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Abstract 
 

The effect of radiation on natural convective flow inside a solar collector having a flat-plate cover and a sine-wave absorber is 
analyzed numerically. The solar collector is filled with water-Al2O3 nanofluid. The governing differential equations with 
boundary conditions are solved by the Penalty Finite Element Method using Galerkin’s weighted residual scheme. The effects 
of radiation (ε) and tilted angle (ψ) on the flow and heat transfer characteristics are simulated. In addition average Nusselt 
number, average temperature and mean velocity field for nanofluid within the collector are presented graphically for the 
governing parameters mentioned above. The highest heat transfer rate is observed for the largest ε and absence of ψ. The Al2O3 
nanoparticles with the highest ε and in absence of ψ are established to be most effective in enhancing performance of heat 
transfer rate. Moreover, increasing tilted angle ψ and lessening emissivity ε cause decrease of average fluid temperature. For 
growing both parameters mean velocity field increases.  
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1. Introduction 
 

Solar collectors are key elements in many applications, such as building heating systems, solar drying devices, etc. Solar energy 
has the greatest potential of all the sources of renewable energy especially when other sources in the country have depleted. 
Because of the desirable environmental and safety aspects it is widely believed that solar energy should be utilized instead of other 
alternative energy forms, even when the costs involved are slightly higher. The flat-plate solar collector is commonly used today 
for the collection of low temperature solar thermal energy. The fluids with solid-sized nanoparticles suspended in them are called 
“nanofluids”. The natural convection in enclosures continues to be a very active area of research during the past few decades. 
Applications of nanoparticles in thermal field are to enhance heat transfer from solar collectors to storage tanks, to improve 
efficiency of coolants in transformers etc. Performance of solar collector is to transfer solar energy into thermal energy. 

Rao (1977) proposed a two-dimensional model for the absorber plate conduction to compute the fluid temperature rise. Kreith 
(1978) stated that the sun is a sphere of intensely hot gaseous matter with a diameter of 1.39x109 m. The solar energy strikes our 
planet a mere 8 min and 20 s after leaving the giant furnace. The sun has an effective blackbody temperature of 5762 K. Various 
investigators have used two dimensional conduction equations in their analysis with different boundary conditions. A two-
dimensional model for the transfer of heat in flat plate solar collector absorbers with adiabatic boundary conditions at the upper 
and lower edges of the collector is proposed by Lund (1986). He solved approximately the governing partial differential equations 
analytically in terms of perturbation series. The one-dimensional analysis offers a desired accuracy required in a routine analysis 
even though a two-dimensional temperature distribution exists over the absorber plate of the collector. Therefore, for more 
accurate analysis at low mass flow rates, a two-dimensional temperature distribution must be considered.  

Nag et al. (1989) used the two-dimensional model proposed by Lund, but with convection boundary condition at the upper and 
lower edge of the absorber plate. They solved the governing equations using finite element method. They concluded that the 
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isotherms deviated from a one-dimensional pattern for a high flow rate to a predominantly two-dimensional distribution for a low 
mass flow rate. Conventional analysis and design of solar collector is based on a one-dimensional conduction equation formulation 
of Sukhatme (1991). The analysis has been substantially assisted by the derivation of plate-fin efficiency factors. The factors relate 
the design and operating conditions of the collector in a systematic manner that facilitates prediction of heat collection rates at the 
design stage. Piao et al. (1992, 1994) investigated experimentally natural, forced and mixed convective heat transfer in a cross-
corrugated channel solar air heater. Detailed experimental and numerical studies on the performance of the solar air heater were 
made by Gao (1996). Noorshahi et al. (1996) studied numerically on the natural convection in a corrugated enclosure with mixed 
boundary conditions.  Stasiek (1998) made experimental studies of heat transfer and fluid flow across corrugated and undulated 
heat exchanger surfaces.   

There are so many methods introduced to increase the efficiency of the solar water heater Xuesheng et al. (2005), Xiaowu 
(2005), Hussain (2006) and Ho and Chen (2006). But the novel approach is to introduce the nanofluids in solar water heater 
instead of conventional heat transfer fluids (like water). The poor heat transfer properties of these conventional fluids compared to 
most solids are the primary obstacle to the high compactness and effectiveness of the system. The essential initiative is to seek the 
solid particles having thermal conductivity of several hundred times higher than those of conventional fluids. An innovative idea is 
to suspend ultra fine solid particles in the fluid for improving the thermal conductivity of the fluid Hetsroni and Rozenblit (1994). 
These early studies, however, used suspensions of millimeter- or micrometer-sized particles, which, although showed some 
enhancement, experienced problems such as poor suspension stability and hence channel clogging, which are particularly serious 
for systems using mini sized and micro sized particles. The suspended metallic or nonmetallic nanoparticles change the transport 
properties and heat transfer characteristics of the base fluid. Stability and thermal conductivity characteristics of nanofluids was 
performed by Hwang et al. (2007). In this study,   they concluded that the thermal conductivity of ethylene glycol was increased by 
30%. 
   The absorptance of the collector surface for shortwave solar radiation depends on the nature and colour of the coating and on the 
incident angle. Usually black colour is used. Various colour coatings had been proposed in Tripanagnostopoulos et al. (2000), Orel 
et al. (2002) and Wazwaz et al. (2002) mainly for aesthetic reasons. The principal requirement of the solar collector is a large 
contact area between the absorbing surface and the air. Various applications of solar air collectors are reported by Kolb et al. 
(1999). Role of nanofluids in solar water heater was studied by Natarajan & Sathish (2009). They concluded that the suspended 
metallic or nonmetallic nanoparticles change the transport properties and heat transfer characteristics of the base fluid. Nanofluids 
are expected to exhibit superior heat transfer properties compared with conventional heat transfer fluids. The aim of this paper is to 
analyze and compare the heat transfer properties of the nanofluids with the conventional fluids. A low-cost mechanically 
manufactured selective solar absorber surface method had been proposed by Konttinen et al. (2003). Another category of 
collectors is the uncovered or unglazed solar collector Soltau (1992). These are usually low-cost units which can offer cost 
effective solar thermal energy in applications such as water preheating for domestic or industrial use, heating of swimming pools 
Molineaux et al. (1994), space heating and air heating for industrial or agricultural applications.  

In this paper, the influences of radiation and tilted angle on natural convection flow inside the solar collector having the flat-
plate cover and wavelike absorber are numerically investigated. 

 
2.  Physical Configuration 
 

Fig. 1 shows a schematic diagram of a tilted solar collector. The fluid in the collector is water-based nanofluid containing Al2O3 
nanoparticles. The nanofluid is assumed incompressible and the flow is considered to be laminar. It is taken that the water and 
nanoparticles are in thermal equilibrium and no slip occurs between them.  The solar collector is a metal box with a cover plate on 
top and a dark colored wavelike absorber plate on the bottom. The top horizontal wall initially has constant temperature Th, while 
the bottom sinusoidal wall is at temperature Tc, with Th > Tc. The two vertical walls are considered adiabatic. The top wall takes as 
transparent glass cover plate to collect enough solar heat directly. That’s why bottom absorber is taken as cool. As a result the solar 
energy is transferred into thermal energy by this model. The density of the nanofluid is approximated by the Boussinesq model. 
Only the steady state case is considered. In addition, if we input the cold water through the entrance of the passage (below the 
absorber and above the insulation), then the cold water becomes hot in contact with the absorber and we get the hot water from the 
exit of this passage. This hot water can be used in various purposes. 

The thermophysical properties of the nanofluid are taken from Lin and Violi (2010) and given in Table 1.  
 

Table 1: Thermo physical properties of fluid and nanoparticles 
Physical Properties Fluid phase (Water) Al2O3 

Cp(J/kgK) 4179 850 
ρ (kg/m3) 997.1 3900 
k (W/mK) 0.613 46 
β (1/K) 21×10-5 1.67×10-5 
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3. Mathematical Formulation  
 

The governing equations for laminar, steady-state natural convection in an annulus filled with water-alumina nanofluid in terms 
of the Navier-Stokes and energy equation are given as: 

Continuity equation: 

0=
∂
∂

+
∂
∂

y
v

x
u              (1) 

x-momentum equation: 

2 2

2 2 ( )sinnf nf nf nf c
u u p u uu v g T T
x y x x y

ρ μ ρ β ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
       (2) 

y-momentum equation: 

2 2

2 2 ( ) cosnf nf nf nf c
v v p v vu v g T T
x y y x y

ρ μ ρ β ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
       (3) 

Energy equation: 

2 2

2 2nf
T T T Tu v
x y x y

α
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
           (4) 

where, ( )1nf f sρ φ ρ φρ= − +  is the density,  

( ) ( )( ) ( )1p p pnf f s
C C Cρ φ ρ φ ρ= − + is the heat capacitance,  

( )1nf f sβ φ β φβ= − + is the thermal expansion coefficient,  

Tc 

Fig.1: Schematic diagram of the Solar Collector 
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( )nf nf p nf
k Cα ρ= is the thermal diffusivity,  

the dynamic viscosity of the Brinkman model (1952) is ( ) 2.51nf fμ μ φ −= −    

and the thermal conductivity of the Maxwell Garnett (MG) model (1904) is 
( )
( )

2 2

2
s f f s

nf f
s f f s

k k k k
k k

k k k k

φ

φ

+ − −
=

+ + −
 . 

Radiation heat transfer by the top glass cover surface must account for the thermal radiation which can be absorbed, reflected, or 
transmitted. This decomposition can be expressed by, 

net absorbed transmitted reflectedq q q q= + +  

Outside the boundary layer, the amount of energy reflectedq  is neglected. 

Thus total energy of the glass cover plate becomes net absorbed transmittedq q q= +  

Now the amount of transmitted energy is radiated from the cover plate to the bottom wavy absorber without any medium as: 

( )4 4
transmitted r w cq q A T Tεσ= = −  

Here ε is emissivity (radiation parameter) of the glass cover plate, σ is the Stefan Boltzmann constant 5.670400 x 10-8 Js-1m-2K-4 

and Tw is the variable temperature of the top wall. Again, the amount of absorbed energy is transferred from cover plate to bottom 
absorber by natural convection where medium is nanofluid as: 

( )absorbed c w iq q hA T T= = −  

So total energy gained or lost by the cover plate is ( ) ( )4 4
net w i w cq hA T T A T Tεσ= − + −  

The boundary conditions are: 

at all solid boundaries u = v = 0 

at the vertical walls 0=
∂
∂

x
T  

at the top cover plate ( ) ( )4 4
w i w cq hA T T A T Tεσ= − + −  

at the bottom wavy absorber T = Tc 

The above equations are non-dimensionalized by using the following dimensionless dependent and independent variables: 

 

 

 

Then the non-dimensional governing equations are  

0=
∂
∂

+
∂
∂

Y
V

X
U              (5) 

( )2 2

2 2

1
sinf nf f f s s

nf f nf f

U U P U U RaU V
X Y X PrX Y

ρ ν φ ρ β φρ β
θ ψ

ρ ν ρ β
− +⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
      (6) 

( )2 2

2 2

1
cosf nf f f s s

nf f nf f

V V P V V RaU V
X Y Y PrX Y

ρ ν φ ρ β φρ β
θ ψ

ρ ν ρ β
− +⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
      (7) 

2

2, , , , , c

f f h cf f

T Tx y uL vL pLX Y U V P
L L T T

θ
ν ν ρ ν

−
= = = = = =

−
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2 2

2 2
1U V

X Y Pr X Y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

           (8) 

where f

f

ν
Pr

α
=  is the Prandtl number,  ( )3

f h c

f f

g L T T
Ra

β
ν α

−
= is the Rayleigh number. 

The corresponding boundary conditions take the following form: 

at all solid boundaries U = V = 0 

at the vertical walls 0=
∂
∂
X
θ  

at the bottom wavy absorber θ  = 0 

The shape of the bottom wavy absorber profile is assumed to mimic the following pattern ( )[ ]XAY m λπ2cos1−=  where Am is 
the dimensionless amplitude of the wavy surface and λ is the number of undulations. 

The average Nusselt number (Nu) is expected to depend on a number of factors such as thermal conductivity, heat capacitance, 
viscosity, flow structure of nanofluids, volume fraction, dimensions and fractal distributions of nanoparticles. The local variation 

of the convective Nusselt number of the fluid at the top cover plate is nf
cl

f

k TNu
k y

∂
= −

∂
.     

The non-dimensional form of local convective heat transfer is nf
cl

f

k
Nu

k Y
θ∂

= −
∂

.  

By integrating the local Nusselt number over the top heated surface, the average convective heat transfer along the cover plate of 

the collector is used by Saleh et al. (2011) as 
1

0
c clNu Nu dX= ∫ .   

The radiative heat transfer rate is expressed as   
1

0
r rNu q dX= ∫ . 

The average Nusselt number is rc NuNuNu +=  

The mean bulk temperature and average velocity field of the nanofluid inside the tilted collector may be written as 
/av dV Vθ θ= ∫  and /av dV Vω ω= ∫ , where V is the volume of the collector. 

 
4. Numerical Computation  
 

The Galerkin finite element method from Taylor and Hood (1973) and Dechaumphai (1999) is used to solve the non-
dimensional governing equations along with boundary conditions for the considered problem. The equation of continuity has been 
used as a constraint due to mass conservation and this restriction may be used to find the pressure distribution. The penalty finite 
element method from Basak et al. (2009) is used to solve the Eqs. (6) - (8), where the pressure P is eliminated by a penalty 
constraint ξ, and the incompressibility criteria given by equation (8) which can be expressed as 

 U VP
X Y

ξ ∂ ∂⎛ ⎞=− +⎜ ⎟∂ ∂⎝ ⎠
                       (9) 

The continuity equation is automatically fulfilled for large values of ξ. Then the velocity components (U, V), and temperature (θ) 

are expanded using a basis set { } 1
N
k=Φ  as ( )

1

,
N

k k
k

U U X Y
=

≈ Φ∑ ,     ( )
1

,
N

k k
k

V V X Y
=

≈ Φ∑  and  ( )
1

,
N

k k
k

X Yθ θ
=

≈ Φ∑            (10) 

The Galerkin finite element technique yields the subsequent nonlinear residual equations for the Eqs. (6), (7) and (8) 
respectively at nodes of the internal domain Ω: 
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( )

(1)

1 1 1 1 1

1

1
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    (12) 

 

(3)

1 1 1 1

1N N N N
k k i k i k

i k k k k k i k
k k k k

R U V dXdY dXdY
X Y Pr X X Y Y

θ θ
= = = =Ω Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂Φ ∂Φ ∂Φ ∂Φ ∂Φ ∂Φ⎡ ⎤⎢ ⎥= Φ + Φ Φ − +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑∫ ∫  (13) 

Three points Gaussian quadrature is used to evaluate the integrals in these equations. The non-linear residual equations (11), 
(12) and (13) are solved using the Newton–Raphson method to determine the coefficients of the expansions in Eq. (10). The 
convergence of solutions is assumed when the relative error for each variable between consecutive iterations is recorded below the 
convergence criterion ε such that 1 410n n+ −Ψ −Ψ ≤ , where n is the number of iteration and Ψ is a function of U, V and θ. 

4.1. Mesh Generation 

In the finite element method, the mesh generation is the technique to subdivide a domain into a set of sub-domains, called finite 
elements, control volume, etc. The discrete locations are defined by the numerical grid, at which the variables are to be calculated. 
It is basically a discrete representation of the geometric domain on which the problem is to be solved. The computational domains 
with irregular geometries by a collection of finite elements make the method a valuable practical tool for the solution of boundary 
value problems arising in various fields of engineering. Fig. 2 displays the finite element mesh of the present physical domain. 

 
 
 
 
 
 
 
 
 
 
 

4.2. Grid Refinement Test  
 

An extensive mesh testing procedure is conducted to guarantee a grid-independent solution for ψ = 00, ε = 0.1, φ = 5%, Ra = 
104and Pr = 7 in a solar collector. In the present work, we examine five different non-uniform grid systems with the following 
number of elements within the resolution field: 2969, 5130, 6916, 9057 and 11426. The numerical scheme is carried out for a 
highly precise key in the average convective and radiated Nusselt numbers namely Nuc and Nur for the aforesaid elements to 
develop an understanding of the grid fineness as shown in Table 2 and Fig. 3. The scale of the average Nusselt number (convective 
and radiative) for 9057 elements shows a little difference with the results obtained for the other elements. Hence, considering the 
non-uniform grid system of 9057 elements is preferred for the computation. 

 
 
 
 
 
 

Fig. 2: Mesh generation of the fluid valve 



Nasrin and Alim / International Journal of Engineering, Science and Technology, Vol. 4, No. 4, 2012, pp. 1-12 

 

7 

 

Table 2:  Grid Sensitivity Check at ε = 0.1 and ψ = 00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3. Code Validation 
 

The present numerical solution is validated by comparing the current code results for heat transfer - temperature difference 
profile at Pr = 0.73, Gr = 104 with the graphical representation of Gao et al. (2000) which was reported for heat transfer 
augmentation inside a channel between the flat-plate cover and the sine-wave absorber of a cross-corrugated solar air heater. Fig. 4 
demonstrates the result of numerical simulations of the effect of ∆T on the natural convection heat transfer coefficient h. As shown 
in Fig. 4, ∆T – h profile of the numerical solutions (present code and Gao et al. (2000) are in good agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nodes 
(elements) 6224 

(2969) 
10982 
(5130) 

13538 
(6916) 

20295 
(9057) 

27524 
(11426) 

Nuc 10.82945 12.48176 14.58701 15.875492 15.904362 

Nur 4.92945 5.68176 6.18701 7.00490 7.21746 

Time (s) 
226.265 292.594 388.157 421.328 627.375 

Fig. 3: Grid independency study for the geometry 

Fig. 4: Comparison between present code and Gao et al. (2000) 
at Pr = 0.73 and Ra = 104 

∆T 
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5. Results and Discussion 
 

In this section, numerical results of streamlines and isotherms for various values of emmisivity (ε) and tilted angle (ψ) with 
Al2O3 /water nanofluid in a solar collector are displayed. The considered values of ε and ψ are ε = (0.1, 0.4, 0.7 and 0.98), ψ (= 00, 
300, 600 and 800) while the solid volume fraction φ  = 5%, the wave amplitude of bottom surface Am = 0.075, Rayleigh number Ra 
= 104, Prandtl number Pr = 7 and number of wave λ = 3.5. In addition, the values of the average Nusselt number both for 
convection and radiation as well as mean bulk temperature and average velocity field are shown graphically.  

The effect of emissivity on natural convection inside the solar collector is studied. The influence of ε on the thermal and flow 
fields are presented in Fig. 5 (a) - (b) while ψ = 00. Surface radiation significantly modifies the temperature distribution inside the 
collector. As we increase the value of the emissivity, the change in the temperature distribution is less evident. As the emissivity is 
increased, the temperature distribution at the top cover of the collector becomes more uniform and the isotherms become more 
parallel to the hot wall increasing the temperature gradient at the wall. This improves the amount of heat transfer by conduction 
from the hot wall. As the values of emissivity approach almost unity, the temperature gradient near the top cover plate is slightly 
reduced and natural convection is also weakened with compared to radiation. This behavior is quantified in Fig. 7(i) that shows the 
average convective and radiative Nusselt numbers calculated at the hot wall. With rising ε the temperature distributions become 
distorted resulting in an increase in the overall heat transfer from the transparent cover plate to the wavelike absorber. This result 
can be attributed to the dominance of the emissivity property.  

The effect of surface radiation on the velocity field is shown in Fig. 5 (b). Six primary recirculation cells occupying the whole 
collector is found at the lowest value of the emissivity (ε = 0.1). As well as two tiny eddies appear near the left and right vertical 
walls in this case. In each wave, the right and left vortices rotate in counter clockwise and clockwise direction respectively. There 
are no major qualitative changes in the streamlines as we increase the emissivity but the intensity of the flow is varied. This 
happens due to greater velocity of heated fluid. If emisivity of the cover plate rises, then more heat is directly transmitted from this 
surface to the bottom undulating absorber. The working nanofluid then becomes more heated. In addition more perturbation is 
observed in the streamlines at ε = 0.98 because of growing emissivity property of the cover plate. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 (a)–(b) exposes the thermal current activities and fluid flow for various tilted angle ψ (= 00 - 800). In this figure we 
observe that as the tilted angle enhances from 00 to 800, the isothermal contours tend to get affected considerably. In addition, these 
lines corresponding to ψ = 800 become compressed at right side of each wave whereas initially (ψ = 00), the thermal lines are 
symmetric corresponding to vertical midline in each wave. In absence of inclination angle the isotherms cover the whole region of 
the solar collector due to comparatively higher temperature of the working water-Al2O3 nanofluid where the contour lines mimic 
the wall’s (absorber) profile. At this stage the cover plate gets full solar energy. Consequently the nanofluid can carry more heat 
than other cases of tilted angle.  This is happened because the top cover plate of the solar collector can’t absorb heat properly from 
the sun with the increasing tilted angle. 
   The fluid flow covers the entire collector at the absence of ψ forming few (eight) eddies in Fig. 6(b).  At ψ = 300, the number of 
vortices devalues from eight to three near the bottom corrugated surface. As well as these vortices are larger than the case of the 
lowest ψ. Due to the gravitational effect i.e. buoyancy effect, the interaction among the nanofluid particles in the solar collector 

ε  
= 

0.
98

 
ε  

= 
0.

1 
ε  

= 
0.

4 
ε  

= 
0.

7 

(a) (b) 

Fig. 5: Effect of ε on (a) Isotherms and (b) Streamlines at ψ = 00  
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increases with the elevation of the tilted angle. The streamlines have no significant change due to rising ψ from 300 to 800 except 
the core of the vortices becomes slightly bigger. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The change of the temperature distribution is significant between convection and radiation. The average Nusselt (convective and 
radiative) numbers, average temperature (θav) and mean velocity field ( avω ) along with the emissivity (ε) are depicted in Fig. 7(i)-
(iii). It is seen from Fig. 7(i) that Nuc enhances slowly due to growing radiation parameter. The radiative average Nusselt number 
(Nur) rises strongly with increased emissivity. It increases much more than the reduction of the convective Nusselt number so the 
overall Nusselt number at the top of the cavity is highly significant.  The rate of heat transfer for water-alumina nanofluid is found 
to be effective for higher thermal conductivity of solid nanoparticles. Rate of convective heat transfer enhances by 6% for 
nanofluid whereas this rate for radiation is 9% with the variation of ε from 0.1 to 0.98. In addition, Fig. 7(ii) shows that (θav) grows 
sequentially for all ε. Fig. 7(iii) describes the enhancing phenomena in the avω - ε profile.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(a) (b) 

Fig. 6: Effect of ψ on (a) Isotherms and (b) Streamlines at ε = 0.1 
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 6
00  

ψ 
 =

 3
00  

ψ 
= 

00 
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 =
 8

00  

(ii) (i) (iii) 
Fig. 7: Effect of ε on (i) heat transfer, (ii) θav and (ii) avω at ψ = 00 
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Fig. 8(i)-(iii) displays the Nuc, Nur, θav and avω  for the effect of tilted angle ψ. Mounting ψ diminishes average Nusselt number 
for both convection and radiation. From Fig. 8 (i), it is found that, rate of convective and radiative heat transfers decrease by 22% 
and 14% with the increasing values of ψ from 00 to 800.  On the other hand, θav devalues due to the variation of ψ as temperature of 
fluid grows down with growing ψ. The average sub domain velocity ( avω ) profile has notable changes with different values of 
tilted angle.  
 
6. Conclusion 
 
   The influences of radiation parameter and tilted angle on natural convection boundary layer flow inside a solar collector with 
water-Al2O3 nanofluid are accounted. Various emissivity and tilted angle have been considered for the flow and temperature fields 
as well as the convective and radiative heat transfer rates, mean bulk temperature of the nanofluid and average velocity field in the 
collector while Ra, Pr and φ  are fixed at 104, 7 and 5% respectively. The results of the numerical analysis lead to the following 
conclusions: 

• The structure of the fluid streamlines and isotherms within the solar collector is found to significantly depend upon the ε 
and ψ. 

• The Al2O3 nanoparticles with the highest ε and in absence of ψ are established to be most effective in enhancing 
performance of heat transfer rate. 

• Mean nanofluid temperature diminishes with rising tilted angle ψ and falling emissivity ε. 
• Average velocity field increases due to growing both parameters.  

A future work is the presentation of the effect of the solid volume fraction. Introducing the values of solid volume fraction φ 
from the range 0% (base fluid) to approximately 6% in the effective properties of nanofluid such as density, heat capacitance, 
thermal expansion coefficient, thermal diffusivity, dynamic viscosity and thermal conductivity included in the governing equations 
ould be a worthwhile investigation in the future.. Overall, the analysis also defines the operating range where water-Al2O3 
nanofluid can be considered effectively in determining the level of heat and mass transfer augmentation. 
 
Nomenclature 
 

A  Area of glass cover plate (m2) 
Am Dimensionless amplitude of wave 
Cp Specific heat at constant pressure (KJkg-1K-1) 
g Gravitational acceleration (m s-2) 
h Local heat transfer coefficient (W m-2 K-1) 
k Thermal conductivity (Wm-1K-1) 
L Length of the fluid valve (m) 
Nu  Nusselt number 
p Dimensional pressure (Nm-2) 
P Non-dimensional pressure  

(ii) 
Fig. 8: Effect of ψ on (i) heat transfer (ii) θav and (iii) avω at ε = 0.1 

(i) (iii) 
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Pr Prandtl number 
Ra Rayleigh number 
T Dimensional temperature (K) 
Ti Initial temperature of nanofluid (oK) 
u, v Velocity components (ms-1) along x,  y direction respectively 
U, V Dimensionless velocity components along X, Y direction respectively
x, y Cartesian coordinates (m) 
X, Y Non-dimensional Cartesian coordinates 
Greek symbols 
α Thermal diffusivity (m2s-1)  
β Thermal expansion coefficient (K-1) 
ε Emissivity  
φ  Solid volume fraction  
θ Non-dimensional temperature 
μ  Dynamic viscosity of the fluid (Kg m-1s-1) 
ν Kinematic viscosity of the fluid (m2s-1) 
ρ Density of the fluid (Kg m-3) 
λ Number of wave 
σ Stefan Boltzmann constant 
Ψ Tilted angle (0)  
ω  Dimensionless velocity field 
Subscripts 
av Average 
c Cold 
F Base fluid 
h  Heated wall 
nf Nanofluid 
s Solid particle 
w Top wall 
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