
  

 
MultiCraft 

 
International Journal of Engineering, Science and Technology  

Vol. 5, No. 3, 2013, pp. 124-141 
 

INTERNATIONAL 
JOURNAL OF 

ENGINEERING, 
SCIENCE AND 
TECHNOLOGY

  www.ijest-ng.com 
www.ajol.info/index.php/ijest 

© 2013 MultiCraft Limited. All rights reserved 
 

Rich dynamics of a food chain model with ratio-dependent type III 
functional responses 

 
Manju Agarwal and Vimlesh Singh 

 

Department of Mathematics & Astronomy, Lucknow University, Lucknow-226007, INDIA. 
*Corresponding Author: Emails:(manjuak@yahoo.co.in,ManjuAgarwal),and(aryansmath.lko@gmail.com,Vimlesh) 

 
 
Abstract 
 
   This paper deals the dynamics of a tri trophic food chain model with ratio-dependent type III functional response. The 
investigations that are presented in this paper focus on the computation of food chain with and without time delay. Two types of 
discrete time delay in top level predator population are considered.  In first type time delay may be regarded as a delay due to 
reaction time or gestation period of the top predator. In second type, delay may introduce in reaction term of top predator 
population and it assumes that the change rate of predator depends upon the number of prey and of the number of the predators 
present in some previous time. In absence of delay, the conditions for boundedness of the system are established. Stability 
analysis of model is carried out by using usual theory of ordinary differential equation. Further, it is proved that the system 
undergoes Hopf bifurcations, using delay as a bifurcating parameter. We have also shown that Hopf bifurcation may also occur 
when delay passes its critical value. Finally, our study shows that time delay plays a significant role on the stability of the 
system. It breaks the stable behaviour of model and drives it to unstable state. 
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1. Introduction 
 
   The debates about ratio-dependent predation (Arditi and Ginzburg, 1989; Arditi et al., 1991; Abrams and Ginzburg 2000) have 
drawn ecologists’ attention on the issue of correctly specifying the functional response (the instantaneous rate of prey consumption 
per predator). As the link between predator and prey dynamics, the functional response is necessarily critical for predator – prey 
interactions and it is also important for the dynamics of food chain or food web such as the response of lakes, bio control of pest 
(Hsu et al., 2003). The choice of particular functional form to model a process rate can have surprising effects on statistical 
inference and prediction. In 2002, Jost and Ellner presented a method to remove the limitations by reconstructing the functional 
response non – parametrically from predator-prey time series data. They use this method to data on a protozoan predator-prey 
interactions, and obtain significant evidence of predator dependence in functional response. The crucial element in their analysis is 
to include time-lags in the prey and predator reproduction rates, and show that these delays improve to fit the model significantly. 
Finally, compare the different non-parametrically reconstructed functional response to parametric form. They introduced and 
analyzed a two species model with ratio-dependent type III functional responses. In this paper, we have considered the model for 
three species food chain with ratio-dependent type III functional response. 
   A simple multispecies system comprising of three species forming a food chain was discussed by Freedman (1977). Food chains 
and webs in the environment are highly complex and interdependent systems. Seemingly insignificant changes in the parameter of 
such system can have drastic consequences. Food chain can be modeled by the system of ordinary differential equations that 
approximate species or functional feeding group behaviour with a variety of functional responses. Many simple two species food 
chain models have been thoroughly explored, while new discoveries continue to be made in examining models with three or four 
trophic levels (e.g. Moghadas and Gummel 2003). Hsu et al. (2003) studied a ratio-dependent food chain model with Michalies - 
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Menten type functional response. They presented that food chain model is rich in boundary dynamics and capable of generating 
extinction dynamics and the successful implementations of biological controls. In many field situations, plant-herbivore-parasitoid 
food chains have become extremely important and it has been shown that parasitoids may determine fitness of the plant and 
destroying herbivores (Fritzche-Hoballahel et.al. 2001; Loon and Boer 2000 and Gomez et.al., 1994). Also to reduce the 
indiscriminate use of pesticides, recently tea scientists are using predators or pathogens to control the pests of tea. Thus three 
species system like plant-herbivore-parasitoid, plant-pest-predator et cetera is emerging in different branches of biology in their 
own right.  
   However in this paper we have analyzed the dynamics of tri-trophic food chain composed of a prey X  , a middle predator Y  
and a super predator (or top predator) Z . An important factor in modeling of tri trophic food chain is the choice of functional 
responses governing the prey-predator and predator-super predator interactions. Here we have taken a general predator prey super 
predator model with ratio-dependent III type functional response. Jost and Ellner (2000) introduced and analyzed a two species 
model with ratio-dependent III type functional responses. We have generalized that model for three species. 
   Actions and reactions take time to effect in real life problems. In this context a simple and natural way to understand predator-
prey dynamics is to incorporate discrete delay into the predator equations. Volterra (1926) first include the delay in prey-predator 
model, who took in to account time taken for pollutants produced by a population to build up, eventually increasing the death rate 
of the population. Delay may also be due to development time of the population itself or of its resources. Kuang (1993) mentioned 
that animals must take time to digest their food before further activities and responses take place and hence any model of species 
dynamics without delays is an approximation at best. Detailed arguments on importance and usefulness of time delays in realistic 
models may be found in classical books of Gopalsamy (1992), Macdonald (1989) and Kuang (1993). There are many different 
kinds of delayed predator-prey models in the literature. Let )(1 tN  and )(2 tN  denote the prey and predator population densities at 
time t , respectively. For the generalized Gauss-type predator prey model of the following form: 

))(()())(()( 1211
1 tNgtNtNftN

dt
dN

−= , 

))](()[( 12
2 tNhdtN

dt
dN

+−= .                                                                                                                                      (a) 

Basically, a constant time-delay can be incorporated in to the model in three different ways. 
1. A time-delay τ in the prey specific growth term ))(( 1 tNf , that is, 

            ))(()())(()( 1211
1 tNgtNtNftN

dt
dN

−−= τ , 

             
))](()[( 12

2 tNhdtN
dt

dN
+−= .                                                                                                                         (b) 

System (b) is proposed based on the assumption that in the absence of predator the prey satisfies the Hutchinson’s equation. 
2. A time-delay τ in the predator response term ))(( 1 tNh in the predator equation, that is, 

             
))(()())(()( 1211

1 tNgtNtNftN
dt

dN
−−= τ ,  

              
))](()[( 12

2 τ−+−= tNhdtN
dt

dN
.                                                                                                                    (c) 

The delay in system (c) can be regarded as a delay due to gestation period or reaction time of the predators. Kuang (1993), Kuang 
and Beretta (1996), Samanta (2000) and others has been studied the system with this type of delay. 

3. A time-delay τ in the interaction term ))(()( 12 tNhtN of the predator equation, that is, 

            
))(()())(()( 1211

1 tNgtNtNftN
dt

dN
−−= τ , 

          
))](()()( 122

2 ττ −−+−= tNhtNtdN
dt

dN
.                                                                                                          (d)       

   System (d) assumes the change rate of the predator depends on the number of prey and of the predators present at some previous 
time. The well known Wangersky and Cumingham model (1957) is such a model.  
   The rest of the paper is organized as follows. In section 2, we present a brief sketch of the construction of the model. In section 3, 
we have determined the boundary equilibrium point and their stabilities; the boundedness of our model is also studied in this 
section. In section 4, we have determined the necessary and sufficient condition for the existence of interior equilibrium point and 
study its stability. It is seen that the top predator-free boundary equilibrium point possesses nonempty stable and unstable manifold 
whenever the interior equilibrium point exists. The effect of discrete time-delay on the system is investigated in section (5). 
Computer simulations of variety of numerical solutions of system with delay are presented and a study of the occurrence of Hopf 
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bifurcation is presented in section (6). At last general discussions of the paper and biological implications of our model are 
presented in section 7. 
 
2. Mathematical Model 
 
   Model that we analyze in this paper, describe a tri trophic food chain. This food chain is composed of a prey, whose population 
density is denoted by X , a predator whose population density is denoted by Y and a super predator (or top predator) whose 
population density is denoted by Z . Before introducing the model, we would like to present a brief sketch of the construction of 
model. This may indicate the biological relevance of it. Behaviour of the entire community is assumed to arise from the coupling 
of these interacting species. Among these three species have simple relation Z prey on Y and only Y and Y prey on X and 
nutrient recycling is not accounted for. This simple relation produces the so-called simple food chain. This is an interesting 
practical assumption from both mathematical and biological point of view. For example, in a waste treatment process, the bacteria 
lives on the waste (or nutrient) while other organism as ciliates feed on the bacteria (Kuang (2000)). Also in the tea plant –pest –
predator interaction, the pest specializes on the tea plant and predators destroy pests by feeding on them (Das et.al. 1998, Das and 
Barua 1990 and Kabir 2001).  
   It is mentioned that an important factor in modeling of tritrophic food chain is the choice of functional response governing the 
prey-predator – super-predator interactions. Here we have considered a ratio-dependent type III  functional response for both prey 
- predator and predator-top predators. Therefore, mathematical models governing the system of nonlinear ordinary differential 
equations are  
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   Here for 2,1=i  , iii da ,,η  and im  are yield constants, half saturation constants, predators natural death rates and maximal 
predator growth rates respectively. r and k are the prey intrinsic growth rate and carrying capacity respectively. We make an 
obvious assumption that all the parameters are positive. Since the densities of the population cannot be negative, the state space of 
system (1) is given by  
   }0,0,0,),,{( 33 ≥≥≥∈=+ ZYXRZYXR . 
Model (1) has 10 parameters in all, which make mathematical analysis complex. So, to reduce number of parameters, model is 
non-dimensionalized by using 
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Then the system (1) takes the form  
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3. Boundedness of Solutions 
 
   Theorem (3.1):- The solutions )(tx , )(ty and )(tz of system (2) initiating in 3

+R  are positive and bounded for all 0≥t . 
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 Proof:-   Since the densities of the population can never be negative, therefore obviously the solutions  )(tx , )(ty and )(tz  are 
positive for all 0≥t . 
Since )1()( xxtx −≤′ , 
So we have 1)(suplim ≤
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tx
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Applying a Lemma on differential inequalities {Birkhoff and Rota (1982)}, we obtain 
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Thus, all solutions of system (2) enter into the region: 
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 Hence theorem is proved. 
 
3.1 Boundary Equilibria and  Stability 
   In this section, we study the existence and local stability analysis of boundary equilibrium point )0,ˆ,ˆ(ˆ yxE of system (2). The 

boundary equilibrium point Ê  in yx −  plane is positive solution of following algebraic equations  
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Solving above equations we get 
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On the question of stability of )0,ˆ,ˆ(ˆ yxE , we have determined the variational matrix )ˆ(EM at )0,ˆ,ˆ(ˆ yxE  as  
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Corresponding characteristic equation for equilibrium point Ê  is 
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   Clearly, eigenvalue 22
ˆ qp −=λ  is positive corresponding to z - direction, and other two eigenvalues are negative 

corresponding to yx −  plane. Therefore equilibrium Ê  is stable in yx −  plane but unstable in z  direction.  
 
4. Interior Equilibrium Point: Its Existence and Stability 
It is obvious that the interior equilibrium point ),,( **** zyxE of system (2) exists in the interior of the first octant if there is a 
positive solution of following algebraic equations   

 01 *2*2

**
1* =
+

−−
yx

yxc
x ,     

0*2*2

**
2

1*2*2

*2
1 =

+
−−

+ zy

zyc
q

yx

xp
 ,     

02*2*2

*2
2 =−
+

q
zy

yp
.                                                                                                                                                  (7) 

Thus, by solving above equations, we get  
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Where, 2/1
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It can be seen that   ),,( **** zyxE  exists if following conditions are satisfied 
(i)     22 qp >                                                                                                                                                              (12)     
(ii)    Bp >1                                                                                                                                                                (13) 
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4.1 Local  Stability Analysis 

 Now to investigate the local stability of interior equilibrium ),,( **** zyxE , we first find the variational matrix )( *EM  at 
interior equilibrium point  
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Corresponding characteristic equation becomes  
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Therefore, an application of Routh-Hurwitz criterion shows that  



 Agarwal and Singh / International Journal of Engineering, Science and Technology, Vol. 5, No. 3, 2013, pp. 124-141 

 

130

 

    If     011 <b      and    022 <b                                                                                                                               (15a)             
Then the following conditions are satisfied: 

0,0 31 >> AA  and 0321 >− AAA .                                                                                                                         (15b) 

Hence, positive equilibrium point *E is locally asymptotically stable under the condition (15a) and (15b). 
 
5. Model with discrete delay 
 
   It is already mentioned that time delay is an important factor in biological as well as ecological systems. Examine the 
experimental findings on the interaction of larval Thanasimus dubius (cleried beetle) and Dendroctonus fronttalis (bark beetle) 
during attack of host tree. Reeve ,1997; suggested that a model including ratio – dependence  and time delay for T. dubies and D. 
frontalis interaction that determine the net stabilizing and destabilizing effect on D. frontalis dynamics. Therefore as a starting 
point, we consider the model involving two types of discrete time delay. In the first model there is delay in the predator response 
function, while in the second one is the well known Wangersky Cunningham type model, 1957; this assumes that the change in the 
number of top predator depends upon the number of middle predator and top predator present in some previous time. 
 
Type I Delay 
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The delay 0≠τ  in (16) can be regarded as a delay due to reaction time of the top predator .z  System (16) has same equilibria as 

system (2) has. The main purpose of this section to study the stability behaviour of ),,( **** zyxE  in the presence of discrete 

delay ( 0≠τ ). Now to prove the stability behaviour of ),,( **** zyxE for the system (16), first we lineraize the system (16) by 
using following transformation
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We look for solution of the model (16) of the form 0,)( ≠= − ρρ λtetA , this leads to the characteristic equation  
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32233322114 )( babaaP −+= , 

3223113322113321125 baabaabaaP +−= . 
   The eigenvalues are the roots of the characteristic equation (17) of the system (16), that has infinitely many solutions. We wish 
to find periodic solution of the system, for the periodic solution eigenvalues will be purely imaginary so we substitute  

0, >= ωωλ i  in equation (17), we get  0)( 54
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Squaring and adding (18a) and (18b), we get 
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Substituting δω =2 , equation (18c) becomes  
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By Descarte’s rule of sign, the cubic equation (18d) has at least one positive root. Consequently the stability criteria of the system 
for 0=τ  will not necessarily ensure the stability of system for 0≠τ  .  
Again solving (18a) and (18b), we get a critical value of delay that is given as follows 
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Hopf Bifurcation 

 We observe that the conditions for Hopf bifurcation (Hale and Lunel, (1993)) are satisfied yielding the required periodic solution, 
that is, 
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This signifies that there exists at least one eigenvalue with positive real part for 0ττ > .  

 Now we show the existence of Hopf bifurcation near *E , by taking τ  as a bifurcating parameter. 
Differentiating equation (17) with respect toτ , we obtain 
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Taking 0ωλ i= in above equation, we get 
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Thus we obtain  

                                                                                                                                                                                      
                                                                                                                                             

 
Therefore the transversality condition holds and hence Hopf bifurcation occurs at 0ττ = . 

Theorem (5.1): If 03 <d  and *E  is asymptotically stable for 0=τ  , it is impossible that it remain stable for .0>τ  Hence there 

exist 00 >τ , such that ,0 ττ > *E is asymptotically stable and for ,0 ττ <  *E  is unstable and τ  increases together with 0τ  , 
*E  bifurcates into small amplitude periodic solution of Hopf type the value of 0τ  is given by following equation   
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Type II Delay 
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Here, the time delay in the interaction term of the top predator equation assumes that the change rate of the predator depends upon 
the number of prey and of the predators present at some previous time. By similar process of the model (18), we show the stability 
behaviour of ),,( **** zyxE for the system (21) by using following transformations 
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We determine the variational matrix of the system (21) at *E  to explore local stability of mathematical model (21) with delay  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

−−
333332

232221

1211

0

0

ceded

ccc

cc

M

λτλτ

. 

 

0Re
1

0

>⎟
⎠
⎞

⎜
⎝
⎛

−

= ωλτ
λ

id
d



 Agarwal and Singh / International Journal of Engineering, Science and Technology, Vol. 5, No. 3, 2013, pp. 124-141 

 

133

 

22*2*

2*2***
1*

11
)(

)(

yx

yxyxc
xc

+

−
+−= ,   

22*2*

2*2*2*
1

12
)(

)(

yx

yxxc
c

+

−
−= ,        

22*2*

3**
1

21
)(

2

yx

yxp
c

+
= , 

22*2*

2*2***
2

22*2*

2*2*
1

22
)(

)(

)(

2

zy

zyzyc

yx

yxp
c

+

−
+

+
−= , ,

)(

)(
22*2*

2*2*2*
2

23
zy

zyyc
c

+

−
−=

 
233 qc −= ,   ,

)(

2
22*2*

3**
2

32
zy

zyp
d

+
=

     

22*2*

2*2*2*
2

33
)(

)(

zy

zyyp
d

+

−
= . 

This leads to the characteristic equation  
.0)(),( 654
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,22332112221133112 ccccccccQ +−+=        ,333 dQ −=               ,)( 32233322114 dcdccQ −+=   
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The eigenvalues are the roots of the characteristic equation (22) of the system (21) that has infinitely many solutions. We wish to 
find periodic solution of the system (21), for the periodic solution, eigenvalues will be purely imaginary. Substituting 

0, >= ηηλ i  in equation (22), we get the transcendental equation on separating real and imaginary parts of the resulting equation 

and then by taking  ,2 θη =   we get a cubic equation given by    
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Now equation (23) will have a positive root if  
01 >S  and .03 <S                                                                                                                                                     (24) 

Since, the existence condition for interior equilibrium point ),,( **** zyxE  holds true, we have the condition for 1S  to be 
positive and 3S to be negative. Thus, we can say that there is a unique positive root 0η satisfying (24), that is, the characteristic 
equation (22) has a pair of purely imaginary roots of the form 0ηi± . So, corresponding to 0ηλ i= , there exist k1τ  such that 
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K3,2,1,0=k  

For ,0=τ ),,( **** zyxE is stable if conditions (15) holds. Then by Butler’s lemma [Freedman et. al.(1983)] 

),,( **** zyxE remains stable for 1ττ <  and unstable for .1ττ > We also observe that the conditions for bifurcations (Hale and 
Lunel, (1993)) are satisfied if condition (22) holds, that is  
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This signifies that there exists at least one eigenvalue with positive real part for .1ττ >  
Theorem (5.2): If 01 >S  and ,03 <S  then *E  is asymptotically stable for 0=τ  , it is impossible that it remain stable for 

.0>τ  Hence there exist 01 >τ , such that ,1 ττ > *E is asymptotically stable and for ,1 ττ <  *E  is unstable and τ  increases 

together with 1τ  , *E  bifurcates into small amplitude periodic solution of Hopf type the value of 1τ  is given by following 
equation   
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6. Numerical Simulation 
 
   Analytic studies can never be complete without numerical verification of the results. In this section, we present computer 
simulation of some solutions of the system (1) and (16). Besides verification of our analytical findings, these numerical solutions 
are very important from practical point of view. Since the stability criteria in the absence of delay )0( =τ will not necessarily 
guarantee the stability in presence of delay )0( ≠τ .To illustrate the results, we choose parameters hypothetically for system (2) as   

,11 =c   112 =c ,     101 =p ,     22 =p ,     5.11 =q ,     5.12 =q .                                                   (25) 
When 0=τ  and )2.0,2.0,63.0())0(),0(),0(( =zyx , with the above set of parameters values system (2) has interior 

equilibrium point  ),230213.0,.398704.0,51622.0(),,( **** =zyxE  which is locally asymptotically stable. All the conditions 
regarding to the local stability 04433.31 >=A , 03821.16321 >=− AAA  are satisfied. The eigenvalues for the system are as 
follows 4646814.0−   and  29694.148931.1 i±−  .  
   The results of numerical simulation are displayed graphically, in figure (1) the prey, middle predator and top predator 
populations are plotted against time. From figure (1) it is noted for given initial values both the populations tend to their 
corresponding value of equilibrium point *E and hence coexist in the form of steady state assuring local stability of *E .  

. 

 
                                    Fig. 1, Stable behaviour of x , y  and z with t when and all other parameters are same as in (25) 

 
6.1a Hopf Bifurcation: 
   By using Liu’s criterion it is interesting to observe that, when the coefficient 2c of predator species is increased, the positive 

equilibrium loses its stability and a Hopf bifurcation occurs when 2c  passes a critical value. With the same choices of parameters 

as in (25) if ,7.152 =c then it is shown in figure 2(a), *E is locally asymptotically stable. Now if we increase the value 

of ,2c keeping other parameters fixed the stability behaviour of the system (2) changes at the bifurcation value 81.15*
2 =c . For 

,7.16 *
22 cc >= *E becomes unstable.  Large amplitude of oscillations is found for this value of 2c shown in figure 2(c-e). 

Figure 2(b), shows stable limit cycle for ,7.15 *
22 cc <= approaching the equilibrium point. Figure 2(f), shows periodic orbit 

near *E for  .7.16 *
22 cc >=  

   Thus the numerical study presented here shows that, using parameter as a control, it is possible to break unstable behaviour of 
the system (2) and drive it to stable state.  
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(e)                                                                              (f) 

Figure 2(a), shows stable behaviour of x , y  and z when ,7.152 =c and all other parameters are same as in (25). Fig. 2(b), gives 

phase portrait of system (2) showing stability. Fig 2(c-d) shows large amplitude of oscillations for ,7.16 *
22 cc >= and fig. 2(f),  

shows a periodic orbit near *E .   
 
6.1b Type I Delay 
   We see that *E is locally asymptotically stable in the absence delay. Now for the same set of parameters as in (25), we found 
that 01 >P and 03 <P , which indicates that there exist a positive root .4040.10 =ω With this value of 0ω we calculate the 
critical value of delay constant ,9820.00 == ττ where the stability switch may occur. Stability switch in our case stand for 
switching from stable steady state to stable oscillatory state. We also observe that the transversal condition (20) is satisfied as 
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   Therefore ),,( **** zyxE  loses its stability as τ passes through critical value 0τ . It is shown in figure 3(a) that if 08.0 ττ <= , 
*E is locally asymptotically stable. But if we take 01.1 ττ >= , *E  is found to be unstable and bifurcating periodic oscillation 

near *E is observed .Thus, we conclude that time delay   breaks the stable behaviour of system (2) and drives it to an unstable 
state. We have drawn time series in figure 3(b) for 9820.00 == ττ and figure 3(c-e) for 01.1 ττ >= . Large amplitude 
oscillations are observed for this value of .τ    
   We have studied phase portrait of the delayed system for various value of delay. Figure 3(f) shows phase portrait of system 
for 08.0 ττ <= . It shows stable limit cycle approaching the equilibrium point. Figure 3(g) depicts the stable limit cycle due to 
Hopf bifurcation at 9820.00 ==ττ . Figure 3(h) shows phase portrait of system for 01.1 ττ >= . It demonstrates a periodic orbit 

near .*E Further on increasing the value of delay we have observed the strange attractor for 2.2=τ , which displayed in figure 
3(i).  
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Fig. 3(a), Shows stable behavior of x , y  and z in finite time and fig. 3(f), shows stable limit cycle when 08.0 ττ <= and all 
other parameter are same as (25). Small amplitude of oscillations is observed in fig. 3(b) and Fig. 3(g) shows limit cycle 
at 9820.00 =τ . Fig. 3(c)-(e) shows large amplitude of oscillations for 01.1 ττ >=  and Fig. 3(h), gives periodic orbit near *E . 
Fig. 3(i), shows strange attractor at  .2.2=τ  
 
6.1c Type II Delay 
   We observed that there is no effect of delay in the system (21) for above set of parameters given in (25). Therefore in order to 
study the delayed system we consider another set of parameters given as  

,21 =c    ,1.31 =p     ,3.52 =c     ,3.01 =q      ,22 =p    6.02 =q .                                                                       (26) 
  With the same choices of parameters as in (26), we observed that there exist a unique interior equilibrium point given by 

,3506546.0* =x  1293336.0* =y  and 1975647.0* =z . Simulation of the model with this set of parameter without delay 
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gives stable dynamics as presented in figure 4(a) .With the same set of parameters, we found that 01 >S  and 03 <S which 
indicates that there exist unique positive root , given by 1582.00 =ω  and therefore critical value of delay 7544.61 ==ττ  for 

0=k . Therefore ),,( **** zyxE  loses its stability as τ passes through critical value 1τ . It is shown in figure 4(b) that 

if 16.6 ττ <= , *E is locally asymptotically stable. But if we take 10.7 ττ >= , *E  is found to be unstable and bifurcating 

periodic oscillation near *E is observed shown in Fig. 4(d-f). Thus we conclude that time delay   breaks the stable behaviour of 
system (2) and drives it to an unstable state. Small amplitude of oscillations are observed at 7544.61 ==ττ , shown in figure 
4(c). In figure 4 (f), we see phase portrait for 16.6 ττ <=  it shown a limit cycle. But for 10.7 ττ >=  , figure 4(g) shows a 

periodic orbit near *E . We also obtained a strange attractor on increasing the value of delay up to 15=τ , Shown in figure 4(i).      
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Fig. 4(a), Shows stable behavior of x , y  and z when .0=τ  Fig.4(b), 4(g) Shows stability of *E  and phase portrait of the system 
(21) showing stability when 16.6 ττ <= .. Small amplitude of oscillations is observed at 7544.61 ==ττ  shown in fig.4(c). Fig. 

4(d)-(f) shows unstable behavior for 10.7 ττ >=  . Fig. 4(g), gives periodic orbit near *E for 10.7 ττ >= and all other parameter 
values are same as (26). Fig. (i), shows strange attractor at  .15=τ   
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   With the same set of parameters values as (25), we found that when top predators are absent, prey and middle predators exists. In 
figure (5), we obtained that in the presence of top predator population, prey population increases and population of middle predator 
decreases, but in the absence of top predator population of prey decreases and middle predator population increases.  
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Fig. 5, comparison of prey and middle predator populations with and without top predator with the same set of parameters values 
as (25) 
 
7. Conclusion  
 
   In this paper, we studied the dynamical behaviour of a tritrophic food chain model. Ratio-dependent type III functional response 
is considered to model the interactions among the species of the system. It is shown (in theorem 3.1) that non-dimensionalized 
system (2) is uniformly bounded, which, in turn, implies that the system is biologically well behaved. It has been recognized that 
most of the studies of continuous time deterministic models revel two basic patterns: approach to equilibrium or to a limit cycle. 
The basic rationale behind such type of analysis was the implicit assumption that most food chains we observe in nature 

correspond to stable equilibrium point ),,( **** zyxE . From this view point, we have presented the stability and bifurcation 

analysis of most important equilibrium point ),,( **** zyxE . From numerical calculations, in figure (5), we observed that when 
top predators are absent, predator y  and prey x  co-exist. From this we conclude that in presence of top predators, prey population 
increases and causes depression in the middle predator but in the absence of top predator prey population goes on decreasing and 
middle predator increases. Thus our model may be looked upon as the mathematical model for tea plant – pest (e.g. Looper 
Caterpillar) – beneficial predator (natural enemy of the pest e.g. Sarcophaga). These types of models may be used for the purpose 
of ‘Bio-Control of Pests’ which is suggested by several researchers to reduce the hazards of chemical pesticides (Das et al. 1988) 
and (Kabir 2001).   
   Time-delay has a significant impact on stability.  It is necessary to take into account the effect of time-delay to have a 
biologically useful mathematical model [MacDonald, 1989; Gopalsamy, 1992; Kuang, 1993].  From this view point, we have 
formulated the model (16) where the delay may be looked upon as the gestation period or reaction time of the top predator. But in 
model (21), we have assumed that the change rate of the top predator depends on the number of middle predators and top-predators 
present at some previous time. Then the rigorous analysis leads us to the fact that the stability criterion in absence of delay is no 
longer enough to guarantee the stability in presence of delay. It is found that when time delay is absent, system is uniformly 
bounded, which in turn implies that the system is biologically well behaved.  We have found a critical value of time delay 0τ for 
the model (16) and 1τ for the model (21) such that if time delay is less than 0τ  system (16) is stable and if time delay exceeds 0τ  
then system becomes unstable and show periodic oscillations. System (21) is stable for 1ττ < and unstable for 1ττ > . This 
implies that time delay plays a significant role on the stability of the system. It breaks the stable behavior of system and drives it to 
unstable state. All our important mathematical findings and graphical representation of variety of solutions of system (2), (16) and 
(21) are depicted by using MATLAB programming.   
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