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Abstract 
 
   The work presented considers the initial boundary value problem for nonlinear singularly perturbed time dependent Burger-
Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the 
severe difficulties of two types encounter in solving this problem. The first one comes from these nonlinearity terms and the 
second is due to the perturbation parameter in the diffusion term. When the perturbation parameter approaches zero, the problem 
exhibit boundary layers and most of conventional methods fails to capture this effect. A relatively different analytical technique 
called variational iteration method (VIM), is used to solve this equation. This method is able to obtain rapidly convergent 
successive approximations of exact solution without any restrictive approximations or the transformations that may change the 
physical behaviour of the problem. Numerical examples are studied to demonstrate the significance and effect of various 
parameters involved in the equation.  
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1. Introduction 
 
   Nonlinear phenomena occur in a wide variety of scientific applications such as plasma physics, solid state physics, fluid 
dynamics, chemical kinetics and mathematical biology (Albowitz and Clarkson, 1990). There are many nonlinear partial 
differential equations (PDEs), which are quite useful and applicable in engineering and physics such as well-known KdV equation 
(Kaya, 2003), MKdV equation, BBM equation, Burgers equation, KdV-KSV equation, RLW equation (Al-Khaled, 2005), and so 
on. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are also represented through the 
nonlinear PDEs. 
   There exists a special class of nonlinear PDEs in which the coefficient of the highest order derivative term is very small. A 
member of this class is termed as a singularly perturbed nonlinear PDE and the small coefficient specifying the problem is 
identified as singular perturbation parameter. When this perturbation parameter (say, ε , hereafter) tends to zero, a breakdown 
occurs that results in the formation of layers in which the solution has a steep gradient. These layers are formed in the 
neighbourhood of the boundaries of the domain and are known as boundary layers. These PDEs represent the problems that 
involve a rapid change in the value of a physical variable over a limited region of space or time. Such problems, known as 
boundary-layer problems, are very common in physics and arise frequently in the studies of heat transfer with large Peclet 
numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor theory, simulation of oil extraction from 
underground reservoirs, aerodynamics, structural mechanics posed over thin dynamics, reaction-diffusion processes, quantum 
mechanics, optimal control, fluids dynamics, semiconductor device simulation, etc. Many of these problems are also used to model 
the situations in biosciences. For more details, readers are referred to Roos et al. (1996). In this reference, the conditions are also 
discussed for the existence and uniqueness of solutions of such problems. 
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   For the higher values of ε , number of solution methodologies exist in the literature (Cole, 1951; , Evans and Abdullah, 1984; 
Hopf, 1950;  Ozis et al., 2003). But, for sufficiently small ε , the existing solution methodologies fail and a discrepancy occurs 
(Zang et al., 1997). Numerical analysis and asymptotic analysis are the two principal approaches that are used mainly to obtain the 
solutions of singularly perturbed nonlinear differential equations. The method of matched asymptotic expansion and the method of 
multiple scales are the techniques used mainly in asymptotic analysis (Eckhaus, 1973, 1979; Nayfeh, 1973). But, there can be 
some difficulties in applying these asymptotic expansion methods. For example, finding the appropriate expansion in the inner and 
the outer regions are not a routine exercise, but it requires skill, insight and experimentation. Then, one is left only with numerical 
methods. Several numerical methods have been developed for singularly perturbed nonlinear differential equations. These methods 
include finite difference methods, spline approximation methods, finite element methods, shooting methods, collocation methods, 
etc (Kadalbajoo and Patidar, 2002; Ringhofer, 1984; Stynes and O'Riordan, 1986). Khattak (2009) used a computational mesh-less 
method, based on collocation method using radial basis functions, to solve the generalized Burger–Huxley equation. 
Unfortunately, all these numerical techniques have their in-built deficiencies. For example, standard numerical methods with 
uniform mesh gives unsatisfactory results as the boundary layer narrows with smaller ε . It requires a refined mesh to accumulate 
the solution within the boundary layer, which increases the computational work a lot. The numerical techniques involving 
discretization of variables also give rise to rounding off errors. Reducing nonlinear equations to linear requires quasi-linearization 
process, which is not easy to implement. Moreover, it provides the solution at the grid points only and requires an interpolation to 
find the solution at other points. An alternative can be a procedure to calculate the approximate solution of analytical or differential 
equations through iterative process, for example, variational iteration method (referred, hereafter, as VIM) proposed by He (1999). 
It is recognized that this method can be an effective procedure for solution of various deterministic problems in physics, biology 
and chemical reactions. The efficiency of the method has been proved, formally, in many recent studies (He, 1998a, 1998b, 2006, 
2007; Tatari and Dehghan, 2007;  El-Wakil and Abdou, 2008; Shakeri and Dehghan, 2008). Batiha et al. (2007, 2008) used VIM 
for solving generalized Burgers-Huxley equation but this equation is not singularly perturbed i.e. perturbation parameter is not 
taken in consideration. 
   Inspired and motivated by the simple and effective application of this method, the present study aims to explore the applicability 
of VIM in solving the general form of a time dependent Burger-Huxley equation, analytically. This equation represents a prototype 
model to describe the interactions between reaction mechanisms, convection effects, and diffusion transports, which has been 
investigated extensively in Satsuma (1987). The basic concept of the variational iteration method is illustrated in section 2. The 
detailed formulation of the problem considered and the derivation of solution through VIM is explained in section 3.  In the section 
4, numerical examples are solved for various physically significant models, which are deduced from the general form of Burger-
Huxley equation. The numerical calculation aims to analyse the effects of various parameters on the approximate solution of the 
PDE.  This approximate solution is computed for different values of perturbation parameter (ε ). It is to observe the layer behavior 
of the solution for smaller values of ε  leading to singular perturbations. The numerical calculation aims to analyse the effects of 
various parameters on the approximate solution of the PDE.  This approximate solution is computed for different values of 
perturbation parameter (ε ). It is to observe the layer behavior of the solution for smaller values of ε leading to singular 
perturbations.  The section 5 contains the remarks on the numerical results discussed in the section 4.  
 
2.  Variational iteration method 

 
   To illustrate the basic concept of the variational iteration method, the following general nonlinear system is considered  

 ),(=)]([)]([ xgxuNxuL +  
where L  is a linear operator, N  is a nonlinear operator and )(xg  is a given continuous function. According to the variational 
iteration method, a correctional functional is constructed in the form  

 ,)]()(~)()[()(=)(
01 dssgsuNsLusxuxu nn

x

nn −++ ∫+ λ  

where, )0,1,2,....=( nun , denotes the solution after the respective (say, n) number of iterations.   ~ ' ′  over a quantity restricts 

its variation, i.e. 0.=~=~=~
nxxnxn uuu δδδ  The function )(sλ  is a general Lagrange multiplier (Inokuti et al., 1978), which can 

be identified optimally via variational theory. The successive approximations )(1 xun+  of the solution u , for positive integer n, 

are readily obtained by using the determined Lagrangian multiplier and any selective function 0u . Consequently, the exact 
solution may be obtained by using  

 ).(lim=)( xuxu n
n ∞→

 

For the convergence of this sequence and its rate, the Banach's theorem is recalled: 
 
Banach's Fixed Point Theorem: Assume that X  is a Banach space,  
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 XXA →:  
is a nonlinear mapping, and suppose that  

 XuuuuuAuA ∈∀−≤− ,,][][ |||||||| γ  
for some constant 1<γ . Then A  has a unique fixed point. Furthermore, the sequence  

 ][=1 nn uAu +  

with an arbitrary choice of Xu ∈0  converges to the fixed point of A  and  

 .
1

=
01

j
k

lj
lk uuuu γ∑

−

−≤− ||||||||  

According to the above theorem, for the nonlinear mapping  

 ,)]()(~)()[()(=][
0

dssgsuNsLusxuuA nn

x

n −++ ∫ λ  

a sufficient condition for the convergence of the variational iteration method is the strict contraction of A  (Tatari and Dehghan, 
2007). Furthermore, sequence ][=1 nn uAu +  converges to the fixed point of A , which is also the solution of the nonlinear system 
considered above. In the above theorem, the rate of convergence depends on γ  and therefore, in the variational iteration method, 
the rate of convergence depends on λ .  

 
3.  Formulation of the Problem and Solution 
  
   From mathematical prospective, a general form of Burger-Huxley equation is a singularly perturbed nonlinear PDE, given by  

                                    (0,1),  0,=))((1 ∈−−−−+ xuuuuuuu xxxt γβεα   (1) 

where subscripts ‘ x ’ and ‘ t ’ denotes partial derivatives with respect to space and time respectively. The parameters  α , β  0≥ , 
γ ∈(0,1) and 0<ε << 1, define the aspects of interactions in various fields in the problem.  In the present study, the equation (1) is 
solved subject to the boundary conditions, given by  

 .<0  0,=)(1,=)(0,     ),(sin=,0)( Tttutuxxu ≤π   (2) 
   The  problem is considered to be boundary value problem  where as in Batiha et al. (2007, 2008) initial value problem is taken 
with different initial conditions. 
 Following the procedure of VIM in section 2, a correction functional is constructed as follows.  

 ,]~)~)(~(1~~~)[,(),(=),(
01 dsuuuuuuutstxutxu nnnnxxnxnns

t

nn γβεαλ −−−−++ ∫+   (3) 

   The value of Lagrangian multiplier ),( tsλ , in this case, is chosen to make correction functional (3)  stationary, i.e., we must 
have  

 0.=]~)~)(~(1~~~)[,(=
01 dsuuuuuuutsuu nnnnxxnxnns

t

nn γβεαλδδδ −−−−++ ∫+  

Solving the integral once yields  

 0,=)|),((1=
0=1 dsu

s
tsuu n

t

tsnn δλλδδ
∂
∂

−+ ∫+  

giving the conditions for stationary correctional functional (3) as follows.  

 0.=|),(1     0,= =tsts
s

λλ
+

∂
∂

 

Solving these conditions, the Lagrange multiplier is obtained as  
 1.=),( −tsλ  

Substituting this value of λ  into (3)  gives a relation  

 ,]~)~)(~(1~~~[),(=),(
01 dsuuuuuuutxutxu nnnnxxnxnns

t

nn γβεα −−−−+− ∫+   (4) 

 which is an iteration formula to calculate the successive approximations to the solution of the problem (2)(1) − . This iteration 
formula can be rewritten in a computation-convenient format as  

 ,),(=),( ,6,5,4,3,2,11 nnnnnnnn IIIIIItxutxu +++++++   (5) 
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 where  

               ,=
0,1 dsuI ns

t

n ∫−  

,=
0,2 dsuuI nxn

t

n ∫−α  

,=
0,3 dsuI nxx

t

n ∫ε  

,=
0,4 dsuI n

t

n ∫−βγ  

,)(1= 2

0,5 dsuI n

t

n ∫+γβ  

.= 3

0,6 dsuI n

t

n ∫−β  

   Using these integrals, the first approximation to the solution of (2)(1) −  can be written as  

 ,= 0,60,50,40,30,20,101 IIIIIIuu ++++++   (6) 

 where 0u  represents the initial approximation. Starting with )(sin=,0)(=0 xxuu π  and resulting expressions for kI0, , 

1,2,3,..,6=k  in (5)  are computed. Using these expressions in (6) , the first approximation 1u  of the solution is expressed as  

 ,= 101 tffu +   (7) 
 Where 
  ),(sin=0 xf π   (8) 

 .)(1= 3
0

2
000001 fffffff xxx βγββγεα −++−+−   (9) 

 Consequently, the relation  
 .= 1,61,51,41,31,21,112 IIIIIIuu ++++++   (10) 

 enables to derive the second approximation 2u  of the solution from 1u . With 1u  given by (7) , the integrals 

)1,2,3,..,6=( ,1, kI k  are evaluated. Using these evaluations in (10)  yields the second approximation to the solution, given by  

 .= 4
4

3
3

2
2102 tftftftffu ++++   (11) 

 In this expression, 10  , ff  are same as in (9)(8) − , and  

 ,
2

3)(1
22

)(
2

= 1
2

0101101102 fffffffffff xxxx
βγββγεα

−++−++−  

 ,
3

)(1
3

= 2
10

2
1113 ffffff x βγβα
−

+
+−  

 .
4

= 3
14 ff β

−  

 In (11), 0= , , , 4310 ffff  for any value of γβα  , ,  and ε  at 0=x . But 2f  is not identically zero but depends on ε  and β . 

However, for fixed values of γα ,  and also for small values of t , we get 02 ≈u  for small values of ε  and β . Presence of the 

term xxf12
ε

 in 2f  is responsible for this break-up of boundary conditions. Presence of the term xxf12
ε

 in 2f  is responsible for 

this break-up of boundary conditions, no such term is present in solution given by Batiha et al. (2007, 2008). The next 
approximation to the solution is obtained with a similar use of the iteration formula (4)  for the most recent approximation of the 
solution. The sequence of these successive approximations will be converging rapidly to the accurate solution. Simple expressions 
can not be expected for the higher approximation to the solution. Hence, the closed form of the approximate solution may not be 
analysed for a possible convergence to the actual root. Hence, in the next section, numerical examples are considered to explain 
the changes in the behaviour of successive approximate solutions. 
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4.  Examples and Discussion of Numerical Results 
 

   The introduction of the term '' xxuε  in Burger-Huxley equation represents the presence of small isotropic diffusion in the 
reaction mechanism. Then the problem represented by PDE with the highest order derivative term multiplied by a small parameter 
ε  should be exhibiting a multi-scale character. In case of large values of ε , the dominating diffusion takes over the nonlinearity 
effect in the problem. It results in the smoothening of the solution in short intervals of time as well as in narrow intervals of space. 
Further, the first order terms, which are expected to produce shocks, may not matter much. On the other hand, when 0→ε , the 
diffusion term interacts with lower order terms and it results in a breakdown of singular perturbation. Then the solution of the 
perturbed problem no longer remains smooth in short interval of time but still exhibits a layer behavior. These are a kind of PDEs 
that encounter frequently in fluid dynamics and in the description of many non-linear wave phenomena. No such work is explained 
in Batiha et al. (2007, 2008). 
   In Burger-Huxley equation (1), the parameter α  characterizes a non-linear transfer and the parameters β  and γ  are used to 
describe a nonlinear source. For computational work, values chosen for these parameters are given by 1,=α 1=β  and 

0.5=γ . For these parameter values, the second approximation to the exact solution in (11)  is given by  

 2
1

2
01011011010 }1.51.5.25.5).5({ tfffffffffftffu xxxx −+−++−++≈ ε  

 ,.25).5
3
1( 43

1
32

10
2

111 tftfffff x −−+−+   (12) 

 where  ),(sin=0 xf π  

 .1.5.5= 3
0

2
000001 fffffff xxx −+−+− ε  

   This approximate solution is computed for different values of ε . It is observed that the solution exhibits a layer behavior for 
small values of ε , as shown in Figure 1. This behaviour is very much in agreement with that observed by Kaushik and Sharma 
(2008). For the limiting 0→ε , this particular case of PDE (1)  becomes nonlinear hyperbolic and its solution is discussed later 
in this study for some particular models. It is observed that at any given time ( t ), the solution is parabolic with x  with maximum 
around 0.5=x . The solution is nearly symmetric with respect to the maximum. On the other hand for any given x , the solution 
variations with t  are nearly linear. Maximum of the solution ),( txu  is observed at the largest t , i.e., 0.1=t . The solution 
value increases a little with decrease of ε  from 0.1 to 0.01. However, any further decrease in ε  may not have any effect on the 
solution. 
 

 
Figure 1.  Solution ),( txu  of singularly perturbed Burger-Huxley equation for values of parameter 1=== γβα  and for 
different values of ε  
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   The solution ),( txu  computed above and displayed in Figure 1 contains the contributions from different terms in the PDE (1). 
These contributions are represented by the parameters βγ  ,  and α . The roles of these parameters in changing the solution are 
explained through the Figures 2 to 4 for two small values of 0.001 0.1,=ε .  

 
Figure 2.  Solution ),( txu  of singularly perturbed Burger-Huxley equation for 1== βα ; 0.9 0.1, 0.01,=γ  and 

0.1 0.001,=ε  
   Figure 2: The solution is computed for 1== βα  and 0.1 0.001,=ε . Three value of 0.9; 0.1, 0.01,=γ  are chosen to 
observe the variations of solution with γ . It is observed that the change in γ  has almost no effect on the solution when 0.1=ε  
but a very little effect is observed for smaller 0.001=ε . 

 
Figure 3.  Solution ),( txu  of singularly perturbed Burger-Huxley equation for 0.5= 1,= γα ; 10 1, 0.1,=β  and 

0.1 0.001,=ε  
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   Figure 3: The role β  in varying the solution ),( txu  is explained through the plots in the Figure 3 for 10 1, 0.1,=β  and 
0.1 0.001,=ε . The values chosen for other parameters are 1= 0.5= αγ . The role of β  in changing the solution is quite 

similar to that of γ  observed in Figure 2. The only exception is that for larger values of β  along with 0.1=ε , the solution may 
not be satisfying the boundary condition 0=)(0, tu  for 0.2.>t  

 
Figure 4.  Solution ),( txu  of singularly perturbed Burger-Huxley equation for 0.5= 1,= γβ ; 5 1, 0.1,=α  and 

0.1 0.001,=ε  
   Figure 4: In this figure the various plots exhibit the variations of solution ),( txu  for 5 1, 0.1,=α  and 0.1 0.001,=ε . 
Values 0.5= 1,= γβ  define other parameters. A little change in solution is observed for variations of non-linearity parameter 

1) (0.1,∈α . But it may not be considered much significant when compared to the change in solution for α  increasing beyond 
1. It is observed that for 1>>α , the layer behavior vanishes and the approximated solution may abandon the boundary condition 

0=)(1, tu  for 0.2.>t  
 

4.1  Particular Cases 
 

   There exists some particular sets of values for the parameters involved in the general PDE (1). For these sets, the equation (1) 
reduces to models having great physical significance. The particular cases for parameters involved are not discussed in Batiha et 
al. (2007, 2008). Solutions for four such models are discussed as follows.  

 
Model 1: 0=α , 1== βε : For (0,1)∈γ , the reduced equation (1)  becomes FitzHugh-Nagumo equation, i.e.,  

 0,=))((1 uuuuu xxt γ−−−−   (13) 
 where x  and t  denote rescaled variables for space and time, respectively. The variations of solution u  with x  are displayed in 
the Figure 5, for six values of non-dimensional time 0.08,0.1 0.06, 0.04, 0.02, 0,=t . It is observed that the delayed solutions 
are reduced significantly. However, the rate of decay of solution with time decreases with the increase of t , i.e. deceleration with 
time. It is also noted that the delayed solutions may deviate a bit from the requirement of homogeneous boundary conditions at 
both the ends.  
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Figure 5.  Solution of FitzHugh-Nagumo equation ( .5=γ , 0=α , and 1== βε ) 

   This equation contains the key features of Hodgkin-Huxley model and is used to describe the propagation of electrical pulse in a 
neuron. The solution term u  denotes the transmembrane potential in the axon and the term xxu  represents the activation part. In 
many cases, the peaks of the activating function correspond to the locations of action potential generation for a neuron in a uniform 
electric field. This allows one to predict the site of action potential initiation in a spatially complicated neuron without having to 
simulate the full Hodgkin-Huxley dynamics. The equation (13) is a simplification of the Hodgkin-Huxley equation that was 
derived as a model for the propagation of action potentials in the giant nerve axon of the squid. It was the first model to correctly 
describe the ionic basis of excitation. Many fascinating phenomena such as bursting oscillator (Duan and Lu, 2006), interspike 
(Liu et al., 2005), bifurcation and chaos (Zhang et al., 2006), are also associated with this equation. 
   Now, for 0=α , 1== εβ , the expression (11)  reduces to define the solution of FitzHugh-Nagumo equation, given by  

,.25))(1
3
1()1.5)(1.5(.5),( 43

1
32

10
2

1
2

1
2

0101110 tftffftfffffftfftxu xx −−++−++−++≈ γγγ (14) 

 where  
 .)(1= 3

0
2

0001 fffff xx −++− γγ  

This analytical solution is computed for a particular value of 0.5=γ  and is plotted in Figure 5. For 0.001=γ  and initial 

approximation ))(tanh
22

(= 10 xAu γγ
+ , where γ

βαα
8

8
=

2

1
++−

A , the solution (14) finds an agreement with the exact 

solution (Wang et al., 1990; Ismail et al., 2004). 
   A qualitative analysis of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952a, b), which closely mimics the ionic process at 
a real nerve membrane, is performed by means of singular perturbation theory. This was achieved by introducing a perturbation 
parameter. A decrease in parameter "speeds up" the fast variables (membrane potential and sodium activation) of Hodgkin-Huxley 
equation but it does not affect the slow variables (sodium inactivation and potassium activation). Similarly, equation (13)  with 
the introduction of ε  represents the singularly perturbed equation of FitzHugh-Nagumo type (FitzHugh, 1961; Nagumo, 1962;  
Sleeman, 1982), i.e.,  

 0.=))((1 uuuuu xxt γε −−−−   (15) 
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   In order to discuss the moments of fronts and backs, the problem is formally reduced by taking the limit 0→ε . The presence 
of this singular limit requires two different scaling for analysis. The outer scaling is obtained through 0=ε . It indicates that the 
transmembrane potential resides on one of the two solution branches. The inner scaling is obtained for 1) (0,∈ε . 
   The solution branches define the traveling waves, which play the role of the boundary layers. This technique restricts the analysis 
to the perturbations that travel with the same velocity as the wave. Even if the traveling wave pulse has a triggered wave back, it is 
possible that after a perturbation, the back might transiently convert to a phase wave. It turns out, by allowing γ  to cross 0  and 1. 
Hence, the singularly perturbed system for traveling waves possesses turning points. The conceptual procedure for constructing 
fronts, backs and pulse solutions of certain reaction-diffusion systems by a singular perturbation analysis was brought out by Feinn 
and Ortoleva (1977). 

Model 2: 1=α , :0=β  The equation (1)  reduces to Burger equation, at high Reynolds number 
ε
1(= Re ) that establishes a 

balance between time evolution, nonlinearity and diffusion. The equation is given by  
 0,=xxxt uuuu ε−+   (16) 

 where ),( txu  denotes flow velocity. The variations of flow velocity with [0,1]∈x  are exhibited in the Figure 6, for some 
discrete values of 0.1] [0,∈t  these solutions are computed for three values of singular parameter 0.1 0.01, 0.001,=ε . 
However, the change of 0.1) (0.001,∈ε  does not have any significant effect on the solution )(xu , at any given time t . 
   Burger equation (16) is a fundamental nonlinear PDE of second order to describe the integrated process of convection-diffusion 
in physics (Bateman, 1915; Burgers, 1948). It occurs in various areas of turbulence, boundary layer behaviour, shock wave 
formation and mass transport, etc. The convection-diffusion term, which represents the main factors to influence the fluid flow in 
Navier-Stokes equation are included in Burger equation while the pressure is neglected. One of the major source of difficulties in 
Navier-Stokes equation is the inviscid boundary layers produced by steepening effect of the nonlinear advection term. The same 
difficulty is also encountered in Burger equation. For this reason, the analytic solvability of the Burger model is an important 
problem of fluid dynamics. Hopf (1950) and Cole (1951) solved Burger equation analytically for arbitrary initial conditions. In 
many cases, these solutions involve infinite series which may converge very slowly for small values of ε , which corresponds to 
steep wave fronts in the propagation of the dynamics wave forms. Hopf (1950) and Cole (1951) discovered transformations that 
reduce the Burger equation to linear heat equation. However, an infinite domain ∞∞− << x  was required for these 
transformations. Hence, these transformations can not be used for many physical applications defined only in a finite interval. 
   For 1=α , 0=β  the solution (11)  reduces to  

 ,)
3
1(}.5).5({ 3

11
2

1011010 tfftffffftffu xxxxx −++−++≈ ε   (17) 

 where  
 .= 0001 xxx ffff ε+−  

This is the analytical solution for Burger equation, which is in agreement with  (Cole, 1951). The variations of the solution 
),( txu  for different values of ε  are shown in Figure 6. 

Model 3: 0 0,= 1,= →εβα : The equation (1)  reduces to momentum equation of gas, describing the velocity u, transported 
by the fluid motion itself,  

 0.=xt uuu +   (18) 
 First systematically study of this equation was performed by Poisson and Riemann in the early nineteenth century. Since it matters 
in so many applications, this equation appears in the literature under a variety of names, viz., including the Riemann equation, the 
inviscid Burger equation and the dispersion-less Korteweg-de-Vries equation. The equation itself and its multidimensional and 
multi-component generalizations play crucial roles in modeling of gas dynamics, traffic flow, flood waves in rivers, 
chromatography, chemical reactions and many other areas. 

Using 1=α , 0=β  and 0→ε , the solution (11)  reduces to  

 ,)
3
1().5( 3

11
2

011010 tfftfffftffu xxx −+−+≈   (19) 

 where  
 .= 001 xfff −  
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The solution (19) of Riemann equation is plotted in the Figure 7. It is observed that the decay of solution with time in first half of 
x -domain get reversed in the second half. This implies the existence of a small interval around the middle of domain of x  where 
the decay of solution with time may be absent or very small. 

 
Figure 6.  Solution of Burger equation for ( 0=β , 1=α , and 0.1 0.01, 0.001,=ε ) 

 

 
Figure 7.  Solution of momentum equation of gas ( 0=β , 1=α , and 0→ε ) 

Model 4: 0== βα : The equation (1)  resembles heat equation, given by  
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 ,= xxt uu ε   (20) 

 where ),( txu  represents temperature at space x  and time t . The parameter ε  in this equation defines the thermal diffusivity in 
the medium. In mathematics, heat equation is the prototypical parabolic partial differential equation. In statistics, the heat equation 
is connected with the study of Brownian motion via the Fokker-Planck equation. The heat equation is used in probability and 
describes random walks. For this reason, it is also applied in financial mathematics. 

For 0=α , 0=β , solution (11)  becomes  

 ,)(.5= 2
1102 tftffu xxε++  

where  
 .= 01 xxff ε  

On solving, this second iterated solution is obtained as  

 ].
2
1)[1(sin= 2422

2 ttxu πεεππ +−  

The next two successive iterations are  

 ],
6
1

2
1)[1(sin= 3632422

3 tttxu πεπεεππ −+−  

 

 ].
24
1

6
1

2
1)[1(sin=              4843632422

4 ttttxu πεπεπεεππ +−+−  

On calculating the higher iterations of the solution, the approximate solutions converges to a closed form ),( txu , given by  

 ),(exp)(sin=),( 2txtxu εππ −   (21) 
 which is the exact solution of heat equation. The transient solution ),( txu  represented in (21) is a decaying function, i.e., 
decreasing with the increase of time t . 
 
5.  Concluding Remarks 
 
   The nonlinear singularly perturbed time dependent Burger-Huxley equation is solved using VIM, which gives rapid convergent 
successive approximations of the exact solution. The effect of perturbation parameter in the diffusion term is analysed on the 
solution. The equation contain nonlinear advection and cubic term. For small values of perturbation parameter, the parameter 
involved with advection term is more dominant or significant as compared to the parameters involved in the cubic nonlinear term. 
Therefore, nonlinear advection term plays a significant role in the equation. 
   The effect of non-linearity parameter α  on the solution may not be much significant for smaller values of α , say in (0,1) . But 
for larger α , beyond 1, solution may experience a much bigger change towards the far-end of space, particularly in later signals. 
The changes in the values of two other parameters, i.e. γβ  , , may have a little effect on the solution only when 0→ε . Batiha et 
al. (2007, 2008) have not discussed about the effect of these parameters.  
   For particular values of parameters involved the equation reduces to important models for example, FitzHugh-Nagumo equation, 
Burger equation, momentum gas equation and heat equation. For these four models, the resulting analytical solutions are obtained. 
The behaviour of solution in space and time is observed numerically for each of the four particular models. 
The nonlinear system given by  

 ),,()),((1=),(),( txutxutxDutxu xxt ταβ −−−  
is a very significant equation that involves both time delay and diffusion. This equation represents the effect of diffusion and delay 
on population growth. The approach used in the work presented may be used to solve this system for an analytical solution. This 
may be a useful topic to explore in the days to come. 
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