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Abstract 
 
   The aim of this paper is to study the boundary layer flow and heat transfer analysis of an unsteady viscous dusty fluid over a 
porous stretching surface. Momentum Boundary layer equation considers the effect of transverse magnetic field whereas thermal 
Boundary layer equation considers the effect of thermal radiation. The governing partial Differential equations are reduced to 
coupled non-linear ordinary differential equations using similarity transformation. Numerical solutions of these equations are 
obtained with the help of RKF-45 method. The solution is found to be dependent on different governing parameters. Some 
important findings reported in this work reveal that the effect of radiation has significant impact in controlling the rate of heat 
transfer in the boundary layer region. 
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1. Introduction 
 
   The study of boundary layer flow and heat transfer analysis of dusty fluid due to a continuously moving stretching surface 
through an ambient liquid is one of thrust areas of current research. This finds its applications over a broad spectrum of science 
and engineering disciplines, especially in the field of chemical engineering. Many chemical engineering processes like 
metallurgical process, polymer extrusion process involving cooling of a molten liquid being stretched into a cooling system. The 
fluid mechanical properties desired for an outcome of such a process would mainly depend on two aspects, one is the cooling 
liquid used and the other is the rate of stretching. Rate of stretching is very important as rapid stretching results in sudden 
solidification, thereby destroying the properties expected for the outcome. The problem mentioned here frequently arises in many 
practical situations such as polymer extrusion process. It is also encountered with the other process like drawing, annealing and 
tinning of copper wires, continuous stretching, rolling and manufacturing of plastic films and artificial fibers, heat treated materials 
traveling on conveyer belts, glass blowing, crystal growing, paper production and so on. 

Sakiadis (1961) initiated the study of the boundary layer flow over a stretched surface moving with a constant velocity and 
formulated a boundary-layer equation for two-dimensional and axisymmetric flows. Tsou et al. (1967) analyzed the effect of heat 
transfer in the boundary layer on a continuous moving surface with a constant velocity and experimentally confirmed the 
numerical results of Sakiadis (1961). Carragher et.al. (1982) investigated the heat transfer in the flow over a stretching surface in 
the case when the temperature difference between the surface and the ambient fluid is proportional to a power of distance from the 
fixed point. Vajravelu et.al (1992) have discussed hydromagnetic flow of a dusty fluid over a stretching sheet.  Sharidan et.al 
(2006) haves studied similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet. Subhas 
Abel et.al (2007) have studied the flow and heat transfer in a viscoelastic boundary layer flow over a stretching sheet with 
prescribed surface temperature (PST) case and prescribed heat flux (PHF) case. Elbashbeshy et.al (2010) have studied effect of 
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thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface. Subhas 
Abel et.al (2008) discussed heat transfer in MHD visco-elastic fluid flow over a stretching sheet with variable thermal 
conductivity, non-uniform heat source and radiation. Grubka et.al (1985) have studied the temperature field in the flow over a 
stretching surface subjected to a uniform heat flux. Andersson et al. (2000) presented a new similarity solution for the temperature 
fields, which transforms the time-dependent thermal energy equation to an ordinary differential equation.  Ali et.al (2011) have 
studied unsteady flow and heat transfer past an axisymmetric permeable shrinking sheet with radiation effect. Sharma et.al (2009) 
obtained the results for the effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a 
linearly stretching sheet. Subhas Abel (2009) et.al have analyzed the MHD flow and heat transfer to a laminar liquid film from a 
horizontal stretching surface with the aid of similarity transformation. The transformation enables to reduce the unsteady boundary 
layer equations to a system of non-linear ordinary differential equations.  Numerical solution of resulting nonlinear differential 
equations is found by using efficient shooting technique. Abdul Aziz (2009) obtained the numerical solution for laminar thermal 
boundary over a flat plate with a convective surface boundary condition using the symbolic algebra software Maple.     

Mukhopadhyay (2009) has studied the effect of thermal radiation on unsteady mixed convection flow and heat transfer over a 
porous stretching surface in porous medium. Hayat (2010) et.al. have discussed the influence of radiation on 
magnetohydrodynamic (MHD) and mass transfer flow over a porous stretching sheet. Attention has been particularly focused to 
the unsteadiness.  Hayat (2011) et al.  have studied the  magnetohydrodynamic (MHD) flow and heat transfer characteristics for 
the boundary layer flow over a permeable stretching sheet in the presence of  velocity and thermal slip conditions. Anura Ishak 
(2010) has studied the thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. The 
governing similarity equations contain Prandtl number, Eckret number, number density and unsteadiness parameter. Although a 
similarity solution is accomplished by these authors, some physically unrealistic phenomena are encountered for specific values of 
the unsteadiness. 

In view of the above discussion, the present paper concentrated on investigation of two-dimensional unsteady state dusty 
viscous and incompressible thermal boundary layer flow over a stretching sheet with radiation effect. In addition, both the variable 
wall temperature (VWT) and variable heat flux (VHF) conditions have been considered. The governing equations are solved 
numerically using RKF-45 method with the help of symbolic algebra software Maple. 

 
2.  Mathematical Formulation 
 

Consider the two-dimensional unsteady boundary layer flow of an electrically conducting viscous and incompressible dusty 
fluid past a semi-infinite stretching sheet in the region 0.y > In the present study the flow is considered to be generated by 
stretching of an elastic boundary sheet from a slit with the application of two equal and opposite forces in such way that velocity of 

boundary sheet is linear order of the flow directional coordinate x . A uniform magnetic field 0B̂ is also imposed along the y axis. 
 

 
 

Figure 1: Schematic diagram of the flow geometry. 
 

The unsteady two-dimensional boundary layer equations of dusty fluid in usual notation are: 
 

       

0,u v
x y

∂ ∂
+ =

∂ ∂
                                                                                                     (2.1) 



Manjunatha et al./ International Journal of Engineering, Science and Technology, Vol. 4, No. 4, 2012, pp. 36-48 

 

38

 

       

2 2
0

2 ( ) ,p
u u u u K N Bu v u u
t x y y

μ σ
ρ ρ ρ

∧

∂ ∂ ∂ ∂
+ + = + − −

∂ ∂ ∂ ∂
                                                              (2.2) 

       
( ),p p p

p p p

u u u Ku v u u
t x y m

∂ ∂ ∂
+ + = −

∂ ∂ ∂
                                                                         (2.3) 

       
( ),p p p

p p p

v v v Ku v v v
t x y m

∂ ∂ ∂
+ + = −

∂ ∂ ∂
                                                                                         (2.4) 

       
( ) ( ) 0,p p p pu v

x y
ρ ρ∂ ∂

+ =
∂ ∂

                                                                                               (2.5) 

In deriving these equations, the Stokesian drag force is considered for the interaction between the fluid and particle phase and the 
induced magnetic field is neglected. It is also assumed that the external electric field is zero and the electric field due to 
polarization of charges is negligible. 
 
The boundary conditions applicable to the above problem are: 
 

 
( , ), ( , ) 0,

0, 0, , ,
w w

p p p

u U x t v V x t at y
u u v v k as yρ ρ
= = =

→ → → → →∞
                                                     (2.6) 

  Equations (2.1) to (2.5) subjected to boundary condition (2.6), admits self-similar solution in terms of the similarity 
function f  and the similarity variable η   is defined as 
 

 

2 2 1/2
0 0

( ), ( ), ,
1 1 (1 )

( ), ( ), ( ) ,
1 1

(1 )

p p r

c x c cu f v f y
t t t

c x cu F v G H
t t

B B t

νη η η
α α ν α

νη η ρ η
α α

α
∧

−

′= = − =
− − −

= = =
− −

= −

                                        (2.7) 

where a prime denotes the differentiation with respect to .η    Substituting the equations (2.7) into equations (2.1) to (2.5) one can 

get 

    
2( ) ( ) ( ) [ ( )] ( ) ( )

2
f f f f A f fηη η η η η η⎡ ⎤′′′ ′′ ′ ′ ′′+ − − +⎢ ⎥⎣ ⎦

                 

   ( )[ ( ) ( )] ( ) 0,l H F f Mfβ η η η η′ ′+ − − =                                           (2.8) 

 
2( ) ( ) ( ) ( ) [ ( )] [ ( ) ( )] 0,

2
A F F G F F F fηη η η η η β η η⎡ ⎤′ ′ ′+ + + + − =⎢ ⎥⎣ ⎦

                                                        (2.9) 

 ( ) ( ) ( ) ( ) [ ( ) ( )] 0,
2 2
A G G G G f Gηη η η η β η η⎡ ⎤′ ′+ + + + =⎢ ⎥⎣ ⎦

                                                       (2.10) 

   ( ) ( ) ( ) ( ) ( ) ( ) 0,H F H G G Hη η η η η η′ ′+ + =                                                                                                     (2.11) 
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The corresponding boundary conditions are transformed to: 

 
 

       ( ) ( ) 0,1 ===′ ηηη atRff  
 
 ( ) 0, ( ) 0, ( ) ( ) , ( ) .f F G f H E asη η η η η η′ = = = − = →∞                                      (2.12) 
If 0,A =  the analytical and numerical solution of equations (2.1) to (2.5) was given by Vajravelu and Nayfeh [4]. 

 
3. Heat transfer analysis 
 
   The unsteady boundary layer heat transport equation in the presence of thermal radiation for two dimensional flows is given by 
 

22
* 2

2 ( ) ( ) ,p r
p p p

T

N c qT T T T N uc u v k T T u u
t x y y v y y

ρ μ
τ τ

⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂ ∂ ∂
+ + = + − + − − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

                               (3.1) 

( ).p p p p
m p p p

T

T T T Nc
Nc u v T T

t x y τ
∂ ∂ ∂⎛ ⎞

+ + = − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                    (3.2) 

Following Rosseland approximation (1972) the radiative heat flux rq is modeled as  

 
* 4

1

4
3r

Tq
k y
σ ∂

= −
∂

                                      (3.3) 

Assuming that the differences in the temperature within the flow are such that 4T can be expressed as linear combination of the 
temperature, one can expand 4T in a Taylor’s series about T∞ as follows 

 4 4 3 2 24 ( ) 6 ( )T T T T T T T T∞ ∞ ∞ ∞ ∞= + − + − + ⋅⋅⋅                        (3.4) 

By neglecting higher order terms beyond the first degree in ( )T T∞− we get 

 
4 4 33 4 .T T T T∞ ∞= − +                                                  (3.5) 

Substituting equation (3.5) in equation (3.3) we obtain 

 
3 * 2

2
1

16
3

rq T T
y k y

σ∞∂ ∂
= −

∂ ∂               (3.6) 

      The solution of equations (3.1) and (3.2) depends on the nature of the prescribed boundary condition. The two types of heating 
processes are discussed below. 
 
 
CASE-1: Variable wall temperature (VWT) 
 
 For this heating process, the variable wall temperature is assumed to be a quadratic function of x and is given by 

2

0 2 0.
(1 )w

cxT T T T at y
tν α∞

⎛ ⎞
= = + =⎜ ⎟−⎝ ⎠

    

                

  ,T T∞→   ,pT T as y∞→ →∞                                           (3.7) 

In order to obtain similarity solution for temperatures ( )θ η and ( ),pθ η  define dimensionless variables as follows: 
 

 ( ) , ( ) ,p
p

w w

T TT T
T T T T

θ η θ η ∞∞

∞ ∞

−−
= =

− −
                                                                               (3.8) 
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where 
2

0 2 ( ).
(1 )

cxT T T
t

θ η
ν α∞

⎛ ⎞
− = ⎜ ⎟−⎝ ⎠  

Using Equations (3.6), (3.7) and (3.8) in the Equations (3.1) and (3.2), we get 

[ ]

( )22
1

(1 ) ( ) Pr[ ( ) ( ) 2 ( ) ( )] Pr 4 ( ) ( )
2

Pr [ ( ) ( )] Pr [ ( ) ( )] Pr ( ) 0,p

ANr f f

N NEc F f a Ec f

θ η η θ η η θ η θ η ηθ η

β η η θ η θ η η
ρ ρ

′′ ′ ′ ′+ + − − +

′ ′+ − + − + =
                               (3.9) 

1( ) ( ) 2 ( ) ( ) 4 ( ) ( ) [ ( ) ( )] 0,
2p p p p p
AG F aη θ η η θ η θ η ηθ η γ θ η θ η′ ′⎡ ⎤+ + + + − =⎣ ⎦                                          (3.10) 

Using the Equations (3.7) and (3.8) the corresponding boundary conditions for ( )θ η and ( ),pθ η  reduces to following form 
 

 ( ) 1 0,atθ η η= =                                                  

  ( ) 0, ( ) 0 .p asθ η θ η η→ → →∞                             (3.11) 

CASE-2: Variable heat flux (VHF-Case) 
 
 In this heating process we employ the following variable heat flux boundary conditions.  

 *

( , ) 0,wq x tT at y
y k

∂
= − =

∂
                                       

                    

    ,T T∞→   ,pT T as y∞→ →∞                   `            (3.12) 

Where 
0

3/2
2 5/2( , ) (1 ) .w w

cq x t q x tα
ν

−⎛ ⎞= −⎜ ⎟
⎝ ⎠  

In order to obtain similarity solution for temperature, define dimensionless temperature variables in VHF case as same in equation 

(3.8), where 0

2

* 2 ( ).
(1 )

w
w

q cxT T
k t

θ η
ν α∞

⎡ ⎤
− = ⎢ ⎥−⎣ ⎦  

Using dimensionless variable (3.8), the temperature equations (3.1) and (3.2) takes the form 

[ ]

( )22
1

(1 ) ( ) Pr[ ( ) ( ) 2 ( ) ( )] Pr 4 ( ) ( )
2

Pr [ ( ) ( )] Pr [ ( ) ( )] Pr ( ) 0,p

ANr f f

N NEc F f a Ec f

θ η η θ η η θ η θ η ηθ η

β η η θ η θ η η
ρ ρ

′′ ′ ′ ′+ + − − +

′ ′+ − + − + =
                             (3.13) 

1( ) ( ) 2 ( ) ( ) 4 ( ) ( ) [ ( ) ( )] 0,
2p p p p p
AG F aη θ η η θ η θ η ηθ η γ θ η θ η′ ′⎡ ⎤+ + + + − =⎣ ⎦                                           (3.14) 

The corresponding boundary conditions becomes 
 

 ( ) 1 0,atθ η η′ = − =                                                            

 ( ) 0, ( ) 0 .p asθ η θ η η→ → →∞                              (3.15) 
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The physical quantities of interest are the skin friction coefficient fc  and the local Nusselt number xNu , which are defined as 

 
2 , ,

( )
w w

f x
w w

xqc Nu
U k T T
τ
ρ ∞

= =
−                            (3.16) 

where the skin friction wτ  and the heat transfer from the sheet wq are given by 

 
0 0

, ,w w
y y

u Tq k
y y

τ μ
= =

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠                            (3.17) 

Using the non-dimensional variables, we obtain 

 1/2
1/2 1/2

1Re (0), (0) ( ), ( ).(0)Re Re
x x

f x
x x

Nu Nuc f VWT VHFθ θ′′ ′= = = −  

4. Numerical solution  
 

   The equations (2.8) and (2.11) together with the boundary condition (2.12) form highly non-linear ordinary differential 

equations. In order to solve these non-linear equations numerically, we have adopted symbolic software Maple (2009) and it is 

very efficient in using the well known Runge Kutta Fehlberg fourth-fifth order method. In accordance with the boundary layer 

analysis, the boundary condition (2.12) at η = ∞   were replaced by 5.η =  The coupled boundary value problem equations (2.8) 

to (2.11) and either equations (3.9) and (3.10) or (3.13) and (3.14) are solved by RKF-45 method. The accuracy of this numerical 

method was validated by direct comparison with the numerical results reported by Vajravelu and Nayfeh (1992) and Grubka and 

Bobba (1985). Table 1 represents Comparison of numerical solutions of ( ), ( ), ( )f f fη η η′ ′′′ with  

0, 3, 2, 0,A M R β= = = =  and Table 2 represents results of the comparison for (0)θ ′− with ( 0).A Nr Ec= = = It can be 

seen from these tables that there is a very good agreement achieved between the results. 

Table-1: Comparison of numerical solutions of ( ), ( ), ( )f f fη η η′ ′′′ with  0, 3, 2, 0.A M R β= = = =  
 

 Vajravelu And Nayfeh (1992) Present Result 

ሻߟሻ ݂Ԣሺߟሺ݂ ߟ  ݂ԢԢሺߟሻ ݂ሺߟሻ ݂Ԣሺߟሻ ݂ԢԢሺߟሻ 

0.00000 2.000000 1.000000 -3.236068 2.000000 1.000000 -3.236068 

0.408163 2.226537 0.266910 -0.863739 2.226537 0.266910 -0.863739 
0.816327 2.287002 0.071241 -0.230540 2.287002 0.071241 -0.230540 

1.224490  2.303141 0.019015 -0.061534 2.303141 0.019015 -0.061534 
1.632653  2.307448 0.005075 -0.016424 2.307449  0.005075 -0.016424 
2.040816  2.308598  0.001355 -0.043840 2.308598 0.001355 -0.004384 
2.448980  2.308905   0.000362 -0.001170 2.308905 0.000362 -0.001170 
2.857143  2.308987 0.000096 -0.000312 2.308987 0.000097 -0.000312 
3.265306  2.309009 0.000026 -0.000083 2.309009 0.000026 -0.000083 
3.673469  2.309015 0.000007 -0.000022 2.309015 0.000007 -0.000022 
4.081633  2.309016 0.000002 -0.000006 2.309016 0.000002 -0.000006 
4.489796  2.309017 0.000000 -0.000002 2.309017 0.000000 -0.000002 
4.897959  2.309017 0.000000 -0.000001 2.309017 0.000000 0.000000 
5.000000  2.309017 0.000000 0.000000 2.3090167 0.000000 0.000000 
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Table-2: Comparison of wall temperature gradient (0)θ ′− for several values of Pr  with ( 0).N A Nr Ecα β= = = = = =   

 ݎܲ

 

Grubka and Bobba 

(1985) 

M. Subhas Abel   and Mahesha 

(2008) 

Present Study െߠᇱሺ0ሻ 

0.72 

1.0 

10.0 

1.0885 

1.3333 

4.7969 

1.0885 

1.3333 

4.7968 

1.0885 

1.3333 

4.7968 

 
5. Results and discussion 
 
   An unsteady boundary layer flow and heat transfer of an incompressible electrically conducting dusty fluid over a stretching 
sheet with radiation effect is examined. The boundary layer equations of momentum and heat transfer are solved numerically. The 
temperature profiles of both fluid and dust phase for VWT and VHF case are depicted graphically. The computation through 
employed numerical scheme has been carried out for various values of the parameters such as unsteadiness parameter ,A magnetic 

parameter ,M  suction parameter ,R  fluid particle interaction parameter ,β Prandtl number Pr,  number density ,N Eckert 

number Ec  and Thermal radiation parameter Nr . 
   Figure 2(a) represents horizontal velocity profile of both fluid and dust particles for various value of A  when 
Pr 0.72, 2, 0.1, 0.2, 1R M N Nr= = = = = and 0.1β = . One can observe from the figure 2(a) that the velocity decreases 
with the increase of the unsteady parameter .A It is interesting to note that the thickness of boundary deceases with increasing 
values of .A  This is due to the fluid flow caused solely by the stretching sheet. From the figure 2(b), one can observe that the 
velocity decreases with the increase of magnetic parameter .M  As M  increases, the Lorentz force, which opposes the flow, also 
increases and leads to enhanced deceleration of the flow. 
   Figures 3(a) and 3(b) is a graphical representation of the temperature distribution for VWT and VHF case, for different values of 
unsteady parameter A  versusη . It is observed that the temperature of fluid and dust particle is decreases with the increase of 
unsteady parameter A . Temperature at a point of surface decreases significantly with the increase of A  i.e. rate of heat transfer 
increases with increasing unsteady parameter A .  Physically, it means that the temperature gradient at the surface increases as A  
increases, which imply the increase of heat transfer rate ( )θ η′− at the surface. 

   Figures 4(a) and 4(b) depict temperature profiles ( )θ η and ( )pθ η versusη , for different values of Pr . We infer from these 

figures that temperature of fluid and dust particles decrease with the increase in Pr , this is because of the increase in Prandtl 
number Pr  indicates the increase of the fluid heat capacity or the decrease of the thermal diffusivity hence causes a diminution of 
the influence of the thermal expansion to the flow. Which implies momentum boundary layer is thicker than the thermal boundary 
layer. The temperature in both VWT and VHF cases asymptotically approaches to zero in the free stream region 
   Figures 5(a) and 5(b) indicate the temperature profile ( )θ η and ( )pθ η versusη , for VWT and VHF cases respectively. Here the 

effect of increasing values of Ec  is to enhance the temperature of fluid and dust particles at any point which is true for both the 
cases VWT and VHF. This is due to fact that the heat energy is stored in the considered liquid due to frictional heating. 
   Figures 6(a) and 6(b) are the graphs for temperature profiles ( )θ η and ( )pθ η versusη , for different values of Number density

N for VWT and VHF cases respectively. From the figures it is evident that the temperature of fluid and dust particles decreases 
with the increase of .N  
   Figures 7(a) and 7(b) represent the temperature profiles ( )θ η and ( )pθ η  for various values of thermal radiation parameter Nr
for both the cases VWT and VHF respectively. The effect of radiation intensifies the heat transfer. Thus the radiation should be at 
its minimum in order to facilitate the cooling process. This agrees with the physical fact that the thermal boundary layer thickness 
increases with increasing values Nr . 
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Figures 2(a) & 2(b):  Velocity profiles for the effect of unsteadiness parameter ( )A and Magnetic parameter ( )M respectively. 

 
 

      
Figure 3(a) & 3(b): Effect of unsteady parameter ( )A on temperature distribution for   fluid and dust phase. 

 

 
Figure 4(a) & 4(b): Effect of Prandtl number Pr  on temperature distribution for fluid and dust phase. 
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Figure 5(a) & 5(b): Effect of Eckert number Ec on temperature distribution for fluid and dust phase. 

 

   
 

Figure 6(a) & 6(b): Effect of Number density N  on temperature distribution for fluid and dust phase. 

      

 

Figure 7(a) & 7(b): Effect of thermal radiation parameter Nr  on temperature distribution for fluid and dust phase. 

 



Manjunatha et al./ International Journal of Engineering, Science and Technology, Vol. 4, No. 4, 2012, pp. 36-48 

 

45

 

Table -3: Values of wall temperature gradient (0)θ′  (for VWT Case) and wall temperature function (0)θ (for VHF Case). 

 
ߚ

 

 
 ܣ

 
 ݎܲ

 
ܿܧ

 

 
 ݎܰ

 
ܰ

 

ᇱሺ0ሻߠ
 (VWT) 

ሺ0ሻߠ
 (VHF) 

0.1 0.5 0.72 1 1 0.2 -0.459164 0.842381 

0.5
 

     -0.467992 0.840474 

1.0
 

     -0.468768
 

0.840457
 

0.1 0 .072 1 1 0.2 -0.184235 0.996663 

 0.3     -0.361637 0.891859 

 0.5     -0.467992 0.840457 

0.1 0.5 0.72 1 1 0.2 -0.384693 0.840457 

  1.0    -0.417967 0.673303 

  20.    -0.467992 0.429023 

0.1 0.5 0.72 0.0 1 0.2 -0.401060 0.768175 

   0.5   -0.360831 0.948880 

   2.0   -0.251751
 

1.490993
 

0.1 0.5 0.72 1 1 0.2 -0.387125 0.906330 

    2  -0.451612
 

0.805108
 

    3  -0.507068 0.714092 

0.1 0.5 0.72 1 1 0.5 -0.360831 0.948880 

     1.5 -0.327409 1.203803 

     3.0 -0.304771 1.427254 
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4. Conclusions  
 
   In this paper, a mathematical analysis has been carried out on momentum and heat transfer characteristics in an incompressible 
viscous unsteady dusty fluid flow over a stretching sheet in the presence of thermal radiation. The highly non-linear momentum 
equations (2.1) to (2.5) and heat transfer boundary layer equations (3.1) and (3.2) are converted into coupled ordinary differential 
equations by using similarity transformations. Resultant coupled ordinary differential equations (2.8) to (2.11) and (3.9) and (3.10) 
for VWT case and (3.13) and (3.14) for VHF case have been solved numerically by RKF45 method using the software Maple 
(2009). The results are analyzed for the situation when stretching boundary is prescribed by non-isothermal variable wall 
temperature (VWT) which varies quadratically with the flow directional coordinate .x  The effect of various physical parameters 
like unsteady parameter ,A  Prandtl number Pr,  Eckret number ,Ec Magnetic parameter  ,M  number density N and thermal 

radiation parameter Nr on various momentum and heat transfer characteristics are obtained. Some of the important observations 
are listed as follows 
. 

• The effect of unsteady parameter and Magnetic parameter decreases the fluid and 
dust phase velocities. 

• Effect of unsteady parameter decreases the temperature profiles of fluid and dust 
• phase for both the cases of VWT and VHF.  
• Prandtl number effect decreases the thermal boundary layer thickness. 
• (0)θ′ and (0)θ decreases with increase in the fluid interaction parameter ,β unsteady parameter A , Prandtl 

number Pr . 
• (0)θ′ and (0)θ  increases with increase in the values of radiation parameter and Eckert number. 
• Thermal radiation parameter effect increases the temperature profile of fluid and dust phases for both the cases 

of VWT and VHF. 
• The rate of heat transfer (0)θ′  is negative (VWT) and (0)θ  is positive (VHF). 

• If 0, 0, 0A Nrβ→ → →  and 0N → , then our results coincides with the results of Abel et.al (2008) 
and Grubka et.al (1985) for different values  Prandtl number. 

 
Nomenclature 
 
( , )u v     Velocity components of the fluid phases along x and y directions 

( , )p pu v   Velocity components of the dust phases along x and y directions  
μ     Co-efficient of viscosity of the fluid 
ρ    Density of the fluid 
N    Number of dust particles 

0B
∧

   Induced magnetic field 

pρ    Density of particle phase 

K    Stoke’s constant 

( )
1w

c xU x
tα

=
−

  Velocity of sheet 

0( , )
1w

vV x t
tα

= −
−

 Suction velocity 

α    Positive constant which measures the unsteadiness 

r pρ ρ ρ=   Relative density 

A cα=   Unsteady parameter 

pl m N ρ=   Mass concentration 
2

0M B cσ τ=   Magnetic field parameter 
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1 (1 )t
c

β α
τ

= −  Fluid-particle interaction parameter 

0R
c

ν
ν

=   Suction parameter 

E    Density ratio 
T    Temperature of the fluid phase 

pT
   

Temperature of the dust particle phase 

pc
   

Specific heat of fluid 

mc    Specific heat of dust particles 

Tτ    Thermal equilibrium time 

vτ    Relaxation time of the of dust particle 
*k    Thermal conductivity 

rq    Radiative heat flux 

wT    Surface temperature of the wall 

T∞    Constant temperature far away from the sheet 
*Pr pc kμ=

  
Prandtl number 

2
pEc T cν ∞=

  
Eckert number 

3 * *
116 3Nr T k kσ∞=  Thermal radiative parameter 

1
1 (1 )

T
a tc αρτ= −

  
 Local fluid-particle interaction parameters for temperature    

 *σ     Stefan-Boltzman constant 

 1k    Mean absorption coefficient.      
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