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Abstract 
 
 The Taylor dispersion of a solute for composite porous medium between two parallel plates with first-order chemical reaction 
is studied analytically. The fluids in both the regions are incompressible and the transport properties are assumed to be constant. 
The results are shown graphically for various values of viscosity ratio, pressure gradient and porous parameter on the effective 
dispersion coefficient and volumetric flow rate. It is found that for both homogeneous and heterogeneous chemical reactions, the 
effective dispersion coefficient decreases as porous parameter increases.  The validity of the results obtained for composite 
porous media is verified by comparison with the available porous medium results for one fluid model and good agreement is 
found.  Also two fluid model in the absence of porous matrix is compared with the available one fluid model results and the 
values tally very well.  
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1. Introduction 
 
 Flow through and past porous media has attracted considerable interest in recent years because of its importance in science, 
engineering and technology (see Kaviany, 1999 and Vafai, 2000). Notable practical problems that require the study of DIPM 
(Dispersion In Porous Media) are the extraction of energy from geothermal regions, analyzing thermal energy storage systems, 
thermal insulation, solar collectors with porous absorbers, biomechanical applications such as cartilage in synovial joints (see 
Sueiu et al., 2003; Ng et al., 2005), pollutant transport resulting from municipal, industrial, and agricultural wastes through the 
surface of the earth, polluting ground water where control of pollutants is desired and the tiny dust particles floating in the air, 
known as aerosols and which are gradually choking people to death, where an understanding of the spreading of aerosols is 
required. The main interest in all these cases is the study of dispersion (i.e., spreading leading to flow-enhanced diffusion) in 
porous media. Chemical reactions can be classified as either homogenous or heterogeneous processes. A homogeneous reaction is 
one that occurs uniformly through a given phase. In contrast, a heterogeneous reaction takes place in a restricted region or within 
the boundary of a phase. A reaction is said to be the first order if the rate of reaction is directly proportional to the concentration 
itself. In many chemical engineering processes, a chemical reaction between a foreign mass and the fluid does occur. However, the 
diffusion process, combined with homogeneous and heterogeneous chemical reactions of a solute in a porous medium, is also 
important in chemical engineering. The diffusion inside the tortuous void passages in the medium is pointed out by Bird et al. 
(1960). 
 These problems of dispersion have been receiving considerable attention from chemical, environmental, petroleum engineers, 
hydrologists, mathematicians and soil scientists. Most of the works reveal common assumptions of homogeneous porous media 
with constant porosity, steady seepage flow velocity and constant dispersion coefficient. For such assumptions Hoopes and 
Harleman (1965) studied the problem of dispersion in radial flow from fully penetrating, homogeneous, isotropic non-adsorbing 
confined aquifer. Bruce and Street (1966) considered both longitudinal and lateral dispersion with in semi-infinite no adsorbing 
porous media in a steady unidirectional flow field for a constant input concentration. Marino (1974) considered the input 
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concentration varying exponentially with time. Al-Niami and Rushton (1977) and Marino (1978) studied the analysis of flow 
against dispersion in porous media. The influences of thermal diffusion and magnetic field on combined free-forced convection 
and mass transfer flow past a vertical porous flat plate, in the presence of heat generation were studied numerically by Abdel-
Rahman (2008).  
 The permeabilities for porous media, both saturated and unsaturated, have received much attention (Kaviany, 1999; Panfilov, 
2000) due to practical applications, including chemical engineering, soil science and engineering. Compared with single-phase (or 
saturated) flow in porous media, the multiphase (or unsaturated) immiscible flows in porous media are not well understood. The 
multiphase immiscible flows in porous media are very important in practical applications such as the petroleum industry, chemical 
engineering, and soil engineering. In order to get a better understanding of the mechanisms for permeability, the analytical solution 
for permeability of porous media becomes a challenging task. Katz and Thompson (1985) presented experimental evidence 
indicating that the pore spaces of a set of porous sandstone samples (in nature) are fractals and are self-similar over 3 to 4 orders of 
magnitude in length extending from 10 Å to 100 μm. They argued that the pore volume is a fractal with the same fractal dimension 
as the pore–rock interface. According to the fractal character of real porous media, Yu and Cheng (2002) developed a fractal 
permeability model for bidispersed saturated porous media, and this fractal model is also applicable to porous fabrics (Yu et al., 
2002) (see Figure 4; Yu et al., 2001). A fractal analysis of permeabilities for porous media, both saturated and unsaturated, was 
presented by Boming and Wie (2004) based on the fractal nature of pores in the media. Yongting et al. (2003) studied the self-
similarity model for effective thermal conductivity of porous media. Recently Boming (2008) analyzed the flow in fractal porous 
media. 
 Fluid flow and heat transfer characteristics at the interface region in systems which consists of a fluid-saturated porous medium 
and an adjacent horizontal fluid layer received considerable attention. Poulikakos et al. (1986) studied the conduction for 
composite system consisting of a fluid layer and packed bed heated from below.  Beckermann et al. (1987, 1988) also made a deep 
analysis of heat transfer with various positions allocated for porous/fluid layers. Prasad (1991) have made an excellent review for 
composite flow systems. The problem of boundary conditions at the porous medium/clear fluid interface was first investigated in 
Beavers and Joseph (1967). Neale and Nader (1974) presented one of the earlier attempts regarding this type of boundary 
condition in porous medium. In this study the authors proposed the continuity in both the velocity and the velocity gradient at the 
interface by introducing the Brinkman term in the momentum equation for the porous side. Vafai and Kim (1990) presented an 
exact solution for the fluid flow with the interface between a porous medium and a fluid layer, including the inertia and boundary 
effects. For more details on interfacial conditions, readers are referred to the paper by Alzami and Vafai (2001). Following the 
analysis of Neale and Nader (1974), Malashetty et al. (2001, 2005), Umavathi et al. (2006, 2009, 2010) and Prathap Kumar et al. 
(2009, 2010) studied flow and heat transfer of composite porous medium. The combined effects of homogeneous and 
heterogeneous chemical reaction for a solute dispersing in Newtonian fluid flow have been discussed by Walker (1961), Soloman 
and Hudson (1967), Gupta and Gupta (1972) and others. Recently Rudraiah and Ng (2007) reviewed the dispersion in porous 
media with and without chemical reaction.  
 The literature on hydrodynamic dispersion in porous medium is very sparse in spite of its versatile applications in many 
branches of sciences, engineering and technology. Therefore the objective of this work is to present a mechanism of dispersion 
with chemical reaction in a channel filled with immiscible fluid saturated porous medium with the motive that the results obtained 
may be effectively used in some typical cases to understand the mechanism of mixing and separation process. Further this work 
also provides an improved model for dispersion in porous medium that agrees with the experimental data of Harlemann et al. 
(1963). 

 
2. Mathematical formulation of the problem 
 
 The physical configuration considered in this study is shown in Figure 1. Consider the laminar flow of two immiscible fluids 
saturated with porous medium between two parallel plates distant 2h  apart, taking X -axis along the mid-section of the channel 
and Y -axis perpendicular to the walls. Region-1 ( )0h Y− ≤ ≤  is filled with the fluid saturated porous medium of density 1ρ , 

viscosity 1μ , permeability 1κ  under a uniform pressure gradient 1dP
dX

 whereas region-2 ( )0 Y h≤ ≤  is filled with another fluid 

saturated with different porous medium of density 2ρ , viscosity 2μ , permeability 2κ  under a uniform pressure gradient 2dP
dX

. The 

fluids in both the regions are Newtonian fluids.  
 It is assumed that the flow is steady, laminar, fully developed, and that fluid properties are constant. The flow in both regions is 
assumed to be driven by a common constant pressure gradient. Under these assumptions, the governing equations of motion for 
incompressible fluids are (Neale and Nader, 1974) 
 Region-1 

                                                                                 
2

1 1
12

1 1

1 1d U dP
U

dXdY κ μ
− =                                                                                        (1) 
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 Region-2 

                                                                                 
2

2 2
22

2 2

1 1d U dP
U

dXdY κ μ
− =                                                                                      (2) 

where iU  is the X -component of fluid velocity and iP  is the pressure. The subscripts 1 and 2 denote the values for region-1 and 
region-2 respectively. 

 
 
 The boundary conditions on velocity are no-slip conditions requiring that the velocity must vanish at the walls. In addition, 
continuity of velocity and shear stress at the interface is assumed.  With these assumptions, the boundary and interface conditions 
on velocity become 

1 0U at Y h= = − ;   2 0U at Y h= =  

                                                                1 2 0U U at Y= =  ;          1 2
1 2 0

dU dU
at Y

dY dY
μ μ= =                                                  (3) 

 
 Using the non-dimensional parameters  

                           Y
h

η = , 1
1 1

1

h
u U

ρ
μ

= , 2
2 2

2

h
u U

ρ
μ

= , Xx
h

= , 1
1 2

1 1( / )
P

p
hρ ν

∗ = , 2
2 2

2 2( / )
P

p
hρ ν

∗ = , i
i

hσ
κ

=                                 (4) 

in the Eqs. (1) to (3) become 

                       
2

21
1 1 12

d u
u p

d
σ

η
− =                                                       (5) 

                      
2

22
2 2 22

d u
u p

d
σ

η
− =                                                  (6) 

1 0 at 1u η= = − ; 2 0 at 1u η= =  

                     21 2
1 2 ; at 0

du du
u mnu m n

d d
η

η η
= = =                                                                      (7) 

where 1
1

dp
p

dx

∗

= , 2
2

dp
p

dx

∗

= , 2 1m μ μ=  and 1 2n ρ ρ=  

 
Solutions of Eqs. (5) and (6) are 

                      ( ) ( ) 1
1 1 1 2 1 2

1

cosh sinh
p

u a aσ η σ η
σ

= + −                                                                    (8) 

                                    ( ) ( ) 2
2 3 2 4 2 2

2

cosh sinh
p

u a aσ η σ η
σ

= + −                                                                 (9) 

where  1 2 3, ,a a a  and 4a  are integrating constants that are evaluated by using boundary and interface conditions as given in     
Eqn. (7). 
From Eqs. (8) and (9) the average velocities become          

                          
0

2 1 2 1
1 1 1 1 2

1 1 1 11

1 sinh( ) cosh( )
2 2 2 2 2

a a a p
u u dη σ σ

σ σ σ σ−

= = + − −∫                                             (10) 

Region-1 

h−  

h  

Region-2 
0 X

Y

Figure 1: Physical configuration 
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1

3 4 2 4
2 2 2 2 2

2 2 220

1 sinh( ) cosh( )
2 2 2 22

a a p a
u u dη σ σ

σ σ σσ
= = + − −∫                                          (11) 

 
 
Case 1: Diffusion with a homogeneous first-order chemical reaction 
 
 We assume that a solute diffuses and simultaneously undergoes first-order irreversible chemical reaction in the liquid under 
isothermal conditions. The equation for the concentration 1C  of the solute for the region-1 satisfies 

                   
2 2

1 1 1 1
1 1 1 12 2

C C C C
u D K C

t X X Y
⎛ ⎞∂ ∂ ∂ ∂

+ = + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                                                  (12) 

Similarly, the equation for the concentration 2C  of the solute for the region-2 satisfies 

                                                                         
2 2

2 2 2 2
2 2 2 22 2

C C C C
u D K C

t X X Y
⎛ ⎞∂ ∂ ∂ ∂

+ = + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                                              (13) 

in which 1D  and 2D  are the molecular diffusion coefficients (assumed constants) for the region-1 and region-2 respectively and 

1K  and 2K  are the first-order reaction rate constant. In deriving the above Eqs. (12) and (13), it is assumed that the solute is 
present in a small concentration, the last term -3 -1

1 1-K C / mol m s  and -3 -1
2 2-K C / mol m s  represents the volume rate of 

disappearance of the solute due to chemical reaction. We now assume that  
2 2

1 1
2 2

C C
X Y

∂ ∂
<<

∂ ∂
   and   

2 2
2 2
2 2

C C
X Y

∂ ∂
<<

∂ ∂
 

 If we now consider convection across a plane moving with the mean speed of the flow, then relative to this plane the fluid 
velocities are given by 
 Region-1 
                                                                      ( ) ( )1 1 1 1 2 1 1cosh sinhxu u u a a lσ η σ η= − = + +                                                             (14) 
 Region-2 
                                                                      ( ) ( )2 2 3 2 4 2 2cosh sinhxu u u a a lσ η σ η= − = + +                                                    (15) 
where u  is the sum of average velocities of region-1 and region-2. 
 Introducing the dimensionless quantities 

                           1 1 1 1 1 2 2 2 2 2
1 1 1 2 2 2

1 1 1 2 2 2

, , , , ,
t L x u t t L x u t

t t
t u L t u L

θ ξ θ ξ
− −

= = = = = =                                                    (16) 

and using Eqs. (14) and (15), the Eqs. (12) and (13) become 
 Region-1 

                        
2

11 1 1 1
1 12 2

1 1 1

1 xuC C D C
K C

t L hθ ξ η
∂ ∂ ∂

+ = −
∂ ∂ ∂

                                                                       (17) 

 Region-2 

                       
2

22 2 2 2
2 22 2

2 2 2

1 xuC C D C
K C

t L hθ ξ η
∂ ∂ ∂

+ = −
∂ ∂ ∂

                                                                     (18) 

where 1L  and 2L  are the typical lengths along the flow direction. Following the Taylor (1953), we now assume that partial 
equilibrium is established in any cross-section of the channel so that the variations of 1C  and 2C  with η  are calculated from Eqs. 
(17) and (18) as 
 Region-1 

                  
2 2

21 1
1 1 12

1 1 1
x

C ChC u
D L

α
ξη

∂ ∂
− =

∂∂
                                                                        (19) 

 Region-2 

                                 
2 2

22 2
2 2 22

2 2 2
x

C ChC u
D L

α
ξη

∂ ∂
− =

∂∂
                                                                     (20) 

where 1 1 1h K Dα =  and 2 2 2h K Dα =  
To solve these equations we use the following three types of boundary conditions: 
 The first one is connected with insulated type of boundary conditions, namely 
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                            1 0
C
η

∂
=

∂
  at  1η = −   and  2 0

C
η

∂
=

∂
   at  1η =                        (21) 

which expresses the fact that the walls of the channel are impermeable.  However, in many biological problems the condition at the 
lower wall is insulating and the upper is conducting.  In other words 

                            1 0 at 1
C

η
η

∂
= = −

∂
 and 2 1 at 1C η= =                                             (22) 

where the former represents the impermeable (insulating) and the later the permeable (conducting). The other condition can also be 
taken as the lower wall as conducting and upper wall is insulating  

                                                                      1 1 at 1C η= = −  and 2 0 at 1
C

η
η

∂
= =

∂
                                         (23) 

where the former represents the permeable and the later the impermeable. 
  
 To find the exact solutions of Eqs. (19) and (20), we require two more interface conditions along with boundary conditions (21) 
to (23) for three different cases which are given by 

                    1 2 2
1 2

1

and at 0
C D C

C C
D

η
η η

∂ ∂
= = =

∂ ∂
                                                                 (24) 

That is, the continuity of concentration and the continuity of mass flux at the interface.  
 Equations (19) and (20) are solved exactly for 1C  and 2C  which are given by  
 Region-1 

                               ( ) ( ) ( )
( )

( )
( )

2
1

1 1 1 1

1 1

1 1 2 1 1
2 22 2 2 2

1 1 1 1 1

cosh sinh
cosh sinhCh

C b b
D L

a a l
α η α η

ξ α

σ η σ η
σ α σ α

∂
= + + +

∂

⎛ ⎞
⎜ ⎟−
⎜ ⎟− −⎝ ⎠

                                  (25) 

 Region-2 

                          ( ) ( ) ( )
( )

( )
( )

2
2

2 2 2
3 2 4 2 2

3 4 22 2 2 2
2 2 22 2 2 2

cosh sinh
cosh sinhCh

C b b
D

a a l
L

α η α η
ξ

σ η σ η
ασ α σ α

∂
= + + +

∂

⎛ ⎞
⎜ ⎟−
⎜ ⎟− −⎝ ⎠

                                  (26) 

where 1 2 3, ,b b b  and 4b  are the integrating constants which are evaluated using boundary and interface conditions as defined in 
Eqs. (21) and (24). The expressions for 1C  and 2C  can also be written as  

2 2
1 2

1 11 12
1 1 2 2

C Ch hC C C
D L D Lξ ξ

∂ ∂
= +

∂ ∂
; 

2 2
1 2

2 21 22
1 1 2 2

C Ch hC C C
D L D Lξ ξ

∂ ∂
= +

∂ ∂
 

where  ( ) ( ) ( ) ( )1 1 2 1 1
11 11 1 21 1 2 2 2 2 2

1 1 1 1 1

cosh sinh
cosh sinh

a a l
C b b

σ η σ η
α η α η

σ α σ α α
= + + + −

− −
, 

 ( ) ( )12 12 1 22 1cosh sinhC b bα η α η= + , 

 ( ) ( )21 31 2 41 2cosh sinhC b bα η α η= +  

 ( ) ( ) ( ) ( )3 2 4 2 2
22 32 2 42 2 2 2 2 2 2

2 2 2 2 2

cosh sinh
cosh sinh

a a l
C b b

σ η σ η
α η α η

σ α σ α α
= + + + −

− −
 

 The volumetric flow rates at which the solute is transported across a section of the channel of unit breadth 1Q  (region-1) and 2Q  
(region-2) using Eqs. (14), (15) and (25), (26) are 
 Region-1 

                       
0

1 1 1 11 12
1

( )xQ h C u d Q Qη
−

= = − +∫                                                 (27) 

where   
0 03 3

1 2
11 11 1 12 12 1

1 1 2 21 1

andx x
C Ch hQ C u d Q C u d

D L D L
η η

ξ ξ− −

∂ ∂
= − = −

∂ ∂∫ ∫  

 Region-2 

                      ( )
1

2 2 2 21 22
0

xQ h C u d Q Qη= = − +∫                                                              (28) 

where   
1 13 3

1 2
21 21 2 22 22 2

1 1 2 20 0

andx x
C Ch hQ C u d Q C u d

D L D L
η η

ξ ξ
∂ ∂

= − = −
∂ ∂∫ ∫          
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 Following Taylor (1953), we assume that the variations of 1C  and 2C  with η  are small compared with those in the longitudinal 
direction, and if 1mC  and 2mC  are the mean concentration over a section, 1 1C ξ∂ ∂  and 2 2C ξ∂ ∂  are indistinguishable from 

1 1C ξ∂ ∂  and 2 2C ξ∂ ∂  respectively so that Eqs. (27) and (28) may be written as  
 Region-1 

1
11 11

1

mC
Q D

ξ
∗ ∂= −
∂

, 2
12 12

2

mC
Q D

ξ
∗ ∂

= −
∂

 

 Region-2 
1 2

21 21 22 22
1 2

andm mC C
Q D Q D

ξ ξ
∗ ∗∂ ∂

= − = −
∂ ∂

 

 The fact that no material is lost in the process is expressed by the continuity equation for 1mC  and 2mC , namely  
 Region-1 

                     111

1

2 mCQ
tξ

∂∂
= −

∂ ∂
, 212

2

2 mCQ
tξ

∂∂
= −

∂ ∂
                                 (29) 

 Region-2 

                     121

1

2 mCQ
tξ

∂∂
= −

∂ ∂
, 222

2

2 mCQ
tξ

∂∂
= −

∂ ∂
                                                            (30) 

 Equations (29) and (30) using eqs. (27) and (28) become 
 Region-1 

                                                                          
2*

1 111
2

12
m mC CD
t ξ

∂ ∂
=

∂ ∂
, 

2*
2 212

2
22

m mC CD
t ξ

∂ ∂
=

∂ ∂
                                               (31) 

 Region-2 

                    
2*

1 121
2

12
m mC CD
t ξ

∂ ∂
=

∂ ∂
, 

2*
2 222

2
22

m mC CD
t ξ

∂ ∂
=

∂ ∂
                                                                 (32) 

which are the equations governing the longitudinal dispersion, 

where  ( )
02 2

*
11 11 1 11 1 2 1 2 1 2

1 11

, , , , , , ,
2 2x
h hD C u d F p p m n
D D

η σ σ α α
−

= =∫ , 

 ( )
02 2

*
12 12 1 12 1 2 1 2 1 2

2 21

, , , , , , ,
2 2x
h hD C u d F p p m n
D D

η σ σ α α
−

= =∫ , 

 ( )
12 2

*
21 21 2 21 1 2 1 2 1 2

1 10

, , , , , , ,
2 2x
h hD C u d F p p m n
D D

η σ σ α α= =∫ ,

 ( )
12 2

*
22 22 2 22 1 2 1 2 1 2

2 20

, , , , , , ,
2 2x
h hD C u d F p p m n
D D

η σ σ α α= =∫ . 

 For lower wall impermeable and upper wall permeable, the solutions remain the same as in Eqs. (25) and (26), whereas the 
integrating constants are evaluated as defined in Eqs. (22) and (24). The integrating constants of Eqs. (25) and (26) are evaluated 
using boundary and interface conditions as defined in Eqs. (23) and (24) foe lower wall permeable and upper wall impermeable 
wall conditions. The evaluation of effective dispersion coefficient  iiF  and volumetric flow rate for lower wall impermeable and 
upper wall permeable and lower wall permeable and upper wall impermeable remain the same as defined above for imperameable 
wall conditions.  
 iiF  is used in terms of 1 11 12F F F= +  for region-1 and 2 21 22F F F= +  for region-2 for computations. Values of iiF  are 
computed for different values of dimensionless parameters such as viscosity ratio m , pressure gradients 1 2,p p  and porous 
parameters 1 2,σ σ  for variations of 1 2andα α  for three different wall conditions and are shown in Figures 2, 4 and 6. Volumetric 
flow rate is also computed for variations of viscosity ratio, pressure gradients and porous parameters and displayed in Figures 3 
and 5. 

 
Case 2 Diffusion with combined homogeneous and heterogeneous first-order chemical reaction 
 
 We now discuss the problem of diffusion in a channel with a first-order irreversible chemical reaction taking place both in the 
bulk of the fluid as well as at the walls which are assumed to be catalytic. In this case the diffusion equations remain the same as 
defined in Eqs. (19) and (20) subject to the dimensionless boundary and interface conditions as 
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1
1 1 0 at 1

C
Cβ η

η
∂

− = = −
∂

 

                             2
2 2 0 at 1

C
Cβ η

η
∂

+ = =
∂

                                                                            (33) 

1 2 at 0C C η= =  

1 2
1 2 at 0

C C
D D η

η η
∂ ∂

= =
∂ ∂

 

where 1 1f hβ =  and 2 2f hβ =  are the heterogeneous reaction rate parameters corresponding to catalytic reaction at the walls. The 
solutions remain the same as defined in Eqs. (25) and (26) but the integrating constants 1 2 3, ,b b b  and 4b  are obtained using 
boundary and interface conditions as defined in Eq. (33). The effective dispersion coefficient iiF  is shown in Figure 7. 

 
Case 3: The channel filled with porous matrix (one fluid model) 
 
 To validate the results obtained for composite porous medium, (two fluid model) the problem is solved considering the channel 
filled with only porous medium (one fluid model) which was studied by Rudraiah and Ng (2007).  The solutions for one fluid 
model for impermeable wall conditions obtained by Rudraiah and Ng (2007) is given in Case 2 of Prathap Kumar et al. (2011). 
The solutions for one fluid model with lower impermeable and upper permeable wall condition, with lower permeable and upper 
impermeable wall conditions and heterogeneous wall conditions are evaluated. The values for the effective diffusion coefficient 
( ), ,F pα σ  and mass flow rate are computed for all the four different wall boundary conditions and are shown in Table 2(a, b) for 

two fluid (present model) and one fluid model (Rudraiah and Ng, 2007).  
 
Case 4: The channel filled with purely viscous fluid 
 
 Since the results for composite porous medium (two fluid model) tally with Rudraiah and Ng (2007) (one fluid model) for all 
values of porous parameter σ , we further justify our results by comparing with the results obtained by Gupta and Gupta (1972) 
for one fluid model in the absence of porous parameter. The solutions of Eqs. (5) and (6) using boundary and interface conditions 
(7) in the absence of porous parameter σ  remain the same as given in Case 3a of Prathap Kumar et al. (2011). The solutions of 
one fluid model (the channel filled with only viscous fluid) obtained by Gupta and Gupta (1972) is given in case 3b of Prathap 
Kumar et al. (2011) and hence not shown here. The solution for heterogeneous chemical reaction is also found for two fluid and 
one fluid model in the absence of porous matrix and the results are shown in Table 3(a, b). All the constants appeared above are 
defined in the appendix. 
 
4. Results and discussion 
 
 The problem concerned is with the longitudinal dispersion of a solute subject to molecular diffusion when it is introduced into a 
channel for composite porous medium following Taylor’s dispersion model with a homogeneous and heterogeneous first-order 
chemical reaction. In order to find out average velocity in both the regions, no-slip conditions at the boundaries and continuity of 
velocity and shear stress is assumed at the interface. The volumetric flow rate in both the regions of the channel is found. The 
effective dispersion coefficient in the each region is also evaluated and the results are shown graphically for variations of 
governing parameters. The homogeneous first-order chemical reaction is analyzed for three types of boundary conditions. The first 
one is connected with impermeable type of boundary conditions, second one is that lower wall impermeable and the upper wall 
permeable and third one is that the lower wall permeable and upper wall impermeable. The effective dispersion coefficient is also 
found with a heterogeneous first-order chemical reaction. The physical parameters such as viscosity ratio, pressure gradient 
( )1 2p p p= =  and porous parameter ( )1 2σ σ σ= =  are fixed as 1, 1 and 4 respectively except the varying parameters in all the 

graphs. 
 
Case 1:  Diffusion with a homogeneous first-order chemical reaction 
Concentration distribution with impermeable wall conditions  
 The effective dispersion coefficient F  (= ( )1 1 2,F α α  of region-1 + ( )2 1 2,F α α  of region-2) for variations of viscosity ratio m  
(Figure 2a), pressure gradient (Figure 2b) and porous parameter (Figure 2c) is shown in Figure 2. As the reaction rate parameter 
( )1 2α α α= =  increases F  decreases for any value of viscosity ratio m , pressure gradient p  and porous parameter σ . 

 As the viscosity ratio m  increases, the total effective dispersion coefficient increases. It is observed from Figure 2b that as 
pressure gradient p  increases the effective dispersion coefficient F  increases. It is also seen from Figure 2b that for small value 
of 0.1p =  there is zero value of effective dispersion coefficient. This is due to the fact that for small value of pressure gradient 
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there will be no flow and hence there will be no dispersion. It is also observed that the effective dispersion coefficient remains the 
same irrespective of the direction of the pressure gradient. It is observed that the effective dispersion coefficient F  decreases very 
rapidly with increasing porous parameter σ  which is the similar result obtained by Rudraiah and Ng (2007). This is due to the fact 
that as σ  grows, the velocity profiles continue to flatten out and tend to plug flow as σ →∞ . This flattening effect is the cause 
for the decrease in F  with an increase in σ . 
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Figure 2: Effective dispersion coefficient F versus α for different values of a) viscosity ratio m,

    b) pressure gradient p and c) porous parameter σ for impermeable wall condition.
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Figure 3: Volumetric flow rate versus a) viscosity ratio, b) pressure gradient 
    and c) porous parameter for impermeable wall conditions.
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 The effects of viscosity ratio, pressure gradient and porous parameter on volumetric flow rate are shown in Figure 3. It is seen 
that as the viscosity ratio m  and porous parameter ( )1 2σ σ σ= =  increases, volumetric flow rate increases for small values of m  
(Figure 3a), σ (Figure 3c) and remains almost constant for values of viscosity ratio m  greater than 0.8 and porous parameter σ  
greater than 5. Volumetric flow rate is symmetric for negative and positive values of pressure gradient and the optimum flow rate 
is attained in the absence of pressure gradient (Figure 3b). 
 
 Concentration distribution with lower wall impermeable and upper wall permeable wall conditions 
 
 The effects of viscosity ratio m , porous parameter ( )1 2σ σ σ= =  and pressure gradient p  on the effective dispersion 

coefficient with variation of homogeneous chemical reaction rate parameter ( )1 2α α α= =  is shown in Figure 4. As the reaction 
rate parameter α  increases, the effective dispersion coefficient decreases for any values of m (Figure 4a) and σ (Figure 4c). For 
positive value of pressure gradient ( )5p =  the effective dispersion coefficient F  decreases as the chemical reaction rate 

parameter α  increases. Reversal effect is observed for negative value of ( )5p p = − . For small value of pressure gradient 

0.1p = , there is no effect of α  on F . 
 As the viscosity ratio m  increases the effective dispersion coefficient F  decreases as seen in Figure 4a. As the pressure 
gradient increases the effective dispersion coefficient F  decreases. As the porous parameter σ  increases effective dispersion 
coefficient F   increases as seen in seen in Figure 4c. 
 The effect of viscosity ratio m  (Figure 5a), porous parameter σ  (Figure 5c) and pressure gradient p  (Figure 5b) on the 
volumetric flow rate is depicted in Figure 5. It is seen that as the viscosity ratio increases volumetric flow rate increases for small 
values of m  and remains almost constant for values of viscosity ratio m  greater than 1.0. Volumetric flow rate is symmetric for 
negative and positive values of pressure gradients. Volumetric flow rate decreases as porous parameter increases and remains 
almost constant for values of porous parameter ( )1 2σ σ σ= =  greater than 15. 
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Concentration distribution with lower wall permeable and upper wall impermeable wall conditions. 
 
 The effects of viscosity ratio m , porous parameter and pressure gradient p  on the effective dispersion coefficient with 
variation of homogeneous chemical reaction rate parameter α  is shown in Figure 6. As the reaction rate parameter α  increases, 
the effective dispersion coefficient decreases for any values of m  (Figure 6a) and σ ( Figure 6c). For values of 1p < , the total 
effective dispersion coefficient F  increases, where as it decreases for values of 1p >  (Figure 6b) as α  increases. As the viscosity 
ratio m  increases, the effective dispersion coefficient F  increases (Figure 6a). As pressure gradient p increases F  decreases as 
seen in Figure 6b. As the porous parameter σ  increases the effective dispersion coefficient F  increases (Figure 6c). The effects 
of p  and σ  on F is the similar result observed for impermeable and permeable wall conditions. 
 The effect of viscosity ratio m , porous parameter ( )1 2σ σ σ= =  and pressure gradients p  on the volumetric flow rate shows 
the similar effect as that of impermeable and permeable wall conditions (Figure 5). That is, as the viscosity ratio increases 
volumetric flow rate increases for small values of m , remains almost constant for values of viscosity ratio m  greater than 1.0. 
Volumetric flow rate is symmetric for negative and positive values of pressure gradients. Volumetric flow rate decreases as porous 
parameter increases and remains almost constant for increasing values of porous parameter σ . 
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Case 2:   Diffusion with combined homogeneous and heterogeneous first-order chemical reaction 
 
 The effect of heterogeneous reaction rate parameter β  for a fixed value of homogeneous reaction rate parameter 1α =  is 
shown in Figure 7. From this it is clear that the increase in the wall catalytic parameter causes decrease in the effective dispersion 
coefficient for all values of viscosity ratio m  (Figure 7a), pressure gradient p  (Figure 7b) and porous parameter σ (Figure 7c). As 
the viscosity ratio m  increases, the effective dispersion coefficient F  increases as seen in Figure 7a. The effect of pressure 
gradient p  (Figure 7b) on F  is similar to impermeable wall condition (Figure 3b). The effective dispersion coefficient F  
decreases very rapidly as porous parameter σ  increases (Figure 7c) which is the similar result as in the case of homogeneous 
reaction. This result is similar to the result obtained by Rudraiah and Ng (2007) for heterogeneous reactions. 
 The effect of viscosity ratio, pressure gradient and porous parameter on volumetric flow rate shows the similar result as that of 
homogeneous chemical reaction with impermeable wall conditions (Figure 3). 
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 To understand the nature of distribution of concentration for the real field, physical numbers for porous parameter and 

diffusivity coefficients are chosen and shown in Table 1. It is assumed that 1 2

1 2

1
C C
ξ ξ

∂ ∂
= =

∂ ∂
 for evaluating the values of 

concentration in Table 1 for four wall boundary conditions. The experimental values of diffusion coefficients in gases at one 
atmosphere are chosen from Cussler (1998). It is interesting to note that for any combination of gases, as the porous parameter σ  
increases, concentration decreases in magnitude in both the regions. This is due to the fact that an increase in the grain size 
increases the permeability κ  and hence porous parameter σ  decreases, which in turn reduces the value of the diffusion 
coefficient (this behavior is in conformity with the experimental results of Harlemann et. al., 1963) which results in the reduction 
of concentration. Two different fluids are chosen in each region such as Carbon dioxide and hydrogen, both the regions filled with 
air. Another combination of Nitrogen and Helium are chosen with both regions filled with water. It is seen that the concentration is 
high in magnitude for the channel filled with air compared to the channel filled with water in both the regions for variations of 
diffusivity coefficient for impermeable wall conditions.  
 For lower impermeable and upper wall permeable, the effect of σ  on the concentration is not effective when compared to 
impermeable wall conditions. The values of concentration are less for water when compared to air which is in contradiction with 
the result obtained for impermeable wall conditions as seen in Table 1.  
 For lower impermeable and upper wall impermeable, the effect of porous parameter ( )1 2σ σ σ= =  on the concentration is not 
effective when compared to impermeable wall conditions. The values of concentration are less for air when compared to water 
which is in contradiction with the result obtained for impermeable wall conditions.  
 For combined homogeneous and heterogeneous wall conditions, the values of concentration are less for water when compared 
to air which is the similar result obtained for homogeneous wall conditions. 
 

Table 1. Values of concentration for homogeneous impermeable wall conditions. 
 
 
η  

( )0.148 Air-CO1 2D = , ( )0.710 Air-H2 2D =  ( )0.293 N -H O1 2 2D = , ( )0.908 He-H O2 2D =  

0.54σ =  
(Soil) 

0.65σ =  
(Silica  
grains) 

0.76σ =  
(wire cramps) 

0.54σ =  
(Soil) 

0.65σ =  
(Silica 
grains) 

0.76σ =  
(wire cramps) 

 impermeable wall conditons 
-1.0 -0.08326 -0.07922 -0.07489 -0.039592 -0.037677 -0.035621 
-0.6 -0.03784 -0.03595 -0.03391 -0.016455 -0.015628 -0.014742 
-0.2 0.01402 0.01334 0.01261 0.010374 0.009868 0.009324 
0.2 0.01537 0.01462 0.0138 0.010960 0.010420 0.009841 
0.6 0.00218 0.00207 0.00196 8.4335E-4 8.0583E-4 7.6554E-4 
1.0 -0.00804 -0.00766 -0.00726 -0.007084 -0.006747 -0.006386 

 lower wall impermeable and upper wall permeable 
-1.0 0.294432 0.298323 0.302497 0.316676 0.318472 0.320400 
-0.6 0.370463 0.372206 0.374073 0.368697 0.369394 0.370142 
-0.2 0.519153 0.518281 0.517346 0.486860 0.486194 0.485479 
0.2 0.628501 0.627512 0.626451 0.598943 0.598207 0.597417 
0.6 0.751974 0.751588 0.751175 0.738568 0.738284 0.737979 
1.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 lower wall permeable and upper wall impermeable 
-1.0 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 
-0.6 0.6138659 0.6133354 0.6127653 0.630908 0.630541 0.630147 
-0.2 0.3398566 0.3379621 0.3359297 0.370473 0.369302 0.368047 
0.2 0.1762324 0.1748759 0.1734208 0.219693 0.218768 0.217776 
0.6 0.1322007 0.1316143 0.1309851 0.169566 0.169217 0.168843 
1.0 0.1122290 0.1121617 0.1120897 0.148985 0.149034 0.149087 

 combined homogeneous and heterogeneous wall conditions 
-1.0 -0.044417 -0.042264 -0.039954 -0.020443 -0.019453 -0.018391 
-0.6 -0.014101 -0.013354 -0.012553 -0.004150 -0.003918 -0.003670 
-0.2 0.026517 0.025233 0.023855 0.017829 0.016963 0.016034 
0.2 0.022301 0.021211 0.020042 0.016007 0.015225 0.014386 
0.6 0.008304 0.007909 0.007484 0.005534 0.005272 0.004991 
1.0 -0.001722 -0.001643 -0.001558 -0.001989 -0.001896 -0.001796 
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Case 3: The channel filled with porous matrix (one fluid model) 
 
 The problem of dispersion in porous media with and without chemical reaction was analysed by Rudraiah and Ng (2007) in 
which the channel is filled with only one porous matrix.  
 The Table 2(a, b) display the values of effective diffusion coefficient and volumetric flow rate for the two fluid (present model) 
and one-fluid (Rudraiah and Ng, 2007) model for homogeneous impermeable, lower wall impermeable and upper wall permeable, 
lower wall permeable and upper wall impermeable, and combined homogeneous and heterogeneous wall conditions. It is observed 
that for all the cases the effective dispersion coefficient F  and volumetric flow rate Q  agree very well with Rudraiah and Ng 
(2007) model which strongly justify our results in the presence of porous matrix.  
 
Case 4: The channel filled with only viscous fluid (Two fluid model) for homogeneous impermeable wall conditions 
 
 In the absence of porous matrix, two fluid model agree very well with the results of Gupta and Gupta (1972) for one fluid model 
which further justify our model which is evident in Table 3(a,b) for effective dispersion coefficient and volumetric flow rate 
respectively. 
 

Table 2a. Values of effective diffusion coefficient in the presence of porous matrix. 

 Two fluid model (present model) One fluid model  
Rudraiah and Ng (2007) 

 ( )1 1 2,F α α  ( )2 1 2,F α α  ( )1 2,F α α  ( )F α  
α  homogeneous impermeable wall conditions 
0.4 3.56801E-6 3.56801E-6 7.13602E-6 7.13602E-6 
0.8 3.41511E-6 3.41511E-6 6.83022E-6 6.83022E-6 
1.2 3.18869E-6 3.18869E-6 6.37737E-6 6.37737E-6 
1.6 2.91988E-6 2.91988E-6 5.83976E-6 5.83976E-6 
2.0 2.63695E-6 2.63695E-6 5.2739E-6 5.2739E-6 
α  lower wall impermeable and upper wall permeable 
0.4 1.28569E-4 -4.84811E-4 3.5624E-4 3.5624E-4 
0.8 2.69952E-4 -0.0012317 9.6174E-4 9.6174E-4 
1.2 2.94069E-4 -0.0017429 -0.0014489 -0.0014489 
1.6 2.51804E-4 -0.0020586 -0.0018068 -0.0018068 
2.0 1.92032E-4 -0.0022556 -0.0020635 -0.0020635 
α  lower wall permeable and upper wall impermeable 
0.4 1.28569E-4 -4.84811E-4 -3.5624E-4 -3.5624E-4 
0.8 2.69952E-4 -0.0012317 -9.6174E-4 -9.6174E-4 
1.2 2.94069E-4 -0.0017429 -0.0014489 -0.0014489 
1.6 2.51804E-4 -0.0020586 -0.0018068 -0.0018068 
2.0 1.92032E-4 -0.0022556 -0.0020635 -0.0020635 
β  combined homogeneous and heterogeneous wall conditions 
2 2.86083E-6 2.86083E-6 5.72166E-6 5.72166E-6 
4 2.78912E-6 2.78912E-6 5.57824E-6 5.57824E-6 
6 2.75983E-6 2.75983E-6 5.51967E-6 5.51967E-6 
8 2.74392E-6 2.74392E-6 5.48783E-6 5.48783E-6 

10 2.73392E-6 2.73392E-6 5.46783E-6 5.46783E-6 
 

Table 2b. Values of volumetric flow rate in the presence of porous matrix. 

Two fluid model (present model) One fluid model 
Rudraiah and Ng (2007) 

1Q  2Q  Q Q  
homogeneous impermeable wall conditions 

-3.30916E-6 -3.30916E-6 -6.61833E-6 -6.61833E-6 
lower wall impermeable and upper wall permeable 

-2.94435E-4 0.00151776 0.00122333 0.00122333 
lower wall permeable and upper wall impermeable 

-2.94435E-4 0.00151776 0.00122333 0.00122333 
combined homogeneous and heterogeneous wall conditions 

-2.95774E-6 -2.95774E-6 -5.91549E-6 -5.91549E-6 
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Table 3a. Values of effective diffusion coefficient for pure viscous fluid. 

 Two fluid model (present model) One fluid model  
Gupta and Gupta (1972) 

 ( )1 1 2,F α α  ( )2 1 2,F α α  ( )1 2,F α α  ( )F α  
β  homogeneous impermeable wall conditions 
0.4 0.00104154 0.00104154 0.00208308 0.00208308 
0.8 9.94588E-4 9.94588E-4 0.00198918 0.00198918 
1.2 9.25165E-4 9.25165E-4 0.00185033 0.00185033 
1.6 8.42935E-4 8.42935E-4 0.00168587 0.00168587 
2.0 7.56654E-4 7.56654E-4 0.00151331 0.00151331 

 

β  combined homogeneous and heterogeneous wall conditions 
2 8.48463E-4 8.48463E-4 0.001697 0.001697 
4 8.30289E-4 8.30289E-4 0.001661 0.001661 
6 8.22866E-4 8.22866E-4 0.001646 0.001646 
8 8.18832E-4 8.18832E-4 0.001638 0.001638 

10 8.16298E-4 8.16298E-4 0.001633 0.001633 
 1Q  2Q  Q Q

 
 

Table 3b. Values of volumetric flow rate for pure viscous fluid. 

Two fluid model (present model) One fluid model 
Gupta and Gupta (1972) 

1Q  2Q  Q  Q  
homogeneous impermeable wall conditions 

-9.62087E-4 -9.62087E-4 -0.0019242 -0.0019242 
combined homogeneous and heterogeneous wall conditions 

-9.62087E-4 -9.62087E-4 -0.0019242 -0.00174605 
 
 
5. Conclusions  
 
 The problem of solute dispersion of a solute for composite porous medium between two parallel plates was studied using 
Taylor’s dispersion model in the presence of first-order homogeneous and heterogeneous chemical reaction. Effective dispersion 
coefficient and volumetric flow rate were obtained for three different types of boundary conditions such as insulating, insulating-
permeable and permeable-insulating wall conditions for homogeneous chemical reaction and also for combined effect of 
homogeneous and heterogeneous chemical reactions. 
The results obtained for insulating homogeneous first-order chemical reactions were: 

1. As the homogeneous reaction rate parameter increases the effective dispersion coefficient decreases for all values of 
viscosity ratio, pressure gradients and porous parameter. 

2. The effective dispersion coefficient increases as viscosity ratio and pressure gradient ( 0p >  and 0p < ) increases. 
3. The effect of porous parameter for soil, silica grains and wire cramps was to reduce the concentration which is the similar 

result obtained experimentally by Harleman et al. 1963. Further it was also observed that concentration distribution was 
high for air when compared to water.  

The result obtained for homogeneous impermeable-permeable wall boundary conditions were: 
1. As the homogeneous reaction rate parameter increases the effective dispersion coefficient decreases for any values of 

viscosity ratio, pressure gradient ( )0p >  and porous parameter. For values of 0p < , the effective dispersion coefficient 
increases as α  increases. 

2. The effective dispersion coefficient decreases as the viscosity ratio and pressure gradient increases whereas it increases as 
the porous parameter increases. 

3. The effect of porous parameter on the concentration for soil, silica grains and wire cramps were not effective when 
compared to insulating wall boundary conditions. The distribution of concentration for water is less when compared to 
air. 

The results obtained for homogeneous permeable-impermeable wall boundary conditions were: 
1. The effect of viscosity ratio, pressure gradient and porous parameter on the homogeneous reaction rate parameter is 

similar to impermeable-permeable wall conditions. 
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2. As the viscosity ratio increases F  also increases. The effect of effect of pressure gradient and porous parameter on F  is 
the similar result obtained for impermeable-permeable wall conditions. 

3. The effect of porous parameter on the concentration for soil, silica grains and wire cramps were not effective when 
compared to insulating wall boundary conditions.  The distribution of concentration for air is less when compared to 
water. 

The results obtained for heterogeneous first-order chemical reactions were: 
1. As the wall catalytic parameter increases the effective dispersion coefficient decreases for any value of viscosity ratio, 

pressure gradient and porous parameter. 
2. The effective dispersion coefficient decreases as viscosity ratio m  and porous parameter σ  increases. The effective 

dispersion coefficient decreases for 1p <  and increases for 1p >  as pressure gradient p  increases. 
3. The effect of porous parameter on the concentration for soil, silica grains and wire cramps for air and water showed the 

similar nature obtained for homogeneous insulating wall conditions. 
 The volumetric flow rate increases in magnitude as the viscosity ratio and porous parameter increases for small values 
and then remained invariant for large values for both homogeneous and heterogeneous wall boundary conditions. 
 The effective dispersion coefficient and volumetric flow rate for two fluid model in the presence of porous matrix (present 
model) agree very well with the results of Rudraiah and Ng (2007) for one fluid model. To further justify the results, the problem 
was also solved in the absence of porous parameter for two fluid model and the results were in good agreement with results of 
Gupta and Gupta (1972) for one fluid model. 
 
Nomenclature 

iC  concentration of the solute ( )-3kg m        

iD  molecular diffusion coefficient   
D  ratio of molecular diffusion coefficient  ( )2 1/D D         

h  distance between the plates ( )m  

iK  first-order reaction rate constant ( )-3 -1
1 1K C / mol m s  

L  typical length along the flow direction ( )m  

iQ  volumetric flow rate   

iU         velocity ( )-1ms         

iu      non-dimensional average velocity 

iu          non-dimensional velocity   

i

i

dP
dX

 pressure gradient ( )-2Nm            

m  viscosity ratio ( )2 1μ μ  

n  density ratio ( )1 2ρ ρ  

ip  non-dimensional  pressure gradient 
Greek symbols  
η  dimensionless length 

,i iα β    dimensionless reaction rate parameters    

 iμ  dynamic viscosity ( )-1 -1kg m s    

 iκ  permeability of the porous medium ( )2m  

iσ          porous parameter ( )ih κ  

iρ  density of the fluid ( )-3kg m  
 
Subscripts 

1,2i =  where 1, 2 –quantities for region-1 and region-2, respectively. 
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Appendix 
Case 1:  Diffusion with a homogeneous first-order chemical reaction 
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cosh cosh cosh cosh

cosh sinh sinh cosh

p mnp p m n p

a
m n m n

σ σ σ σ σ
σ σ σ σ

σ σ σ σ σ σ

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

+
; 2

3 4 2 2
2 2

1 sinh
cosh

p
a a σ

σ σ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

;   
2

2
2 4

1

m na aσ
σ

= ;  

( ) 1
1 2 1 2

1 1

1 sinh
cosh

p
a a σ

σ σ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

; ( )1
1 1 22

1

p
l u u

σ
−

= − + ;      ( )2
2 1 22

2

p
l u u

σ
−

= − + .  

Concentration distribution with impermeable wall conditions 

1 1 1 2 1 1
1 2 2 2 2

1 1 1 1

sinh cosha a
g

σ σ σ σ
σ α σ α

= − +
− −

; 3 2 2 4 2 2
2 2 2 2 2

2 2 2 2

sinh cosha a
g

σ σ σ σ
σ α σ α

= +
− −

; 1 1
3 2 2 2

1 1 1

a l
g

σ α α
= −

−
;    3 2

4 2 2 2
2 2 2

a l
g

σ α α
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
;   

2 1
5 2 2

1 1

a
g

σ
σ α

=
−

;   2 4
6 2 2

2 2

D a
g

σ
σ α

= −
−

; 
2

1
1

1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
 

1 1 11 2 12b Z b Z b= + ; 2 1 21 2 22b Z b Z b= + ; 3 1 31 2 32b Z b Z b= + ; 4 1 41 2 42b Z b Z b= + ; 

( ) ( ) ( ) ( )2
1 2 1 2 2 2 1Dr= sinh cosh sinh coshDα α α α α α α+ ; 

( ) ( ) ( ) ( ) ( )( )41 3 1 2 1 2 5 2 1 2 1 2 2
1 sinh sinh cosh sinh sinh

Dr
b g g gα α α α α α α α α−

= − + ; 

( ) ( ) ( ) ( ) ( )( )42 2 1 2 4 1 2 1 2 6 2 1 2
1 sinh sinh sinh cosh sinh

Dr
b g g gα α α α α α α α α−

= + − ; 

( )
( )

41 2
31

2

cosh
sinh

b
b

α
α

−
= ; 

( )
( )

42 2 2 2
32

2 2

cosh
sinh

b g
b

α α
α α

− −
= ; 11 31 3b b g= − ; 12 32 4b b g= − ; 

( )
( )

11 1 1 1
21

1 1

sinh
cosh

b g
b

α α
α α

−
= ; 

( )
( )

12 1
22

1

sinh
cosh

b
b

α
α

= . 

Concentration distribution with lower wall impermeable and upper wall permeable wall conditions. 

1 1 1 2 1 1
1 2 2 2 2

1 1 1 1

sinh cosha a
g

σ σ σ σ
σ α σ α

= − +
− −

; 3 2 4 2 2
2 2 2 2 2 2

2 2 2 2 2

cosh sinha a l
g

σ σ
σ α σ α α

= + −
− −

; 1 1
3 2 2 2

1 1 1

a l
g

σ α α
= −

−
;    3 2

4 2 2 2
2 2 2

a l
g

σ α α
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
;   

2 1
5 2 2

1 1

a
g

σ
σ α

=
−

;   2 4
6 2 2

2 2

D a
g

σ
σ α

= −
−

; 
2

1
1

1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
; ( ) ( ) ( ) ( )1 1 2 2 1 2Dr= sinh sinh cosh coshDα α α α α α+ ; 

1 1 11 2 12 1cb Z b Z b b= + + ; 2 1 21 2 22 2cb Z b Z b b= + + ;  3 1 31 2 32 3cb Z b Z b b= + + ; 4 1 41 2 42 4cb Z b Z b b= + + ; 

( ) ( ) ( ) ( ) ( )( )41 3 1 1 2 5 1 2 1 2
1 sinh cosh cosh cosh cosh

Dr
b g g gα α α α α α−

= − + ; 

( ) ( ) ( ) ( ) ( )( )42 2 1 1 4 1 1 2 6 1 2
1 sinh sinh cosh cosh cosh

Dr
b g g gα α α α α α α−

= + − ; 
( )1 1

4

sinh
Drcb

α α
= ; 

( )
( )

41 2
31

2

sinh
cosh
b

b
α

α
−

= ;  

( )
( )

42 2 2
32

2

sinh
cosh

b g
b

α
α

− −
= ; 

( )
( )

4 2
3

2

sinh 1
cosh
c

c

b
b

α
α

− +
= ; 11 31 3b b g= − ; 12 32 4b b g= − ; 1 3c cb b= ; 

( )
( )

11 1 1 1
21

1 1

sinh
cosh

b g
b

α α
α α

−
= ;  

( )
( )

12 1
22

1

sinh
cosh

b
b

α
α

= ; 
( )
( )

1 1
2

1

sinh
cosh
c

c

b
b

α
α

= . 

Concentration distribution with lower wall permeable and upper wall impermeable wall conditions. 

1 1 2 1 1
1 2 2 2 2 2

1 1 1 1 1

cosh sinha a l
g

σ σ
σ α σ α α

= − −
− −

; 3 2 2 4 2 2
2 2 2 2 2

2 2 2 2

sinh cosha a
g

σ σ σ σ
σ α σ α

= +
− −

; 1 1
3 2 2 2

1 1 1

a l
g

σ α α
= −

−
;    3 2

4 2 2 2
2 2 2

a l
g

σ α α
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
; 

2 1
5 2 2

1 1

a
g

σ
σ α

=
−

; 2 4
6 2 2

2 2

D a
g

σ
σ α

= −
−

; 
2

1
1

1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
; ( ) ( ) ( ) ( )2

2 2 1 2 2 1Dr= cosh cosh sinh sinhDα α α α α α+ ; 

1 1 11 2 12 1cb Z b Z b b= + + ; 2 1 21 2 22 2cb Z b Z b b= + + ; 3 1 31 2 32 3cb Z b Z b b= + + ; 4 1 41 2 42 4cb Z b Z b b= + + ; 

( ) ( ) ( ) ( ) ( )2
41 3 2 1 2 5 2 1 1 2 2

1

1 cosh sinh sinh sinh sinh
Dr

b g g g
α

α α α α α α α
α

⎛ ⎞−
= − −⎜ ⎟

⎝ ⎠
; 
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( ) ( ) ( ) ( ) ( )2
42 2 1 4 2 1 2 6 2 1

1

1 cosh cosh sinh sinh sinh
Dr

b g g g
α

α α α α α α
α

⎛ ⎞−
= − −⎜ ⎟

⎝ ⎠
; 

( )2 2
4

sinh
Drcb

α α−
= ; 

( )
( )

41 2
31

2

cosh
sinh

b
b

α
α

−
= ; 

( )
( )

42 2 2 2
32

2 2

cosh
sinh

b g
b

α α
α α

− −
= ; 

( )
4

3
2 2sinh

c
c

b
b

α α
−

= ; 11 31 3b b g= − ; 12 32 4b b g= − ; 1 3c cb b= ; 
( )
( )

11 1 1
21

1

cosh
sinh

b g
b

α
α

+
= ; 

( )
( )

12 1
22

1

cosh
sinh

b
b

α
α

= ; 
( )
( )

1 1
2

1

cosh 1
sinh

c
c

b
b

α
α

−
= . 

Case 2   Diffusion with combined homogeneous and heterogeneous first-order chemical reaction 

1 1 1 2 1 1
1 2 2 2 2

1 1 1 1

sinh cosha a
g

σ σ σ σ
σ α σ α

= − +
− −

; 3 2 2 4 2 2
2 2 2 2 2

2 2 2 2

sinh cosha a
g

σ σ σ σ
σ α σ α

= +
− −

; 1 1
3 2 2 2

1 1 1

a l
g

σ α α
= −

−
;    3 2

4 2 2 2
2 2 2

a l
g

σ α α
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
;   

2 1
5 2 2

1 1

a
g

σ
σ α

=
−

;   2 4
6 2 2

2 2

D a
g

σ
σ α

= −
−

; 
2

1
1

1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
; 

( ) ( )1 1 2 1 1
1 1 1 2 2 2 2 2

1 1 1 1 1

cosh sinha a l
f g

σ σ
β

σ α σ α α
⎛ ⎞

= − − −⎜ ⎟
− −⎝ ⎠

; 

( ) ( )3 2 4 2 2
2 2 2 2 2 2 2 2

2 2 2 2 2

cosh sinha a l
f g

σ σ
β

σ α σ α α
⎛ ⎞

= + + −⎜ ⎟
− −⎝ ⎠

; 
2

1
1

1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
; 1 1 11 2 12b Z b Z b= + ; 2 1 21 2 22b Z b Z b= + ; 

3 1 31 2 32b Z b Z b= + ; 4 1 41 2 42b Z b Z b= + ; 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2
2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

1

Dr= cosh sinh sinh cosh cosh sinh sinh cosh
Dα

α α β α α α β α α α β α α α β α
α

+ + + + + ;  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )5
41 3 1 1 1 1 1 1 1 1 1 2 2 2 2

1

1 sinh cosh cosh sinh sinh cosh
Dr

g
b g fα α β α α α β α α α β α

α
⎛ ⎞−

= + − + + +⎜ ⎟
⎝ ⎠

; 

( ) ( )( ) ( ) ( )( )6
42 2 4 2 2 2 2 1 1 1 1

1

1 sinh cosh sinh cosh
Dr

g
b f g α α β α α α β α

α
⎛ ⎞⎛ ⎞−

= + − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
; 

( ) ( )( )
( ) ( )( )

41 2 2 2 2
31

2 2 2 2

cosh sinh
sinh cosh

b
b

α α β α

α α β α

− +
=

+
; 

( ) ( )( )
( ) ( )( )

42 2 2 2 2 2
32

2 2 2 2

cosh sinh
sinh cosh

b f
b

α α β α

α α β α

− + −
=

+
; 11 31 3b b g= − ; 12 32 4b b g= − ; 

( ) ( )( )
( ) ( )( )

11 1 1 1 1 1
21

1 1 1 1

sinh cosh
cosh sinh

b f
b

α α β α

α α β α

+ −
=

+
; 

( ) ( )( )
( ) ( )( )

12 1 1 1 1
22

1 1 1 1

sinh cosh
cosh sinh

b
b

α α β α

α α β α

+
=

+
. 

Case 3: The channel filled with porous matrix (one fluid model) 
Concentration distribution with homogeneous impermeable wall conditions   

( ) ( )1 2 2 2 cosh
pl

σ σ α σ
=

−
;  

( )
2 3 2

tanhp
l

σ
σ α

= ; 
( )
( )

1
1

sinh
sinh

l
b

σ σ
α α

= − . 

 
Concentration distribution with lower wall impermeable and upper wall permeable wall conditions. 

( ) ( )1 2 2 2 cosh
pl

σ σ α σ
=

−
; 

( )
2 3 2

tanhp
l

σ
σ α

= ; 
( )

( )
2 1

1

cosh sinh( )
sinh

b l z
b

α α σ σ
α α

−
= ; 

1 2
2

( cosh( )sinh( ) sinh( )cosh( )) ( 1) sinh( )
cosh(2 )

l z l z
b

α σ α σ σ α α α
α α

− + −
= − . 

Concentration distribution with lower wall permeable and upper wall impermeable wall conditions. 

( ) ( )1 2 2 2 cosh
pl

σ σ α σ
=

−
; 

( )
2 3 2

tanhp
l

σ
σ α

= ; 
( )

( )
2 1 2

1

sinh cosh( ) 1
cosh

b l z l z
b

α σ
α

− − +
= ;  

1 2 1
2

( cosh( ) 1) sinh( ) sinh( )cosh( )
cosh(2 )

l z l z l z
b

σ α α σ σ α
α α

+ − −
= ; 

2h CZ
DL ξ

∂
=

∂
. 

Concentration distribution with heterogeneous impermeable wall conditions   

( ) ( )1 2 2 2 cosh
pl

σ σ α σ
=

−
; 

( )
2 3 2

tanhp
l

σ
σ α

= ; 1 1 2
1

sinh( ) ( cosh( ) )
sinh( ) cosh( )

l z l z l z
b

σ σ β σ
α α β α

− −
=

+
 ; 2 0b = . 
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Case 4a: Effect of homogeneous and heterogeneous reactions on the dispersion of solute in the absence of porous matrix 
(two fluid model). 

2
1 4 2

p
a a= − + ; 2 4a m n a= ; 2

3 4 2
p

a a= − − ; 
( ) ( )

1 2
4 2 1 2 1

p p m
a

m n m m
− −

= −
+ +

; 31 1 2
1 2 4

1
2 6 2 6 2

ap a p
lc a a⎛ ⎞= − − − + + +⎜ ⎟

⎝ ⎠
; 

31 1 2
2 2 4

1
2 6 2 6 2

ap a plc a a⎛ ⎞= − − + + + −⎜ ⎟
⎝ ⎠

; 1
1 2

12
p

l
α
−

= ; 1
2 2

1

a
l

α
−

= ; 1 1
3 2 4

1 1

lc p
l

α α
= − − ; 2

4 2
22

p
l

α
−

= ; 3
5 2

2

a
l

α
−

= ; 2 2
6 2 4

2 2

lc p
l

α α
= − − ; 

2
1

1
1 1

ChZ
D L ξ

∂
=

∂
; 

2
2

2
2 2

ChZ
D L ξ

∂
=

∂
; 1 1 11 2 12b Z b Z b= + ; 2 1 21 2 22b Z b Z b= + ; 3 1 31 2 32b Z b Z b= + ; 4 1 41 2 42b Z b Z b= + ; 

( ) ( ) ( ) ( )2
1 2 1 2 2 2 1Dr= sinh cosh sinh coshDα α α α α α α+ ; 

( ) ( ) ( ) ( ) ( )( )( )41 3 1 2 1 2 2 2 1 2 2 2 2 1
1 sinh sinh cosh sinh sinh 2

Dr
b l l l lα α α α α α α α α−

= − + − ; 

( ) ( ) ( ) ( ) ( ) ( )( )42 1 2 5 4 6 1 2 1 2 5 2 1 2
1 sinh 2 sinh sinh cosh sinh

Dr
b l l l l Dα α α α α α α α α−

= + − + ; 

( )
( )

41 2
31

2

cosh
sinh

b
b

α
α

−
= ; 

( )
( )

42 2 2 4 5
32

2 2

cosh 2
sinh

b l l
b

α α
α α

− − −
= ; 11 31 3b b l= − ; 12 32 6b b l= + ; 

( )
( )

11 1 1 1 2
21

1 1

sinh 2
cosh

b l l
b

α α
α α

+ −
= ; 

( )
( )

12 1
22

1

sinh
cosh

b
b

α
α

= . 
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