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Abstract 
 
   Laminated composite plate structures find numerous applications in aerospace, military and automotive industries. The role of 
transverse shear is very important in composites, as the material is weak in shear due to its low shear modulus compared to 
extensional rigidity. Hence, an accurate understanding of their structural behaviour is required, such as deflections and stresses. 
In this paper, a number of finite element analyses have been carried out for various side-to-thickness ratios, aspect ratios and 
modulus ratios to study the effect of transverse shear deformation on deflection and stresses of laminated composite plates 
subjected to uniformly distributed load. The numerical results showed, on the deflections and stresses, that the effect of coupling 
is to decrease the deflections with the increase in the aspect ratio and modulus ratio and increase the stresses with the increase in 
the side-to-thickness ratio and modulus ratio. 
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1. Introduction 
   
   Laminated composite materials are increasingly being used in a large variety of structures including aerospace, marine and civil 
infrastructure owing to the many advantages they offer: high strength/stiffness for lower weight, superior fatigue response 
characteristics, facility to vary fiber orientation, material and stacking pattern, resistance to electrochemical corrosion, and other 
superior material properties of composites. At the same time, the fabricated material poses new problems, such as failure due to 
delamination and pronounced transverse shear effects due to the high ratio of in-plane modulus to transverse shear modulus ((Kant 
et al, 1998; Zhang and Yang, 2009). An accurate understanding of their structural behaviour is required, such as the deflections, 
the through thickness distributions of stresses and strains, the large deflection behaviour and, of extreme importance for obtaining 
strong, reliable multi-layered structures. The finite element method is especially versatile and efficient for the analysis of complex 
structural behaviour of the composite laminated structures. 
   In the past, the structural behavior of plates and shells using the finite element method has been studied by a variety of 
approaches. Choudhary and Tungikar (2011) analyzed the geometrically nonlinear behavior of laminated composite plates using 
the finite element analysis. They studied the effect of number of layers, effect of degree of orthotropy (both symmetric and 
antisymmetric) and different fibre orientations on central deflections. Ganapathi  et al. (1996) presented an eight-node C0 
membrane-plate quadrilateral finite element-based on the Reissner–Mindlin plate theory to analyse moderately large deflection, 
static and dynamic problems of moderately thick laminates including buckling analysis and membrane-plate coupling effects. Han 
et al. (1994) used the hierarchical finite element method to carry out the geometrically nonlinear analysis of laminated composite 
rectangular plates. Based on the first-order shear deformation theory and Timoshenko’s laminated composite beam functions, the 
current authors developed a unified formulation of a simple displacement based 3-node, 18degree-of-freedom flat triangular 
plate/shell element (Zhang and Kim, 2005) and two simple, accurate, shear-flexible displacement based 4-node quadrilateral 
elements (Zhang and Kim, 2004, 2006) and for linear and geometrically nonlinear analysis of thin to moderately thick laminated 
composite plates. The deflection and rotation functions of the element boundary were obtained from Timoshenko’s laminated 
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composite beam functions. Reddy et al. (2012) applied the artificial neural networks (ANN) in predicting the natural frequency of 
laminated composite plates under clamped boundary condition. They used the D-optimal design in the design of experiments to 
carry out the finite element analysis. Wen  et al. (2010a,b,c) used the finite element method to predict the damage level of the 
materials. They studied the prediction of the elastic-plastic damage and creep damage using Gurson model and creep damage 
model, which is based on the Kachanov-Rabothov continuum creep damage law. They also studied the creep damage properties of 
thin film/substrate systems by bending creep tests and carried the Simulation of the interface characterization of thin film/substrate 
systems. 
   Khoa and Thinh (2007) developed a rectangular non-conforming element based on Reddy’s higher order shear deformation plate 
theory to analyze the laminated composite plates. They concluded that, the size of the mesh and the convergence of the method is 
involved by thickness ratio (h/a). A procedure for the reliability analysis of laminated composite plate structures with large 
rotations but moderate deformation under random static loads was presented via a corotational total Lagrangian finite element 
formulation which was based on the Von Karman assumption and first-order shear deformation theory (Kam et al, 1993). Based on 
a higher-order shear deformation theory involving four dependent unknowns and satisfying the vanishing of transverse shear 
stresses at the top and bottom surfaces of the plate, geometrically nonlinear flexural response characteristics of shear deformable 
asymmetrically laminated rectangular plates were investigated using a four-node rectangular C1 continuous finite element having 
14 degrees of freedom per node (Singh et al, 1994). Polit and Touratier (2002) used a high-order plate model which exactly 
ensured both the continuity conditions for displacements and transverse shear stresses at the interfaces between layers of a 
laminated structure, and the boundary conditions at the upper and lower surfaces of the plates to study the geometrically nonlinear 
behaviour of multi-layered plates, and based on this refined plate model, a six-node C1 conforming displacement-based triangular 
finite element was developed, with the Argyris interpolation used for transverse displacement, the Ganev interpolation used for 
membrane displacements and transverse shear rotations, and the transverse shear strain distributions represented by cosine 
functions.  
   Zinno and Barbero (1995) developed a three-dimensional element with two-dimensional kinematic constraints for the geometric 
nonlinear analysis of laminated composite plates using a total Lagrangian description and the principle of virtual displacements. 
Sridhar and Rao (1995) studied the large deformation analysis of circular composite laminated plates using a 48 degrees of 
freedom (DOF) four-node quadrilateral laminated composite shell finite element. Civalek et al. (2011) presented the nonlinear 
static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic 
nonlinearity. They used the first-order shear deformation theory (FSDT) for plate formulation and investigated the effects of 
foundation and geometric parameters of plates on nonlinear deflections. Dharma Raju and Suresh Kumar (2011) developed the 
analytical procedure to investigate the bending characteristics of anti-symmetric and cross ply laminated composite plates based on 
a higher order shear displacement model with zig-zag function. They concluded that the effect of bending-stretching-coupling is 
significant for all modulus ratios except for those close to unity on anti-symmetric angle-ply laminated composite plates of same 
thickness of any number of layers. Zhang and Zhang (2011) investigated the global bifurcations and multi pulse chaotic dynamics 
of a simply supported laminated composite piezoelectric rectangular thin plate under combined parametric and transverse 
excitations. To analyze the complex nonlinear dynamic behaviour of the laminated composite piezoelectric rectangular thin plate 
they used phase portraits and Lyapunov exponents. Transverse bending of shear deformable laminated composite plates in Green–
Lagrange sense accounting for the transverse shear and large rotations are presented by Singh and Dash (2010).   
   Salehi and Falahatgar (2010) studied the geometrically non-linear behavior of unsymmetrical, fiber-reinforced, laminated, 
annular sector composite plates. They applied the first order shear deformation theory to the von Karman type non-linear behavior 
of unsymmetrically, laminated, annular sector composite plates. Naghipour et al. (2008) performed the numerical simulations of 
laminated composite plates to decrease the weight of Military Mobile Bridges (MMB) using first order shear deformation theory 
and classical laminate plate theory. They studied the effects of fiber orientation, number of layers and stiffness ratio on the 
displacement and stress response of symmetric and anti-symmetric laminated composite plates subjected to uniform pressure 
loads. Tahani and Naserian Nik (2009) developed an analytical method for bending analysis of laminated composite plates with 
arbitrary lamination and boundary conditions within the displacement field of a first-order shear deformation theory (FSDT), they 
also employed the Levy-type solution in order to demonstrate the accuracy of the developed method.  
   Our previous study (Reddy et al, 2011) employed a distance-based optimal design in the design of experimental techniques and 
artificial neural networks to optimize the stacking sequence for a sixteen ply simply supported square laminated composite plate 
under uniformly distributed load (UDL) for minimizing the deflections and stresses using finite element method. The Present work 
is concerned with the bending analysis of a simply supported composite laminated plate under uniformly distributed load for 
various aspect ratios (a/b), modulus ratios (E1/E2) and side-to-thickness ratios (a/h) using finite element method. 
 
2. Geometry of the shell element 
 
   In ANSYS software, there are many element types available to model layered composite materials. In our FE analysis, the linear 
layered structural shell element is used.  It is designed to model thin to moderately thick plate and shell structures with a side-to-
thickness ratio of roughly 10 or greater. The linear layered structural shell element allows a total of 250 uniform-thickness layers. 
Alternatively, the element allows 125 layers with thicknesses that may vary bilinearly over the area of the layer. An accurate 
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representation of irregular domains (i.e. domains with curved boundaries) can be accomplished by the use of refined meshes and/or 
irregularly shaped elements. For example, a non-rectangular region cannot be represented using only rectangular elements; 
however, it can be represented by triangular and quadrilateral elements. Since, it is easy to derive the interpolation functions for a 
rectangular element, and it is much easier to evaluate the integrals over rectangular geometries than over irregular geometries, it is 
practical to use quadrilateral elements with straight or curved side assuming you have a means to generate interpolation functions 
and evaluate their integrals over the quadrilateral elements (Reddy, 1997). The linear layered structural shell element is shown in 
Figure 1. Nodes are represented by  I, J, K, L, M, N, O, and P. 

 
Figure 1. Geometry of 8-node element with six degrees of freedom  

 
2.1. 2-D 8-Node quadrilateral shell displacement function 
The displacement equations are given as 
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where:  Si = shape functions,  u i , v i , w i = motion of node i; r = thickness coordinate t i = thickness at node i ; {a} = unit vector in 
s direction ; {b} = unit vector in plane of element and normal to {a};  θ x,i = rotation of node i about vector {a} ; θ y,i = rotation of 
node i about vector {b}. Note that the nodal translations are in global Cartesian space, and the nodal rotations are based on the 
element (s-t) space. 
2.2. Stress-strain relationship 
According to Hooke’s law, The stress is related to the strains by  

{ } }]{[ εσ D=  or }{1][ σε −= D                                                                                                                                                         (2) 

Where Error! Bookmark not defined.Total strain vector = T
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Where  Ex= Young’s modulus in the x-direction;  Ey= Young’s modulus in the y-direction 
            Ez= Young’s modulus in the z-direction;  xyυ =major Poisson’s ratio; yxυ =minor Poisson’s ratio;  

xzυ =Major poi; on’s ratio X-Z plane;=shear modulus in the xy plane 

Also, the [D]-1 matrix is presumed to be symmetric, so that: 
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, and   

Expanding Eq. (2) with Eq.(3), the strain equations are obtained as 
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Where xε =direct strain in the x-direction; yε =direon strain in the x-direction; xyε =shear strain in the x-y plane 

xσ =direct stress in the x-direction; yσ =direct stress in the x-direction; xyσ =shear stress on the x-y plane and 

 { }σ =stress vector=[σx  σy  σxy σyz σxz]T 

[D]= elasticity or elastic stiffness matrix or stress-strain matrix and is defined in Eq. (4) through Eq.(7) or inverse is defined in 
Eq.(3) 
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By integrating the stresses through the plate thickness, we obtain the generalized force –strain relation and moment-curvature 
relationships for a linear variation of strain through the thickness of the plate and may be defined as  
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Where N =In-plane force resultants per unit length=[Nx, Ny, Nxy]; M=Bending moments per unit length=[Mx, My, Mxy] 
A=Extensional stiffness matrix, relates in-plane forces to the in-plane strains 
B=Coupling stiffness matrix, which couples the forces and moments to the mid-plane strain-curvature. 
D=Bending moment stiffness matrix which relates bending moments to the plate curvature. 
ε =Membrane strains; K= Curvature strains 
The in-plane force and moment resultants per unit length are computed as 
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The values of A, B and D matrix are evaluated with the material properties (E1, E2, E3, υ12, υ23, υ13, G12, G23, and G13). For details 
see (Reddy, 1997). 
2.3. Validation of linear layered structural shell element- case study   
In order to validate the usage of the linear layered structural shell element, a numerical example is solved in static analysis. The 
boundary condition is simply supported and the geometry and material properties are as follows: 
E1/E2=40, G12=G13=0.6E2, G23=0.5E2, 25.012 =υ , a/h=10, a=10. q=1.0. The center deflection and stresses are presented here in 
non-dimensional form using the following: 
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Table 1 and Table 2 represent the mesh convergence study and comparison of results of non-dimensional displacement obtained 
from Reddy (1997) and the ANSYS computer program. The results using a free mesh show an excellent correlation to the results 
given by Reddy (1997).  
 

Table 1. Nondimensional displacement of composite plates (cross- ply) 

 
3. Finite Element Analsysis 
 
   The physical structure that was used in this work is a fibre reinforced composite plate, shown in Figure 2. The length (a) and 
width (b) of the plate is 250mm and thickness (h) of the plate is 25mm. A number of analyses are performed in this design study, 
using a finite element model of the plate. The model was developed using 1600 linear layered structural shell elements in ANSYS 
10.0. The global x-coordinate is taken along the length of the plate; the global y-coordinate is taken along the width of the plate 
while the global z-direction is taken out the plate surface. There are 40 elements in the axial direction and 40 along the width one. 
In this Finite element analysis, all the sides are constrained in the Z direction only. The pressure applied on the plate is 1N/mm2.  
In this study, sixteen ply ([45/-45/45/-45/-45/90/45/0] s) symmetric laminated composite plate (Reddy et al., 2011) is considered in 
the analysis. The plate is analyzed for deflections and stresses under a simply supported boundary condition when the plate is 
subjected to a uniformly distributed load working along the Z - direction for various side-to-thickness ratios (a/h), aspect ratios 
(a/b) and modulus ratios (E1/E2). The centre deflection and stresses are presented here in non-dimensional form using the 
following. 

Mesh  0/90  0/90/0  0/90/90/0 0/90/0/90 
2 × 2  14.222  6.8178  6.5423  6.7662 
4 × 4  14.478  -  6.7402  6.9897 
10×10  14.488  6.9904  -  6.9965 
20×20  14.488  6.9905  6.7459  6.9966 
40 × 40  14.475  6.9857  6.7405  6.9904 
FSDT (Reddy) 14.069  6.919  6.682  6.9260 
Difference (%) 2.8857  0.9640  0.8754                0.929 

 
Table 2. Nondimensional displacement of composite plates (θ/- θ/ θ/- θ) 

Mesh  5  15 
2 × 2  6.7716  6.3811 
4 × 4    -  6.6625 
10×10  6.9652        - 
20×20       -  6.6668 
40 × 40  6.9623  6.6631 
FSDT (Reddy) 6.741  6.086 
Difference (%) 3.2828  9.4824 



Reddy et al./ International Journal of Engineering, Science and Technology, Vol. 4, No. 2, 2012, pp. 177-190 

 

182

 

 
Figure 2. Uniformly loaded simply supported composite plate 

 
The material properties used throughout this study are shown in Table 3 (Baker et al., 2004).  

 
Table 3. Material properties (Boron/epoxy) 

 
 

 
 
 
 
4. Results and discussion 
 
   The classical plate/shell theory which is adequate only for thin shells. However, the linear layered structureal shell element 
allows to model thin to moderately thick plate and shell structures with a side-to-thickness ratio of roughly 10 or greater. The plate 
studied here is 25 mm thick and especially for a/h=10 to 40, the thin shell model as well as element should not be used. Since in 
thick plates, the bending and through-thickness transverse shear stresses are dominant than membrane stress, which are not 
captured by the thin plate model where the thickness and out of plane stresses are assumed negligible. 
The linear layered structural shell element is used to study the effect of transverse shear deformation, material orthotropy and 
aspect ratio on nondimensional maximum transverse deflections and stresses of a sixteen ply simply supported symmetric 
laminated composite plate under uniformly distributed load. The results obtained for deflections and stresses from the finite 
element analysis are plotted in nondimensional quantities as a function of aspect ratios (a/b), modulus ratios (E1/E2) and side-to-
thickness ratios (a/h).  In the analysis, the length of the plate and young modulus in the x-direction is changed. Figures 3 to 6 show 
the effect of bending-stretching coupling and plate aspect ratio on the transverse deflections ( w ), normal stresses and shear 
stresses (

x
σ ,

y
σ  and 

xy
τ ). It is observed that the non-dimensional deflection is maximum for E1/E2 =1 (and aspect ratio=1), and 

the minimum for E1/E2=11 (and aspect ratio=5). This is due to the fact that, as the Young’s modulus of the material increases, the 
effect of coupling is to decrease the deflections and stresses. The coupling coefficients increase in magnitude (hence the effect of 
coupling increases) with the increase of the modulus ratio for deflections ( w ) and decrease of the modulus ratio for stresses and 
also, the effect of coupling on deflections is quite significant for aspect ratio less than 3 and is negligible for all values of a/b 
greater than 3. The effect of coupling is to decrease the stresses with the increase in aspect ratios. The stresses (

x
σ ,

y
σ  and 

xy
τ ) 

are (maximum at E1/E2 =11 (and aspect ratio=1) and minimum at E1/E2 =1( and aspect ratio=5). This is because the plate area 
increases as the aspect ratio increases and hence, the applied load per unit area decreases. Figures 7 to 10 show the effect of the 
transverse shear deformation and bending extensional coupling and material orthotropy on transverse deflections of a simply 
supported sixteen ply symmetric laminated composite plate under uniformly distributed load. The degree of orthotropy has less 
influence on the deflections for larger modulus ratios and has considerable influence on the stresses.  The effect of transverse shear 
deformation is to decrease the deflections and increase stresses with the increase in the modulus ratio and side-to-thickness ratio. It 
is observed that, the non-dimensional deflection is maximum for side to thickness ratio is 10 (and E1/E2 =1), and minimum of side 
to thickness ratio is 40 (and E1/E2=11). This is due to the fact that the plate area increases as the side to thickness ratio increases 
and hence, the applied load per unit area decreases. As the Young’s modulus of the material increases, the stresses (

x
σ ,

y
σ  and 

xy
τ ) are maximum at side to thickness ratio is 40 and minimum at 10. This is due to the fact that the modulus ratio is lower at side 

to thickness ratio is equal to 40 and higher at side to thickness ratio is equal to 10. For the selected stacking sequence, for modulus 

 
E1(GPa)         E2(GPa)     E3(GPa)       G12(GPa)      G23(GPa)       G13(GPa)    12υ      23υ       13υ  
_________________________________________________________________________________ 
210            19         19  4.8       4.8  4.8 0.25     0.25      0.25 
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ratio 2 and side to thickness ratio 10, the variation of deflection (mm) and stresses (Sx, Sy and Sxy, N/mm2) plots obtained in 
ANSYS are shown in Fig 11-14. 

Aspect Ratio (a/b)

N
on

-d
im

en
sio

na
l D

isp
la

ce
m

en
t

5.04.54.03.53.02.52.01.51.0

56

52

48

44

40

36

32

28

24

20

16

12

8

4

0

Variable

E1/E2=3
E1/E2=4
E1/E2=5
E1/E2=6
E1/E2=7
E1/E2=8
E1/E2=9
E1/E2=10
E1/E2=11

E1/E2=1
E1/E2=2

 
Figure 3. Nondimensional displacement( w ) versus plate aspect ratio (a/b) for different modulus ratios (E1/E2) 
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Figure 4. Nondimensional Normal stress (

x
σ ) versus plate aspect ratio (a/b) for different modulus ratios (E1/E2) 
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Figure 5. Nondimensional Normal stress (

y
σ ) versus plate aspect ratio (a/b) for different modulus ratios (E1/E2) 
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Figure 6. Nondimensional Shear stress (

xy
τ ) versus plate aspect ratio (a/b) for different modulus ratios (E1/E2) 
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Figure 7. Effect of shear deformation and material orthotropy on transverse deflections of simply supported laminated plate under 

uniformly distributed load 
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Figure 8. Effect of shear deformation and material orthotropy on Normal stress (

x
σ ) of laminated plate under uniformly 

distributed load 
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Figure 9. Effect of shear deformation and material orthotropy on Normal stress (

y
σ ) of laminated plate under uniformly 

distributed load 
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Figure 10. Effect of shear deformation and material orthotropy on shear stress (

xy
τ ) of laminated plate under uniformly 

distributed load 
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Fig 11: variation of central deflection (mm) for modulus ratio 2 and side to thickness ratio 10 

 

 
Fig 12: variation of stress (N/mm 2) in X-direction for modulus ratio 2 and side to thickness ratio 10 
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Fig 13: variation of stress (N/mm 2)  in Y-direction for modulus ratio 2 and side to thickness ratio 10 

 

 
Fig 14: variation of stress (N/mm 2)  in XY-direction for modulus ratio 2 and side to thickness ratio 10 

 



Reddy et al./ International Journal of Engineering, Science and Technology, Vol. 4, No. 2, 2012, pp. 177-190 

 

189

 

5. Conclusions 
 
   A number of analyses are performed in this design study, using a finite element model of the plate for various side-to-thickness 
ratios, aspect ratios and modulus ratios. The model was developed using linear layered structural shell elements in ANSYS 10.0. 
From the results of sixteen ply simply supported symmetric laminated composite plate; it was observed that, the deflections are 
larger for smaller modulus ratios and aspect ratios, the degree of orthotropy has less influence on the deflections for large ratios of 
E1/E2, the effect of shear deformation is to decrease the deflections and increase the stresses with the increase of modulus ratios 
and side-to-thickness ratios. 
 
References 
 
ANSYS ”Theory manual” 2010. 
Baker A., Dutton S.. and Kelly D.. 2004. Composite Materials for Aircraft Structures 2nd  Edition. “American Institute of 

Aeronautics and Astronautics”, Inc.1801, Chapter 8, pp. 240. 
Baltacıoğlu A.K, Civalek Ö, Akgöz B. Demir F.,.2011. Large deflection analysis of laminatedcompositeplates resting on nonlinear 

elastic foundations by the method of discrete singular convolution. International Journal of Pressure Vessels and Piping, Vol. 
88, No. 8–9, pp: 290–300. 

Choudhary S.S. and Tungikar V. B. 2011. A simple finite element for nonlinear analysis of composite plates. International Journal 
of  Engineering Science and Technology, Vol. 3, No.6, pp. 4897-4907. 

Dash P., and Singh B.N.2010. Geometrically nonlinear bending analysis of laminated composite plate. Communications in 
Nonlinear Science and Numerical Simulation, Vol. 15, No. 10,  pp. 3170–3181. 

Dharmaraju T and Suresh Kumar J. 2011. Bending analysis of composite laminated plates using higher-order shear deformation 
theory with zig-zag function. ARPN Journal of Engineering and Applied Sciences. Vol. 6, No. 12, pp.106-110. 

Ganapathi M, Polit O, Touratier M.1996.  C0 eight-node membrane shear-bending element for geometrically non-linear (static and 
dynamic) analysis of laminates. Int J Numer Meth Eng, Vol. 39, No.20, pp. 3453–3474. 

Han Wanmin, Petyt Maurice, Hsiao Kuo-Mo. 1994. Investigation into a geometrically nonlinear analysis of rectangular laminated 
plates using the hierarchical finite element method. Finite Elem Anal Des, Vol.18, No. 1–3, pp. 273–288. 

Kam T.Y, Lin S.C, Hsiao K.M.1993. Reliability analysis of nonlinear laminated composite plate structures. Compos Struct, Vol. 
25, No. 1–4, pp. 503–510. 

Naghipour M, Daniali H.M. and Hashemi Kachapi S.H.A.2008. Numerical simulation of composite plates to be used for 
optimization of mobile bridge deck, World Applied Sciences Journal, Vol. 4, No.5, pp. 681-690. 

Ngo Nhu Khoa. and Tran Ich Thinh. 2007. Finite Element Analysis of Laminated Composite Plates Using High Order Shear 
Deformation Theory. “Vietnam Journal of Mechanics”, VAST, Vol. 29, No. 1, pp. 47 – 57. 

Pandya B.N. and Kant T.., 1988. Finite Element Analysis of Laminated Composite Plates using a Higher-Order Displacement 
Model, Journal. Composites Science and Technology. Vol.3, pp. 137-155. 

Polit O, Touratier M. 2002. Multilayered/sandwich triangular finite element applied to linear and nonlinear analyses. Compos 
Struct, Vol.58, No.1, pp. 121–128. 

Reddy J.N., 1997. Mechanics of Laminated Composite plates. CRC Press, Florida. 
Reddy A.R., Reddy B.S.  and K.V.K. Reddy. 2011. Application of design of experiments and artificial neural networks for 

stacking sequence optimizations of laminated composite plates, International Journal of Engineering, Science and Technology,  
Vol. 3, No. 6, 2011, pp. 295-310. 

Reddy R., Reddy B.S., Reddy N., Surisetty S.. 2012. Prediction of natural frequency of laminated composite plates using artificial 
neural networks. Engineering, Vol. 4, No.6, pp. 329-337, doi: 10.4236/Eng. 2012.46043. 

Salehi M  and Falahatgar S.R. 2010. Geometrically non-linear analysis of unsymmetrical fiber-reinforced laminated annular sector 
composite plates. Transaction B: Mechanical Engineering, Vol. 17, No. 3, pp. 205-216 

Singh G, Venkateswara R.G., Iyengar N.G.R..1994. Geometrically nonlinear flexural response characteristics of shear deformable 
unsymmetrically laminated plates. Comput Struct, Vol. 53, No.1, pp. 69–81. 

Sridhar C, Rao K.P. 1995. Large deformation finite element analysis of laminated circular composite plates. Comput Struct, 
Vol.54, No.1, pp. 59–64. 

Tahani M. and Naserian Nik A.M. 2009.Bending analysis of laminated composite plates with arbitrary boundary conditions 
Journal of Solid Mechanics, Vol. 1, pp. 1-13. 

Wen S., Yan W., Zhang G., Liu J., Yue Z.F.. 2010a.  Prediction of strength using bending test method. Material & Design, Vol.31, 
No.4, pp. 1828-1832. 

Wen S., Yan W., Kang J., Liu J., Yue Z. 2010b. Simulation of the creep damage behavior of thin film/substrate systems by 
bending creep tests. Materials & Design, Vol.31, No.7, pp. 3531-3536. 

Wen S., Yan W.Z., Kang J.X., Yue Z.F., 2010c. Simulation of the interface characterization of thin film/substrate systems using 
bending creep tests. Applied Surface Science. Vol.257, No.4, pp. 1289-1294. 



Reddy et al./ International Journal of Engineering, Science and Technology, Vol. 4, No. 2, 2012, pp. 177-190 

 

190

 

Zhang Y.X., Yang C.H. 2009. Recent developments in finite element analysis of laminated composite plates, Composite 
Structures, Vol. 88, pp. 147–157. 

Zhang YX, Kim KS. 2005. A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis 
of laminated composite plates. Comput Meth Appl Mech Eng, Vol.194, pp. 4607–4632. 

Zhang Y.X., Kim K.S. 2004. Two simple and efficient displacement-based quadrilateral elements for the analysis of composite 
laminated plates. Int J Num Meth Eng, Vol. 61, pp. 1771–1796. 

Zhang Y.X., Kim KS. 2006. Geometrically nonlinear analysis of laminated composite plates by two new displacement-based 
quadrilateral plate elements. Compos Struct , Vol.72, No.3, pp. 301–310. 

Zhang J. H.  and Zhang W.(2011) Multipulse chaotic dynamics for a laminated composite piezoelectric plate. Mathematical 
Problems in Engineering, Vol. 2011, Article ID 148906, pp.1-11,,doi:10.1155/2011/148906. 

Zinno R, Barbero E.J. 1995. Total Lagrangian formulation for laminated composite plates analyzed by three-dimensional finite 
elements with two-dimensional kinematic constraints. Comput Struct , Vol. 57, No.3, pp. 455–66. 

 
Biographical notes  
 
Mr. B. Sidda Reddy, obtained his Masters Degree from S.V University, Tirupati in 2007.He is working as Assistant Professor in the Department of Mechanical 
Engineering in R.G.M College of Engg. & Tech. Nandyal, Andhra Pradesh Since 2005.He has presented 09 papers in National and International Conferences, 07 
papers have been published in National Journal and 16 papers have published in International Journals. His areas of interests are I.C Engines, Alternative fuels & 
CFD, Optimization techniques, soft computing, Composite materials. 
 
Mr. A. Ramanjaneya Reddy is graduated in 2009, from R.G.M. College of Engineering, Nandyal. He is pursuing a master’s degree from R.G.M College of 
Engineering, Nandyal in machine design. He has published 01 papers in International journal. His areas of interests are composite materials, alternative fuels, 
optimization techniques and soft computing. 
 
Dr. J. Suresh Kumar is currently working as Associate Professor in Mechanical Engineering in Jawaharlal Nehru Technological University, Hyderabad. He 
completed his Masters in 1995 and did his Ph.D from JNTU College of Engineering, Kakinada in 2005. He has presented / Published 25 papers in Various National 
& International Conferences / Journals. He has organized 3 National level conferences & short term courses. He is a life member of I.S.T.E. He worked as Erection 
and Plant engineer at Golden Agro- Tech Industries Ltd during 1992-1996. His areas of interests are Alternative fuels & CFD, Optimization techniques, soft 
computing and Composite structures. 
 
Dr. K. Vijaya Kumar Reddy, is graduated in 1988, Masters in 1992 and did his Ph.D from JNTU College of Engg., Anantapur in 2000. He guided three Ph.D 
students and another 16 Ph. D scholars doing their research under his guidance. He has presented and published more than 100 papers in Various National & 
International Conferences. He has organized 7 national level conferences & short term courses and attended 6 National workshops during the past 6 years. He had 
supervised the following important activities at JNTUCE, Anantapur such as a NSS Program officer, Deputy Warden, Officer in charge of hostels, Student Union 
coordinator, Alumni Association Secretary cum Treasurer, Officer in charge of Academic section. At Present, he is working as Professor of Mechanical 
Engineering at Jawaharlal Nehru Technological University, Hyderabad 
 
 
Received March 2012 
Accepted August 2012 
Final acceptance in revised form September 2012 
 
 


