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Abstract 
 
   Electrical discharge machining (EDM) is one of the most extensively used non-traditional machining processes having 
multiple performance characteristics, some of which are usually correlated. So, ideally, use of principal component analysis 
(PCA)-based approaches that take into account the possible correlations between the responses are suitable for optimization of 
EDM process. A recently reported study reveals that PCA-based proportion of quality loss reduction (PQLR) method results in 
the best optimization performance among the four considered PCA-based approaches for EDM process. This paper presents a 
modified PCA-based utility theory (UT) approach for optimization of correlated responses. The reported experimental data on 
EDM processes in literature are analyzed using the modified PCA-based UT approach and PCA-based PQLR method. 
Comparison of the predicted performance measures at the optimal process conditions derived based on these two PCA-based 
approaches reveal that the modified PCA-based UT approach leads to better overall optimization performance. So, it can be the 
most promising approach for optimizing EDM processes. 
 
Keywords: EDM; Correlated responses; Optimization; Principal component analysis; Proportion of quality loss reduction; 
Utility theory. 
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1. Introduction 
 
   Electrical discharge machining (EDM) has become one of the most extensively used non-traditional material removal processes. 
Researchers have successfully applied EDM process to machine composite materials, high-speed steel (HSS), conductive ceramics 
etc. Its unique feature of using thermal energy to machine electrically conductive materials regardless of hardness is a distinctive 
advantage in the manufacture of mold, die, automotive, aerospace and surgical components. EDM is a process for eroding and 
removing material by transient action of electric sparks on electrically conductive materials, one being the workpiece electrode and 
the other being the tool electrode, immersed in a dielectric fluid and separated by a small gap. The main mode of erosion is caused 
due to local thermal effect of an electric discharge. The workpiece material is removed by a local high temperature associated with 
a very high energy density caused by ionisation within the discharge column between the workpiece and electrode. Hence, the 
material removal mechanism of EDM process is thermal erosion caused by melting and vaporisation. Some of the most important 
performance measures (responses) of EDM process are material removal rate (MRR), electrode wear rate (EWR) and surface 
roughness (SR), which are affected by several process parameters, e.g. workpiece polarity, pulse-on-time, duty factor, open 
discharge voltage, discharge current, materials used as dielectric fluid etc. Improved performance of EDM process can only be 
achieved by setting the optimal levels for those process parameters. 
   Taguchi method (Phadke, 1989) of experimental design is a widely used technique for accomplishing the task for optimization of 
process parameters. The advantage of Taguchi method is that it facilitates assessing the effects of a large number of process 
parameters using lesser number of experimental trials. Moreover, Taguchi method employs signal-to-noise (SN) ratio with 
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simultaneous consideration of achieving the target and reducing variability around the target value of a response variable. 
However, one limitation of Taguchi method is that it can optimize only one response variable at a time (Park, 2001). Yadav et al., 
(2008), Patel et al. (2009) and Abdulkareem et al. (2010) determined the optimal process conditions for MRR, SR and EWR 
respectively using Taguchi method. Secilmis et al. (2009) investigated the influences of EDM process parameters on titanium-
porcelain adhesion. Somashekhar et al. (2010) identified the optimal machining condition that would maximize MRR in micro-
EDM, using artificial neural network and genetic algorithm. 
   On the other hand, Chiang (2007), Bhaduri et al. (2009) and Lin et al. (2009) studied the effects of EDM process parameters on 
multiple responses. But instead of simultaneous optimization of multiple responses, they determined the optimal process settings 
for each response separately. Chiang (2007) adopted response surface methodology (RSM) to explain the influences of four 
machining parameters on MRR, EWR and SR, and found that the optimal parametric conditions for the three responses were 
different. Bhaduri et al. (2009) studied the effects of four EDM process parameters on four responses, e.g. MRR, EWR, radial 
overcut and taper angle while machining TiN-Al2O3 composite, and also observed that the optimal parametric conditions for the 
four responses were different. Lin et al. (2009) investigated the effects of six control factors on machining performance of EDM 
process on conductive ceramics and found that the required optimal settings for the three responses (MRR, EWR and SR) were not 
the same. However, in reality, the process engineer needs to carry out the machining operation using only one factor level 
combination. In such situations, use of experience and engineering knowledge are required for resolving the conflict (Phadke, 
1989). However, by human judgment, validity of the experimental results cannot be easily assured. Moreover, contradictory results 
may be reached by different engineers implying that the uncertainty in the optimal factor levels will be increased. 
   With the aim to alleviate the problems of using experience and engineering knowledge, some other researchers have been 
motivated to apply different techniques of multi-response optimization for determining the optimal process conditions for EDM 
processes. Lin et al. (2000) used Taguchi method with fuzzy logic; Lin and Lin (2005) employed grey-fuzzy logic; Kansal et al. 
(2006) adopted Taguchi method with utility concept; Kanagarajan et al. (2009) used non-linear goal programming based on 
genetic algorithm; El-Taweel (2009), Pradhan and Biswas (2011), Baraskar et al. (2011) utilized desirability function approach; 
Jung and Kwon (2010), Natarajan and Arunachalam (2011), Singh (2012) applied grey relational analysis (GRA); and Sanchez et 
al. (2011) developed an inverse model for simultaneous optimization of multiple responses of EDM processes. But none of these 
methods take care of the possible correlation between the response variables that may exist, whereas, correlation analysis reveals 
that some of the responses of EDM process are usually correlated. For example, the correlation coefficient between MRR and 
EWR in the experimental data of Lin et al. (2009) is found as -0.87, which is statistically significant at 5% level. So, ideally, a 
principal component analysis (PCA)-based method that can take into account the possible correlation between the responses 
should be used for multi-response optimization of EDM processes. Recently, Chakravorty et al. (2012) analyzed some 
experimental data on EDM processes using four PCA-based approaches, e.g. PCA-based GRA method, PCA-based proportion of 
quality loss reduction (PQLR) method, PCA-based technique for order preference by similarity to ideal solution (TOPSIS) method 
and weighted principal component (WPC) method. The authors found that the PCA-based approaches, in general, would lead to 
better optimization performance and among the four PCA-based approaches, PCA-based PQLR method would result in the best 
optimization performance.  
   In this paper, a modified PCA-based utility theory (UT) approach for optimization of correlated responses is presented and then 
two reported experimental data on EDM processes are analyzed using the modified procedure and PCA-based PQLR method. The 
results show that the modified PCA-based UT approach results in better optimization performance than PCA-based PQLR method. 
This implies that the best performance of EDM process can be achieved by applying the modified PCA-based UT method. 
 
2. Literature review on multi-response optimization methods 
 
   The goal of multi-response optimization is to find out the settings of the control factors that can achieve an optimal compromise 
of the response variables. With this aim, several multi-response optimization approaches, mostly RSM-based, have been proposed 
in the statistical literature. These include desirability function approach (Derringer and Suich, 1980; Kim and Lin, 2000), 
multivariate loss function approach (Pignatiello, 1993; Tsui, 1999), Mahalanobis distance minimization approach (Khuri and 
Conlon, 1981) etc. These mathematically rigorous techniques are usually impractical for application by the engineers who may not 
have a strong background in mathematics/statistics.  
   Some researchers have been motivated to make use of techniques of artificial intelligence, like artificial neural network (Panda 
and Mahapatra, 2010), genetic algorithm (Sardinas et al., 2009) etc. for optimization of multi-response processes. In these 
approaches, the parameters can be set optimally, but nothing can be learned about the relationship between the control factors and 
responses, and so they do not help the engineers to acquire sufficient experience during the optimization of the concerned process. 
   Taguchi method has gained enormous popularity among the managers and engineers in recent years. However, one limitation of 
Taguchi method is that it focuses on optimization of single response only. Considerable researches have been carried out aiming to 
establish an objective method for solving multi-response optimization problems using Taguchi method. Some of the proposed 
methods in this regard, usually found in engineering literature, are weighted signal-to-noise (WSN) ratio method (Tai et al, 1992), 
multi-response signal-to-noise (MRSN) ratio method (Ramakrishnan and Karunamoorthy, 2009), GRA method (Pan et al., 2007) 
and VIKOR method (Tong et al., 2007). In these approaches, the quality loss or SN ratio of individual responses are first 
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converted into an overall process performance index (PPI) and then, the factor-level combination that would optimize the PPI is 
determined examining the level averages on the PPI. All the necessary computations for this purpose can be performed using Excel 
worksheet. So these methods can be well acceptable to the practitioners. 
   However, none of the above methods for multi-response optimization takes into account the possible correlations between the 
responses that may exist. In order to take care of the possible correlations between the response variables, many researchers (Tong 
and Wang, 2002; Tong et al., 2005; Liao, 2006; Datta and Mahapatra, 2010) proposed to make use of PCA (Johnson and Wichern, 
1996). The PCA technique can transform several related variables into a smaller number of uncorrelated principal components, 
which are linear combinations of the original variables. The past researchers suggested optimizing the process settings with respect 
to principal components instead of the original response variables. Tong and Wang (2002) proposed PCA-based GRA method, Wu 
and Chyu (2004) suggested PCA-based PQLR method, Tong et al. (2005) presented PCA-based TOPSIS method and Liao (2006) 
proposed weighted principal component (WPC) method. Recently, Datta and Mahapatra (2010) proposed the PCA-based UT 
approach to optimize multiple responses that may be correlated. The PCA-based UT approach seems to be very appealing. But one 
apparent problem in it is that it does not make use of Taguchi’s SN ratio concept appropriately. It is observed that if Taguchi’s SN 
ratio concept is integrated into the PCA-based UT approach, it can be the most systematic and practical approach for optimization 
of correlated responses.    
 
3. Taguchi’s SN ratio concept 
 
   Taguchi’s robust design method aims at achieving a target value and minimizing variability around the target value. Taguchi 
used a quadratic function for modeling quality loss whenever the characteristic deviates from its target value and considered SN 
ratio as a measure of performance. The most notable aspect of SN ratio is that it combines location and dispersion of a response 
variable in a single performance measure, whereas, other methods examine mean and variance as separate performance measures. 
Taguchi (Phadke, 1989) categorized the response variables mainly into three different classes, e.g. smaller-the-better (STB), 
larger-the-better (LTB) and nominal-the-best (NTB). The formulae for computation of SN ratio ( ijη ) for jth response 
corresponding to ith trial (i = 1,2,…,m; j = 1,2,…,p) are different for different types of response variables, and these are given as 
follows: 
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value of jth response variable in ith trial at kth replication. Since log is a monotone function, minimization of quality loss is 
equivalent to maximization of SN ratio, and regardless of type of the quality characteristic, a higher SN ratio always implies better 
quality. As highlighted by Taguchi, the logarithmic transformation improves additivity of effects of two or more control factors 
(Phadke, 1989), and therefore, optimization of SN ratio is always preferred to quality loss. Another advantage of SN ratio is that it 
is always expressed in decibel (dB) unit. 
 
4. Utility concept and modified PCA-based UT approach 
 
4.1 Utility concept  
   Utility can be defined as the usefulness of a product or process in reference to the expectations of the users. The overall 
usefulness of a product/process can be represented by a unified index, termed as utility which is the sum of individual utilities of 
various quality characteristics of the product/process. The methodological basis for utility approach is to transform the estimated 
value of each quality characteristic into a common index.  
   If Xj is the measure of effectiveness of jth attribute or quality characteristic (response variable) and there are p attributes 
evaluating the outcome space, then the joint utility function (Derek, 1982) can be expressed as: 

 
( ))( ),...,( ),() ,..., ,( 221121 ppp XUXUXUfXXXU =                                                                 (4) 

where Uj(Xj) is the utility of jth attribute or quality characteristic.  
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   The overall utility function is the sum of individual utilities if the attributes are independent, and is given as follows: 
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   The attributes may be assigned weights depending upon the relative importance or priorities of the characteristics. The overall 
utility function after assigning weights to the attributes can be expressed as: 
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where Wj is the weight assigned to jth attribute. The sum of the weights for all the attributes must be equal to 1.  
   A preference scale for each attribute (response variable) is constructed for determining its utility value. Two arbitrary numerical 
values (preference numbers) 0 and 9 are assigned to the just acceptable and the best value of the response variable respectively. 
The preference number (Pj) for jth response variable can be expressed on a logarithmic scale as follows (Kumar et al., 2000): 
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where Xj  = value of jth response variable, jX ′ = just acceptable value of jth response variable and Aj = constant for jth response 

variable. The value of Aj can be found by the condition that if jX  = B
jX (where B

jX is the optimal or best value for jth response), 
then Pj = 9. Therefore, 
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The overall utility (U) can be calculated as follows: 
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4.2 Dutta and Mahapatra (2010) proposed PCA-based UT approach 
   Suppose that there are m experimental trials and in each trial, values (single or average) of a set of p performance characteristics 
(response variables) are observed. Let the observed values of each response variable are transformed/normalized into [0, 1] 
interval in such a way that the most desired value of a response variable is 1. The normalized experimental results can be 
expressed in the following series: 

mi X,...,X,...,X,X,X 321  
where  

{ }pk X,...,X,...,X,XX 1112111 =  

{ }ipikiii X,...,X,...,X,XX 21=  

{ }mpmkmmm X,...,X,...,X,XX 21=  

Here, iX  represents the normalized experimental results in ith trial and is called as a comparative sequence. 
   Let, { }pk X,...,X,...,X,XX 0002010 =  be the reference sequence. The values of the elements in the reference sequence are the 
optimal values (ideal or desired values) of the quality characteristics. With respect to the normalized comparative sequences, all 
the elements in the reference sequence will be 1. 0X and iX  both include p elements, and X0j and Xij represent the numeric value 
of jth (j = 1,2,…, p) element in the reference sequence and ith comparative sequence respectively. So the amount of deviations of 
different response variables from their ideal values can be estimated for different trials. Datta and Mahapatra (2010) called these 
deviations as quality losses (Taguchi’s definition for quality loss is different). The quality losses can be appropriately converted 
into preference numbers and overall utility values, using Eqns. (7)-(9). The overall utility value is considered as the multi-response 
process performance index (MPPI). Then, the optimal process setting can be determined by examining the level averages of the 
control factors on the overall utility value (MPPI). This approach should work well if the response variables are independent. 
   Datta and Mahapatra (2010) observed that the response variables might not be always independent. Therefore, they proposed to 
estimate the quality losses with respect to principal component scores (i.e. numeric values of the principal components) of the 
reference and comparative sequences instead of the normalized values of the response variables, and then to compute the utility 
values. By applying PCA technique, p related variables can be transformed into p uncorrelated principal components, each of 
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which is linear combinations of the original variables. The variability in the original p response variables corresponding to a trial 
can now be explained by these p uncorrelated principal components. Let [X]mxp is subjected to PCA, and the resulting eigenvalue 
and eigenvector of lth (l = 1,2,…,p) principal component are λl and βl  respectively. Then, the principal component score (PCS) of 
lth principal component corresponding to ith trial or comparative sequence, can be obtained as follows:  

iplpililil XaXaXaPCS +++= ...2211  (i = 1,2,…,m and   l = 1,2,…,p)                             (10) 

where 1la , 2la ,…, lpa  are the elements of the eigenvector lβ , and .1... 22
2

2
1 =+++ lpll aaa  

   Similarly, the principal component scores for the reference sequence can also be estimated. So, quality losses for the principal 
components in different trials can now be estimated. For example, the quality loss for lth principal component in ith trial can be 
estimated as lil ZZ 0− , where ilZ and lZ0 are the scores for lth principal component of ith comparative sequence and reference 
sequence respectively. The UT can be applied on the computed quality losses to calculate the overall utility value (MPPI). 
   Based on the above logic, Datta and Mahapatra (2010) proposed the following seven steps for optimizing correlated responses: 
Step 1: Transform (normalize) the responses into [0, 1] interval. 
Step 2: Perform PCA on the normalized responses and obtain eigenvectors of the principal components. 
Step 3: Compute principal component scores for the reference sequence and also for the comparative sequences (trials). 
Step 4: Estimate the quality losses in different trials with respect to each principal component. 
Step 5: Apply UT for estimating overall utility values corresponding to different trials. 
Step 6: Convert the overall utility value of each trial into SN ratio. 
Step 7: Select the factor-level combination that maximizes the SN ratio. 
 
4.3 The Proposed Modified PCA-based UT approach 
   It can be noticed that Datta and Mahapatra (2010) computed the overall utility values for different trials considering the observed 
values of the response variables as the input data and then they converted the overall utility value of each trial into the 
corresponding SN ratio. Since higher utility value is always desirable, they computed the SN ratio considering utility value as a 
LTB type characteristic. They selected the optimal factor-level combination examining the level averages on the SN ratio. But, it is 
found that converting the overall utility value into SN ratio does not add any value to the decision-making process. This is because 
that the factor-level combination selected by examining the level averages on the overall utility value and the factor-level 
combination selected by examining the level averages on SN ratio would be always same. 
   One of the most significant contributions of Taguchi method is the introduction of SN ratio concept as a measure of 
performance. The most notable aspect of SN ratio is that it combines location and dispersion of a response variable in a single 
performance measure. According to Taguchi’s philosophy (Phadke, 1989), the aim of process optimization should be to optimize 
the SN ratio of a response variable instead of the value of the response variable. Otherwise, one may arrive at an optimal solution 
at which the mean value of a response variable is optimized, but at the same time, variability of the response variable is increased, 
which is not at all acceptable. Optimization of a process with respect to SN ratio of a response variable prevents arriving at such an 
unacceptable optimal solution since SN ratio combines the location and dispersion of the response variable together. Keeping these 
in mind, the following seven steps are proposed for implementing the PCA-based UT approach for optimization of correlated 
responses. 
Step 1: Transform all the observed experimental values of each response variable into SN ratios, using Eqn. (1), (2) or (3), as 

appropriate. 
Step 2: Scale the computed SN ratio values of each response variable into [0, 1] interval using the following equation: 

            
minmax

min

jj

jij
ijY

ηη
ηη
−

−
=                                                                                                                           (11) 

where Yij 
= scaled SN ratio value for jth (j = 1,2,…,p) response variable in ith trial, min

jη = min { mjjj ηηη ,...,, 21 } and 
max
jη = max { mjjj ηηη ,...,, 21 }. The purpose of the scaling operation is to reduce the variability among different 

responses. With respect to the scaled values of the response variables, all the elements in the reference sequence 
would be 1.. 

Step 3: Perform PCA on the scaled SN ratio values of the response variables to obtain eigenvectors of the uncorrelated 
principal components. The option of performing PCA is available in any standard statistical software, e.g. 
STATISTICA, MINITAB and STATGRAPHICS. 

Step 4: Compute the values of each principal component (PCS) for different comparative sequences (trials) and also for the 
reference sequence. 
The value of lth principal component corresponding to ith comparative sequence, Zil can be obtained as follows:  

iplpililil YaYaYaZ +++= ...2211   (i = 1,2,…,m and   l = 1,2,…,p)                                                                    (12) 
On the other hand, all the elements in the reference sequence are 1 and therefore, the value of lth principal component 
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of the reference sequence can be estimated using the following equation: 

        
1...11 210 ×++×+×= lplll aaaZ   (l = 1,2,…,p)                                                                                           (13). 

Step 5: Estimate the quality losses in different trials with respect to each principal component. 
The quality loss for lth principal component in ith trial can be considered as the absolute deviation of Zil value from Z0l 
value. Therefore, the quality loss for lth principal component in ith trial, Lil can be estimated using the following 
equation: 

        lilil ZZL 0−=                                                                                                                                                     (14) 
Step 6: Apply UT for estimating the overall utility values for different trials. 

Using Eqns. (7) and (8), the estimated quality losses for different principal components can be appropriately converted 
to preference numbers. Then, the overall utility values for different trials can be estimated using Eqn. (9). It is 
suggested here to consider the proportion of variation expressed by different principal components as their weights. 

Step 7: Select the factor-level combination that maximizes the overall utility value. 
 
5. PCA-based PQLR method (Wu and Chyu, 2004) 
 
   For any process, there is a starting condition. Let, the SN ratio for a response variable at the starting condition is oη  and under a 
new process condition, the SN ratio isη ′ . This implies that quality loss (L) at the starting condition and quality loss ( L′ ) at the 

new condition are )10/(10 oη− and )10/(10 η′− respectively. So, the proportion of quality loss reduction (PQLR) in the new condition 
is as follows: 

 
10/)(10 oPQLR ηη −′−=                                                                                                              (15) 

 
   In Taguchi’s experimental design, the factor-level combination for each trial represents a new process condition and so the 
PQLR value for each response variable corresponding to each trial can be easily estimated. If the responses are correlated, the 
estimated PQLR values for the responses would also be correlated. Therefore, Wu and Chyu (2004) proposed the PCA-based 
PQLR method for optimizing the correlated responses. The MPPI in PCA-based PQLR method  is simply called as the weighted 
score (WS). 
   Determination of the optimal process condition using PCA-based PQLR method includes the following eight steps:   
Step 1: Compute the SN ratio of each response variable corresponding to each trial. 
Step 2: Calculate the main effect (in terms of SN ratio) of each control factor for each response variable using arithmetic 

average.. 
Step 3: Estimate the expected SN ratio at the starting condition (or any arbitrary condition) for each response variable using 

additive model. 
Step 4: Transform the computed SN ratio of each response variable corresponding to each trial into PQLR value using Eqn. 

(15) 
Step 5: Normalize the PQLR values of each response variable. The normalized PQLR value for thj  response variable in thi  

trial ( ijY ) can be obtained by replacing η  by PQLR in the right hand side of Eqn. (11). 
Step 6: Perform PCA on the normalized PQLR values and obtain the values of the principal components. 

The value of thl  ),...,2,1( pl =  principal component corresponding to thi trial, ( ilZ ) can be obtained using Eqn. (12). 
Step 7: Take the absolute value of ilZ and then compute the weighted score (WS) for each trial as follows: 

       ∑=
=

p

l
illi ZwWS

1
                                                                                                                                                    (16) 

Step 8: Use geometric average to calculate the factor effects based on WS
 
values and then decide the optimal factor-level 

combination by smaller-the-better factor effects. 
 
6.  Analysis and results  
 
   For illustrating the application of the proposed modified PCA-based UT approach and validating its optimization performance, 
two sets of the past experimental data on EDM processes are analyzed using the modified PCA-based UT approach as well as 
PCA-based PQLR method as two separate case studies. 
 
6.1 Case study 1 
   Lin et al. (2000) carried out an experimental study on an EDM machine (KT-200) with the aim to determine the optimal levels of 
six machining parameters (control factors), e.g. workpiece polarity (A), pulse-on-time (B), duty factor (C), open discharge voltage 
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(D), discharge current (E) and dielectric fluid (F) with respect to two performance characteristics (responses) of EDM process. In 
that study, cylindrical pure copper was used as the electrode and SKD11 was used as the workpiece. The considered two responses 
were EWR (%) and MRR (gm/min). While EWR is a STB type response variable, MRR is a LTB type response variable. The 
experimental layout was designed considering two levels for control factor A and three levels for all other control factors. So, the 
standard L18 orthogonal array was used for the experiments. The experimental data of Lin et al. (2000) are analyzed here using the 
modified PCA-based UT method and PCA-based PQLR method as case study 1.  
   The experimental layout along with the computed SN ratios for the two response variables are given in Table 1. It may be noted 
that the modified PCA-based UT method requires PCA of the scaled SN ratio values (see section 4.3) and PCA-based PQLR 
method requires PCA of the normalized PQLR values (see section 5). For application of PCA-based PQLR method, at first, the 
PQLR values corresponding to different trials are estimated for all the responses assuming that 222222 FEDCBA is the starting 
condition and then PQLR values for all the responses are normalized. On the other hand, the SN ratios of the response variables 
are normalized for application of the modified PCA-based UT method. The normalized SN ratios and normalized PQLR values of 
the response variables are then subjected to PCA in STATISTICA software. The eigenvalues and the corresponding eigenvectors, 
obtained from PCA of the scaled SN ratios are given in Table 2. The eigenvalues and the corresponding eigenvectors, derived from 
PCA of the normalized PQLR values, are shown in Table 3. 
   Following the remaining steps mentioned in sections 4.3 and 5, values of MPPIs for the modified PCA-based UT method and 
PCA-based PQLR method, i.e. overall utility and WS values are computed. The MPPI values corresponding to different trials 
obtained by using the two PCA-based methods are shown in Table 4. 

 
Table 1. Experimental layout and SN ratios of the responses for case study 1 

Exp. 
No. 

Factor assignment SN ratio (η) in dB 
A B C D E F EWR MRR 

1 1 1 1 1 1 1 -30.53 -54.80 
2 1 1 2 2 2 2 -29.51 -55.97 
3 1 1 3 3 3 3 -33.46 -61.01 
4 1 2 1 1 2 2 -16.52 -46.67 
5 1 2 2 2 3 3 -21.44 -60.35 
6 1 2 3 3 1 1 -32.85 -57.86 
7 1 3 1 2 1 3 -32.26 -72.40 
8 1 3 2 3 2 1 -13.82 -50.37 
9 1 3 3 1 3 2 3.10 -49.63 

10 2 1 1 3 3 2 -27.16 -72.40 
11 2 1 2 1 1 3 -30.13 -73.56 
12 2 1 3 2 2 1 -29.31 -71.70 
13 2 2 1 2 3 1 -23.81 -71.70 
14 2 2 2 3 1 2 -36.55 -70.75 
15 2 2 3 1 2 3 -29.31 -69.63 
16 2 3 1 3 2 3 -31.66 -65.51 
17 2 3 2 1 3 1 -27.64 -69.12 
18 2 3 3 2 1 2 -41.67 -70.17 

 
Table 2. Eigenvalues and eigenvectors for normalized SN ratios (case study 1) 

Principal component  Eigenvalue Eigenvector 
First 1.619 [0.707, 0.707] 

Second 0.381 [0.707, -0.707] 
 

Table 3. Eigenvalues and eigenvectors for normalized PQLR values (case study 1) 
Principal component  Eigenvalue Eigenvector 

First 1.143 [0.707, 0.707] 
Second 0.857 [0.707, -0.707] 

 
   Table 5 gives the level averages of the control factors on the overall utility and WS values. In this table, the desired level 
averages are bold faced. Larger value of overall utility signifies better quality. Consequently, the optimal conditions for factors A, 
B, C, D, E and F with respect to overall utility value can be set as 231331 FEDCBA , i.e.   workpiece polarity = negative, pulse-on 
time = 300 sμ , duty factor = 0.7, open discharge voltage = 100V, discharge current = 6A and dielectric fluid = Kerosene + Al2O3 
powder. On the other hand, as smaller value of WS implies better quality, the optimal condition with respect to WS value can be 
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chosen as 221231 FEDCBA , i.e. workpiece polarity = negative, pulse-on time = 300 sμ , duty factor = 0.5, open discharge voltage 
= 100V, discharge current = 4A and dielectric fluid = Kerosene + Al2O3 powder. It may be noted that the optimal process 
conditions obtained by the application of the modified PCA-based UT method and PCA-based PQLR method are different. 

 
Table 4. MPPI values for the experimental data of case study 1 
Exp. 
No.  

Multi-response process performance index (MPPI)  
Overall utility Weighted score (WS) 

1 1.480 0.055 
2 1.502 0.045 
3 1.051 0.112 
4 3.745 0.002 
5 2.577 0.033 
6 1.172 0.095 
7 0.628 0.553 
8 3.599 0.002 
9 7.920 0.001 

10 0.566 0.545 
11 0.439 0.714 
12 0.670 0.467 
13 0.657 0.462 
14 1.847 0.401 
15 1.003 0.291 
16 1.418 0.120 
17 1.037 0.258 
18 0.576 0.754 

 
Table 5 Level averages on overall utility and WS values for case study 1 

Factor 
Overall utility Weighted score (WS) 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 
A 2.631 0.913 - 0.024 0.394 - 
B 0.951 1.834 2.530 0.192 0.085 0.058 
C 1.416 1.833 2.065 0.112 0.078 0.108 
D 2.604 1.102 1.609 0.046 0.226 0.092 
E 1.024 1.990 2.302 0.293 0.039 0.084 
F 1.436 2.693 1.186 0.092 0.053 0.193 

 
   It is important to notice that the overall utility and WS values are essentially used as the tools for multi-response optimization. 
The quality of performance of a process can actually be judged by the expected SN ratio values of the individual response 
variables at the derived optimal parametric condition. Therefore, the average SN ratio values of the response variables at different 
levels of the control factors are computed (based on the values given in Table 1) and then, the expected SN ratio values for the 
response variables at the two optimal solutions, derived by using the two PCA-based approaches, are estimated employing the 
additive model (Phadke, 1989). The expected SN ratio values for each response variable under the two different sets of optimal 
conditions are displayed in Table 6. The results in Table 6 reveal that by increasing duty factor from 0.5 to 0.7 and discharge 
current from 4A to 6A, the SN ratio value for EWR increases by 0.74 dB (the value of EWR reduce from 2.506 to 2.301) but the 
SN ratio value for MRR deceases by 0.02 dB (the value of MRR reduce from 0.002941 to 0.002934) only. In effect, the total SN 
ratio under the optimal condition derived by using the modified PCA-based UT approach becomes considerably higher (1.23%) 
than the total SN ratio under the optimal condition that is determined by the PCA-based PQLR method. This result is indicative 
that the modified PCA-based UT approach can give better optimisation performance. 
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Table 6. Predicted SN ratios for the response variables (case study 1) 

Optimization method Optimal condition 
Expected SN ratio Total SN 

ratio EWR MRR 

Modified PCA-based UT 
approach A1B3C3D1E3F2 -7.24 dB -50.65 dB -57.89 dB 

PCA-based PQLR method A1B3C2D1E2F2 -7.98 dB -50.63 dB -58.61 dB 
 
 
6.2 Case study 2 
   Kansal et al. (2006) investigated the optimization performance of EDM process when silicon powder was suspended into the 
dielectric fluid used in EDM. In that study, the impacts of four process parameters, i.e. concentration of silicon powder added into 
dielectric fluid (A), peak current (B), pulse duration (C) and duty cycle (D) were studied with consideration of multiple 
characteristics, including MRR (mm3/min), SR (μm) and TWR (mm3/min). While MRR is a LTB type response variable, SR and 
TWR are STB type response variables. Three levels for all the process parameters were selected. So the experimental layout was 
prepared using L9 orthogonal array. 
   The experimental layout and the computed SN ratio values for the three responses are given in Table 7. For application of PCA-
based PQLR method, the PQLR values corresponding to different trials are estimated for all the responses assuming that A2B2C2D2 
is the starting condition. The SN ratio and PQLR values are normalized and then, subjected to PCA separately using STATISTICA 
software. The eigenvalues and the corresponding eigenvectors for the scaled SN ratios are given in Table 8. Table 9 shows the 
eigenvalues and the corresponding eigenvectors for the normalized PQLR values. 
   Now, the MPPI values for the modified PCA-based UT method and PCA-based PQLR method are computed. The MPPI values 
corresponding to different trials obtained employing the two PCA-based methods are shown in Table 10. 

 
 

Table 7. Experimental layout and computed SN ratios (case study 2) 
Exp. 
No. 

Factor assignment SN ratio (η) in dB 
A B C D MRR SR TWR 

1 1 1 1 1 -5.02 -1.39 11.70 
2 1 2 2 2 -3.08 -2.83 9.68 
3 1 3 3 3 -1.41 -3.58 5.67 
4 2 1 2 3 -2.33 -1.26 11.70 
5 2 2 3 1 -1.66 -2.90 9.68 
6 2 3 1 2 0.78 -3.60 7.34 
7 3 1 3 2 -1.73 -0.44 11.87 
8 3 2 1 3 -0.68 -2.02 11.70 
9 3 3 2 1 1.65 -2.19 8.94 

 
 

Table 8. Eigenvalues and eigenvectors for normalized SN ratios (case study 2) 
Principal component  Eigenvalue Eigenvector 

First 2.15 [0.443, -0.624, -0.644] 
Second 0.73 [0.891, 0.383, 0.243] 
Third 0.13 [-0.095, 0.682, -0.725] 

 
 

Table 9. Eigenvalues and eigenvectors for normalized PQLR values (case study 2) 
Principal component  Eigenvalue Eigenvector 

First 1.92 [0.246, 0.682, 0.689] 
Second 0.94 [0.986, -0.207, -0.141] 
Third 0.14 [-0.046, -0.702, 0.711] 
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Table 10. MPPI values for experimental data of case study 2 
Exp. 
No.  

Multi-response process performance index (MPPI)  
Overall utility Weighted score (WS) 

1 4.062 0.560 
2 2.708 0.603 
3 0.212 0.942 
4 7.546 0.274 
5 2.419 0.509 
6 1.000 0.787 
7 5.864 0.150 
8 5.937 0.261 
9 3.808 0.386 

 
   Table 11 gives the level averages of the control factors on overall utility and WS values. Here, the optimal conditions for factors 
A, B, C and D with respect to overall utility value and WS value are chosen as 3213 DCBA  (i.e. powder concentration = 2 g/L, 
peak current = 3A, pulse duration = 100 sμ  and duty cycle = 0.9) and 3313 DCBA (i.e. powder concentration = 2 g/L, peak 
current = 3A, pulse duration = 150 sμ  and duty cycle = 0.9) respectively. 

 

Table 11. Level averages on overall utility and WS values for case study 2 

Factor 
Overall utility Weighted score (WS) 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 
A 2.327 3.655 5.203 0.683 0.479 0.247 
B 5.824 3.688 1.674 0.284 0.431 0.659 
C 3.666 4.687 2.832 0.536 0.421 0.416 
D 3.430 3.191 4.565 0.479 0.414 0.407 

 

   The average SN ratio values of the responses at different levels of the control factors are computed (based on the values given in 
Table 7) and then, the expected SN ratio values for the response variables at the two optimal solutions are estimated employing the 
additive model (Phadke, 1989). The expected SN ratio values for each response variable under the two different sets of optimal 
conditions are displayed in Table 12. The results in Table 12 reveal that by changing the pulse duration from 150 sμ  to 100 sμ  
the SN ratio values for MRR, SR and TWR can be increased by 0.34 dB (the value of MRR increases from 0.807 to 0.839), 0.22 
dB (the value of SR decreases from 1.052 to 1.026) and 1.04 dB (the value of TWR decreases from 0.253 to 0.225) respectively. In 
effect, the total SN ratio under the optimal condition derived by using the modified PCA-based UT approach becomes 
substantially higher (16.6%) than the total SN ratio under the optimal condition that is determined by the PCA-based PQLR 
method. This is indicative that the modified PCA-based UT approach can give better optimisation performance. 

 

Table 12. Predicted SN ratios for the response variables (case study 2) 

Optimization method Optimal condition 
Expected SN ratio Total SN 

ratio MRR SR TWR 
Modified PCA-based UT approach 3213 DCBA  -1.52 dB -0.22 dB 12.97 dB 11.23 dB 

PCA-based PQLR method 3313 DCBA  -1.86 dB -0.44 dB 11.93 dB 9.63 dB 
 

   The expected optimization performance under the optimal process conditions derived by the modified PCA-based UT approach 
are found to be better in both case studies. Ideally, confirmatory experimental trials using all the optimal factor-level combination 
derived based on different methods should be carried out for each process and the results of the confirmatory trials need to be 
compared with the predicted results to validate the model assumptions. However, the current research work is carried out using 
published experimental data in literature and therefore, there is no scope to carry out the confirmatory trial with the optimal factor 
level combination for any process. According to Phadke (1989) and Montgomery (2001), the additive model for prediction is 
usually appropriate. Based on the predicted values, therefore, it may be concluded that the modified PCA-based UT approach 
results in better optimisation performance. 
 
7. Conclusions 
 
   Correlation analysis reveals that the multiple performance characteristics of EDM process are usually correlated. The results of 
past researches indicate that PCA-based PQLR method may be the most appropriate approach for optimization of correlated 
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responses of EDM processes. In this paper, a modified PCA-based UT approach for optimizing correlated responses is presented, 
in which Taguchi’s SN ratio concept (one of the most significant contributions of Taguchi) is properly integrated. Two sets of past 
experimental data on EDM processes are analyzed using the modified PCA-based UT method and PCA-based PQLR method. The 
comparison of the optimization performances at the optimal conditions derived by the two methods indicates that the optimal 
condition derived by the modified PCA-based UT method leads to better optimization performance. This implies that the modified 
PCA-based UT approach can be a promising method for optimizing correlated responses of EDM process.  
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