintained at constant but different temperature T0

and T1 such that a steady adverse temperature gradient
dT

dz
   is maintained. The whole system is acted upon by a gravity field

(0,0, )g g


 and a strong uniform magnetic field 0(0,0, )HH


 is applied along z-axis.

Fig. 1: Geometry of the problem

Here, we have taken Rivlin-Ericksen visco-elastic fluid in which when the fluid permeates a porous medium, the gross effect is
represented by Darcy's law and the usual viscous term in the momentum equation is replaced by the resistance term

1
'

t

           
q


. Also both boundaries are considered to be free and perfect conductor of heat. For an isotropic medium the

surface porosity is  so that 1  is the fraction that is occupied by solid.
Within Boussinesq approximation, the equations governing the motion of a micro-polar fluid saturating porous medium

following (Lebon, 1981).( Lukaszewicz 1999, Kirti et al. 1999) for above model are as follows :
The equation of continuity for an incompressible fluid is
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The equation of momentum is
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The equation of internal angular momentum is
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Where p, 0, , , , , , ,     q N


, ', ', ', j, e and ˆ ze denote respectively, pressure, fluid density, reference density, filter

velocity, micro-rotation, viscosity, dynamic micro-rotation viscosity, visco-elasticity, medium permeability, micro-polar viscosity
coefficients, micro-inertia constant, magnetic permeability and unit vector in z-direction.

The equation of energy is
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and the equation of state of the problem is

 0 01 ( )T T     (5)

Where , , , , , , ,v s T sC C T     and 0T  denote respectively specific heat at constant volume, heat capacity of solid (porous

material matrix), thermal conductivity, density of solid matrix, coefficient giving account of coupling between the spin flux and
heat flux, coefficient of thermal expansion, temperature and reference temperature.
The Maxwell's equation in the presence of Hall current yield
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Where 0(0,0, )HH


, H0 is a constant, ne = electron density and e = charge on electron and m  is the magnetic viscosity.

3. Basic State of the Problem

The basic state is defined by these equations (0,0,0), (0,0,0), ( ),b b b z    q q N N
  

 and ( )bp p z
Under this basic state equations (1) to (7) become

0b
b

dp
g

dz
   (8)

0T z T   (9)

and 0 (1 )b z     (10)

4. Perturbation Equations

Using (8),(9),(10) and the following perturbed variables are
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 is the thermal diffusivity, the equations from (1) to (7) in linear form after dropping stars become
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δ  is the coupling

parameter and  ˆ ˆ. , .z zw e e    q N


5. Boundary Condition

Both boundary are taken to be free and perfectly heat conducting, then we have
2

2
0, 0, 0, 0

d w
w

dz
      N


 at z = 0 and z = 1 (16)
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6. Dispersion Relations

Taking curl twice on both sides (12), and using (17) and (19) and taking z- component, we have

   2 2 2 2 2
1

1
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1 1 zF K w R K QD h

t K t

                      
( 17)

Taking curl on both sides (12), and taking z-component, we have
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Taking curl on both sides of equation (13) and then z-component, we have
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Taking curl twice on both sides of equation (13) and then z-component, we have
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 between (18) and (20), we have
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From (14), we have
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Taking curl on both sides of equation (15), and taking z-component, we have
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Taking z-component on both sides of equation (15), we have
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Boundary condition (16) now become
2 0 z z z z zw D w D h Dm m              at 0z   and 1z  (25)

7. Normal Mode Analysis

Consider [ , , , , , ]z z zw h m    ( ), ( ), ( ), ( ), ( ), ( ) exp. x yW z X z G z z B z M z ik x ik y t      
Applying above normal mode analysis to the equations (17) to (19) and  (21) to (24), we have
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Where 2 2 2
x ya      is the wave number and r ii      is the stability parameter. Now the boundary conditions become

W = D2W = 0 = G = X = DX = B = M = DM, =0 at z=0 and z=1 (32)
Thus, the proper solution satisfying (32) can be taken as

 W = W0 sin z, Where W0 is a constant (33)
Eliminating , G, B, X and M from (26) to (31), and substituting the value of W from (33) and using b=2 + a2, we have
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8. Stationary Convection

For stationary convection we take  = 0 in (34), we get
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When  (H0 = 0) i.e. Q = 0 and 0e  , equation (35) becomes
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In absence of porous medium [K1 and =1] equation (36) reduces to
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Which is the same as discussed  by Payne and  Straughan (1989) in their paper.

Also if 0  , then (37) reduces to
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Which is similar equation as given  by Data and Sastry (1976) . Also if K = 0, then (38) reduces to
3

2
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Which is the classical value of R for Newtonian fluid obtained by Lebon and  Perez-Garcia (1981).

Equation (35) can be rewritten as
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Where
K

A
C
  denotes the micropolar coefficient.

For the behavior   of 1K  (Medium permeability), K (coupling parameter), A (Micropolar coefficient), Q (Magnetic field), e  (Hall

Current) and δ  (microplar heat conduction parameter), we examine the nature of
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Which is always negative, thus the medium permeability has destabilizing effect without any condition.
From (39), we get
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From (39), we get
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Thus,  R increases as A increases when above conditions hold, therefore, the micro-polar coefficient has stabilizing effect.
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Thus, if there is no Hall current, R increases as A increases when 1KK  .Therefore, the micropolar coefficient has stabilizing

effect.

From (39), we get
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heat conduction parameter shows stabilizing effect.

9.  Oscillatory Convection

 For the oscillatory convection we put  = ii in (34) and separating real and imaginary parts and then eliminating R between real
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and f2, f3, f4 have usual expressions.

From (40), we notice that 2
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This gives the necessary condition if the oscillatory modes exist.

10. Result and Discussions

1. For Stationary Convection:
(i) As medium permeability 1K  increases, Rayleigh number R decreases with the increment in wave number

a=1 to 2.5  when A=0.5, =0.6, Pr=2, Pm=4,  =0.05, e =0.2, K=1, Q=10,  therefore, medium permeability

1K  has destabilizing effect (see fig.2). If there is no  heat conduction and Hall current, as medium

permeability increases, Rayleigh number decreases but at wave number a=2 and a=2.5 the change in Rayleigh
number is approximately the same thus the medium permeability has destabilizing effect without any
condition  (see fig.3)

          Fig.2:  Stability curves for the variation of R v/s K1 (Medium permeability) for A=0.5, =0.6, Pr=2,
Pm=4,  =0.05, e =0.2, K=1, Q=10.
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                 Fig.3: Stability curves for the variation of R v/s K1 (Medium permeability)  for A=0.5, =0.6, Pr=2,
Pm=4, K=1,  =0, e =0, Q=0.

(ii) As the coupling parameter K increases, Rayleigh number R increases with the  wave number from a=1 to 2.5

when A=0.5, =0.6,  =0.05, e =0.2, Pr=2, Pm=4, K1=0.03, Q=10. therefore, the coupling parameter K has

stabilizing effect and at a=2 and a=2.5 the change in Rayleigh number is approximately the same   (see fig. 4).
As the coupling parameter K increases, Rayleigh number R decreases with the increment in magnetic
parameter Q, therefore, coupling parameter K has   destabilizing effect when A=0.5, =0.026, a=1, Pr=2,

Pm=4, e =0.3, K1=0.03,  =0.05 (see fig. 5).

              Fig. 4: Stability curves for the variation of R v/s K under stationary convection  for A=0.5, =0.6,

 =0.05, e =0.2, Pr=2, Pm=4, K1=0.03, Q=10.



Singh / International Journal of Engineering, Science and Technology, Vol. 9, No. 4, 2017, pp. 48-6662

              Fig. 5: Stability curves for the variation of R v/s K under stationary convection for A=0.5,

=0.026, a=1, Pr=2, Pm=4, e =0.3, K1=0.03,  =0.05.

If there is no  heat conduction  and Hall current,  as the coupling parameter K increases, Rayleigh number R

decreases when A=0.5, =0.026, Pr=2, Pm=4, e =0,  =0, Q=0, K1=0.03, therefore, the coupling parameter K

has destabilizing effect(see fig. 6) and as the coupling parameter K increases, Rayleigh number R increases with
the increment in wave number a=1 to 1.11 Thus, the coupling parameter K has stabilizing  effect when A=0.5,

=0.6, Pr=2, Pm=4, e =0,  =0, Q=0, K1=0.03  (see fig. 7)

          Fig. 6: Stability curves for the variation of R v/s under stationary convection  K for A=0.5, =0.026,

Pr=2, Pm=4, e =0,  =0, Q=0, K1=0.03.
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       Fig. 7: Stability curves for the variation of R v/s K under stationary convection  for A=0.5,

=0.6, Pr=2, Pm=4, e =0,  =0, Q=0, K1=0.03.
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Thus, the micro-polar coefficient A has stabilizing effect under above conditions.
If there is no heat conduction  and Hall current, the micro-polar coefficient has destabilizing effect and when there

is no  Hall current, the micro-polar coefficient has stabilizing effect when 1KK  .

(iv) As the magnetic parameter Q increases, Rayleigh number R increases with the increment in wave number

a=1 to 1.2 when A=0.5, =0.6, K=1, K1= 0.03,  =0.05, Pr=2, Pm=4, e = 0.3, thus the magnetic field has

stabilizing effect. (see fig. 8).
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                   Fig. 8: Stability curves for the variation of R v/s Q under stationary convection for A=0.5, =0.6, K=1,
K1= 0.03,  =0.05, Pr=2, Pm=4, e = 0.3.

(v) As the Hall parameter increases, Rayleigh number R decreases  with the increment in a=1 to 1.2

when A=0.5, K=1, K1=0.03,  =0.05, =0.6, Pr= 2, Pm=4, Q=10, thus the Hall parameter has
destabilizing effect . (see fig. 9).

                  Fig. 9: Stability curves for the variation of R v/s e  under stationary convection for A=0.5,

K=1, K1=0.03,  =0.05, =0.6, Pr= 2, Pm=4, Q=10.

(vi)  As the micro-polar heat conduction parameter increases, Rayleigh number R increases with the
increment of wave number a=1 to 1.11 when A=0.5, K=1, K1=0.03, Pr=2, Pm=4, =0.6, Q=10,

e =0.2, therefore, the micro-polar heat conduction has stabilizing effect (see fig. 10).
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Fig. 10:Stationary convection stability curves for the variation of R v/s  for A=0.5, K=1,
K1=0.03, Pr=2, Pm=4, =0.6, Q=10, e =0.2.

(vii)    In case of stationary convection visco-elasticity does not matter.

(2) For Oscillatory Convection: The necessary condition for the  oscillatory modes  is given by
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11. Conclusion

   Medium permeability shows destabilizing effect whether Hall current is present or not. For fixed magnetic  field
coupling parameter shows stabilizing effect whereas as magnetic field increases coupling parameter turns to
destabilizing effect, and if there is no  heat conduction  and Hall current, coupling parameter has destabilizing effect
when porosity is less than 0.5 and it will have stabilizing effect when porosity is greater than 0.5. Magnetic field has
stabilizing effect whereas Hall current has destabilizing effect when porosity is greater than 0.5, and micropolar heat
conduction has stabilizing effect.
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