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Abstract

In the present study, we presented analytidakisos for solute transport in a semi-infinite éretgeneous adsorbing porous
media with time-varying boundary condition. Initjglsolute concentration in the domain is functafh the space variable.
Continuous periodic point source is injected in tleenain through left boundary, i.&X = 0. Due to heterogeneity of the
medium, dispersion parameter is considered praputito (¢ +1)th power of linear function of space variable. The
groundwater flow velocity is considered proportibt@ multiple of temporal function and th power of linear function of

space. First-order decay and zero-order produetierelso considered space as well as time dependiéetretardation factor
is a space dependent function. Laplace Transféwsmdtechnique is employed to get the solution @& proposed problem.
Certain new transformations are introduced to cdntle variable coefficient into constant coeffitie Comparison with
analytical and pdepe MATLAB solution of the trangpequation are illustrated graphically and foumdbie in excellent
agreement.
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1. Introduction

The contaminants in aquifer mainly transportwgtound water flow that may affect subsurface wtable. Solute transport in
the subsurface and the groundwater are also affdgtea number of physical, chemical and biologmalperties of the media.
The natural hydrological conditions may also affitxet behavior of some pollutants because theretenfial interaction between
the water and the porous medium through which #spa. If groundwater gets polluted once, it is \difficult to clean it.
Contaminant transport through porous medium isrileset by second order partial differential equatidmparabolic type which is
generally known as advection-dispersion equatioga(B1972). In the published literatures, numernelytical solutions have
been published for estimation of the solute trartsgoantitatively in subsurface, lakes, reservoiligins, and canals through
mathematical models. Analytical solutions for camaéive, non conservative solute in confined/unaowed aquifers have been
developed for various types of boundary conditiddsank (1956) developed the analytical solutioradfection-dispersion in
one-dimension for a point source pollutant in parmedium. Huyakoret al. (1987) developed an analytical model for predgtin
contaminant transport perpendicular to the directbgroundwater flow. Park and Zhan (2001) digved analytical solutions
of contaminant transport from one, two, and thrizeethsional finite sources using Green’s functiorithud.

Workmanet al. (1997) developed an analytical solution for wagdile fluctuations in a finite thickness aquifélazumder and
Das (1992) and Jiang and Grotberg (1993) studiatittie effect of wall absorption on axial dispensio oscillatory tube flow.
One-dimensional solute transport through porousianeith or without accounting for zero-order protian and first-order decay
is developed by van Genuchtenal. (2013a&b). Kumaret al. (2010) , Yadawt al. (2010), Jaiswakt al. (2011), Yadav and
Jaiswal (2011) obtained analytical solutions foe and two-dimensional advection-diffusion equatigth variable coefficients in
a longitudinal semi-infinite domain, for temporaiyd specially dependent dispersion problems. Satgi. (2015) derived
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analytical solution of advection diffusion equatiaith variable porosity. Generally groundwater @nination takes place due
to infiltration of contaminant through the vadozme and reaching to the water-table in the diraatibgroundwater flow. Chen
et al. (2008) obtained analytical solution with hyperbolasymptotic distance-dependent dispersivity inopsr media.
Sanskrityayret al. (2016) obtained analytical solution of advectiaspérsion equation with spatially and temporallpetedent
dispersion using Green’s function. Singh and Chaie(2016) presented a solution of three dimerasdiadvection dispersion
equation with non-point source of in semi-infinagquifer with specified concentration along an aabit plane using Laplace
transform technique.

The objective of present study is to develop athemmatical model for conservative solute transporbne-dimensional
heterogeneous porous domain of adsorbing natue sdlution of the present study is derived by udiaglace Transformation
Technique. Zero concentration gradient is assuntetieaexit boundary, i.e. infinity. The adsorptionefficient is taken as a
function of space variable. The effect of heterajgnand physical parameters on water flow and tsottansport are well
illustrated. Dispersion coefficient is consideredportional to (¢ +1)th power of linear function of space variable. Treund

water flow velocity is considered proportional taltiple of temporal function and” th power of linear function of space. First

order decay and zero order production are alsotae account. Two form of temporal velocity amnsidered as especial cases.
Solutions have been obtained using a set of hyfo#ghenput data taken from the previous publistvedrks. Ground water
velocity ranges from 2 m/year to 2 m/day, intermagelivalues are taken in present study (Todd, 1980).

2. Mathematical Description of the Problem

The pollutant reaches mainly in two ways, indlue subsurface, the first advection which is cduseflow of groundwater and
the second dispersion caused by mechanical miximd) rmolecular diffusion.The mathematical relatiopsiof advection—
dispersion equation in one-dimension may be giwea becond order partial differential equation afgtolic type (Bear, 1972).

Rx 1) :%(D(x,t)g-u(x,t)cj ~ )+ ) W

The Eq. (1) is derived from Darcy’'s law and the lafvconservation of mass (Freeze and Cherry, 1878)in this equation
c[|\/||_‘3] is the solute concentration of the pollutant tpamsng along the flow field through the mediumaaposition x[L] and

time t[T] .D[Lz'r‘lj and u[LT'll are the longitudinal dispersion and the seepatgcity along* axis respectively an(;l/[T‘lJ,
y{ML‘3T‘1] represent the first order decay and zero ordsdtymtion rate coefficients for solute which representernal/external

production of the solute respectively. First termtbe left hand side of the equation (1) represehége in concentration with

time in liguid phase andR is retardation factor which is a dimensionlessngjitya First term on the right-hand side of the EL.
describes the influence of the dispersion on theentration distribution in longitudinal directievhile second term is the change
of the concentration due to convective transpolbingitudinal direction.

The coefficient of dispersion is considered cliseproportional temporally dependent groundwatelocity (Yim and Mohsen,
1992), i.e.
D(x,t) D u(x.t) )

‘1 where

We have assumed groundwater velocity and digpees u(x,t)=u, f (mt)1+ax)’ and D(x,t)= D, f (mt)(1+ax)
mlT‘lj is the unsteady parameter having the dimensioarsevof time Whila[L‘lj is a parameter to regulate the spatially
dependency of dispersion coefficient ghd arbitrary real number. Thué(mt) is an expression of non-dimensional variable.
Since it is assumed that dispersion is directlypprtional to the temporally dependent seepage itgloe., D u orD =nu,
where /] is constant which depends upon the pore geométityeoporous medium. First order deca)ty(x,t) and zero order
production y(x,t) which are temporally proportional to dispersiorefficient, may be defined aﬁ(x,t)=y0f(mt)(1+ ax)H,
x.t)= g, f(mt)(1+ax) ™ respectively and retardation isR(x,t)=R,(1+ax)* where uo[LT‘l], DO[LZT‘ll , yolT‘lJ ,
yolML’3T'1J and R, are constants. Therefore, Eq.(1) may be re-wraten

Ry(1+ax) % =£(Do f(me) ) % —u, f (me)a+ ax) Cj )
ot o0x 1) ©)

o f (mt)(1+ax) e+ f (mt)(L+2x)
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Initially, the domain has some concentrationalihis function of the space variable (Sirgtal. 2015). It means domain is not
solute free. Periodic input condition is assumethatorigin and flux type condition is consideredtee other end i.e., &=,
of the domain. It appears that pollution spreadfiéndirection of flow. The mathematically the iaitboundary conditions may be
written as follows:

c(x,t) = C|+§X;t=0, x>0 (4)

c(x,t)= c,(1+cogmt));t>0, x=0 )

ac(x’t):o;as X—-0 t>0 (6)
ox

where CO[ML’SI , q[ML‘3] are reference and resident concentration respdgtiVhe practical significance of the equation i)

the periodic concentration at source of the boundar, X = 0. The field observations indicate the source cotraon may not
be negative, therefore, (1+ cogmt)) is taken.

Let us introduce a new time variable as: (Crank, 1975),
t
T= jo f (mt)oit )

It is evident that the dimension df will be that of old time variabld hence it is referred as a new time variable.s lalso

ascertained thal =0 att =0. So nature of initial condition does not changehie new time domain. In terms of new time
variable the advection-dispersion equation (3) cedunto

a.0c _0 1 0C . _
R(1+ax = :&(DO(H ax)" = ~up 1+ ax)f cj—y0(1+ ax) o+ L+ ax) ®)
The analytical solution is obtained forf(mt)=|COE{mt)| andf(mt)=L separately. Wherek is any
(mt)2 + k2

dimensionless real number.

2.1Case1. when f(mt)=|cogmt), (periodic function)
using f (mt) =|cogmt) , in Eq. (7) we have

T= I;|cos(m]dt ©)
or mT =|sin(mt) (10)

Initial and boundary conditions (4-6) in terms efintime variablel may be written as:

c(xT)=c +Lx;0sx<w, T=0 11)
u

Co

c(x,T)=E{4—m2T2};x=O, T>0 j12
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%:O;as X >0, T2=0 (13)
X

Since MT <<1, so neglecting higher order terms (third and ordajpin binomial expansion 0(1— mz'l'z)]/2 .

In order to reduce the advection dispersion egnaf8) into the constant coefficient a new spaceeddpnt transformation is
introduced as: (Kumaat al. 2012)

X = 1|og(1+ ax) Or X= l{exp(aX) —]}
a a (14)

Dimension of new space variabM is same as ok and X =0 at X=0.

The Eg. (8) and Egs. (11-13) are reduced intoWolg form with transformation (14)

ac d%c oc
ROG_T =D, PG _(Uo _ZaDo)a_X_(/Jo +ZaU)C+Vo
Or
ac d%c ac
Roﬁ=Dow‘Wo&‘ﬂlc+Vo (15)
o(X,T)=¢ +£{1—exp(—aX)} ;0<S X <0, T=0 (16)
0
C(X,T):C—2‘3{4—m2T2};X:O, T>0 17)
g—;:O;as X 50, T=0 (18)

Where 1, = 4, + {au, and W, =u, —{aD,

Now introducing a transformation in order to redttoe convective term from advection—dispersion (&§)

2
c(X,T):k(X,T)ex% Wo x—i( Wo +N1JT}+ﬁ (19)

2D, R, 4D, A
With transformation Eq. (19), Egs. (15-18) redute i
ok 9%k
—=D.—— 20
R oT  ° X2 (20)
k(x,T):Hc, +ﬁ—ﬁJ—ﬁexp(—aX)}exd—@(); 0< X <00 T=0 21)
Ua ) Uua

k(X,T):{C—ZO(4—mZTZ)—%}exp(nzT); X=0T>0 (22)
1
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0K Wo 20 asX & 00 T20 (23)
ax | 2D,

W, 1w,
Where, 3=—2- and = |—|-—2>+
ere, 8 2D, and 177 (4D0 ,ulj

Applying Laplace Transformation on Egs. (20— 23}, get

d*k PR -_R Yo _V 7

- k=—"2[|c+22>-29 e 0 e a+pB)X 24
a2 D, o, [\% ua xf(- BX )~ 0,2 xg-(a+B)X} (24)
T _ Yo 1 m2C0 VY —
k(X,p —(20 ——j - ; X =0 (25)
( ) 0 L, (p_nz) (p_nz)s
—dk+ Wo =0; as X 5o (26)
dX 2D,

Where k(X, p) = I k(X,T)e™™"dT ,inwhichp is the Laplace transformation parameter.

General solution Eg. (24) may be written as:

X p Ce\/':0 +Ce\r0 +(c+ 0 VOJ exp(—ﬁx) _Y exp{—(a+,8)x}
u,a ,Ul( E;oﬁzj uoa{p—t;;(a+ﬁ)2}

Using conditions Eq. (25, 26) in Eq. (27), the iolu of differential Eqg. (24) may be obtained as:

R(x,p):(zco-ﬁfxp(_ %Rooxj_mzcoexp(_ FE:OXJ ( o ﬁ ’{ Jﬁ ]

) \p-n°) (p-n2) " upa ﬂl ( 2 J

exp{— pROX]
Y, D, {“ Yo _ ﬁ) exd=pX) _ v exd-(a+pB)X} 28)
u°a{p—2;’(a+ﬂ)2} ot A [ —I;zﬂzj u°a{p—2;’(a+ﬂ)2}

Taking inverse Laplace transform of Eq. (28), asuhg the transformation (19), we get the desirelyaical solution as:

T o T

27)
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%{(”Tz B ] e T o

[/7T2+x;\/_0_ 4”\/\/__0 4D0,7] xr{lfT +’7\/_%Jerfc[2x\/§ +’7\/_J :D?I

{2 ey )

e b S

RTENLA AN AR
+B

o+ 2 Lo oxdorr - ) L et - (a v Ac)

U
2
exp| o x—i(W‘J +/JlJT +Yo
2D0 RO 4D0 /’11 (29)

Where p=_| OIB and W= /— a+,6’

2.2 Case2. when f(mt):

——— (Algebraic sigmoid function) as Singhet al.(2015),
\/(mt) +k?

So, with help of Eq.(7) , the new time variallefor the present case may be written as:

ot mt
e

o, T :1[ (mt)* +k? —k) (30)
m
Initial and boundary conditions reduced to
c(xT)=c +5X;OSX<00,T:O (31)
_ % of1_K )2 _
c(x,T)-E 4=m| 1= [T = 2kmT 1;x=0,T >0 (32)
anX’T):O ;asX -0 [ T=20 (33)
X

since MT <<1 so neglecting third and higher order termswF in expansion ofcos{w/(mT )2 + 2kmT }
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Now, adopting similar process as in case 1 i.es, Eifl-29), the solution of the present case maghb@ined as:

b P e ]

m:r;:o(l kzj{(’ﬁz Jf 4/7% 4DOI7J ’{HZT_H%XJX

- r“ R

)

R

ex;{n T - Jerfc[ j [2/7T " \/\I{)EJex;{nzT +1 \/\/gx jx

oo e 2 o
|

2,/D,T
ex;{pZT + p\/%x Jerfc( ZX\/\I?)% + pﬁ]} +%{ex AT - w\\//gx
ch{ﬂ—w\ﬁ'}+ex afT+w‘/€X}erfc{ R, +wﬁ} +
JDy 2,/D,T

(ci+ﬁ yojexp(,oZT ,HX) VO exp{a)ZT (a+ B)x }}

Upd f4

2
expl o x—i[w‘) +,UlJT +ﬁ
2DO RO 4DO /'Il 134

4. Result and Discussions

Parameters governing the solute transport througgbys domain vary significantly upon the naturettod pollutant of any
geological formation. Thus, to illustrate the sfgdnt factors accounting for this formulation, gpbthetical case of porous
domain and parameters are taken. The numericabsabfi majority of the parameters considered eithmn the published
literature or determined using existing empiricglationships. The analytical solutions obtainednakquation (29) & (34) are
demonstrated graphically. The concentration vasiresevaluated in a finite longitudinal space doma@ig x(km) < 4. Two forms

of f(mt) are discussed separately.

4.1 Casel: when pore water velocity is of the form f(mt) :\Co{mtx
Figs.(1-4) are drawn for solution evaluated H8g.(29) with common parameterg, =10 , ¢ =001

U, = 0.0](km year’l), R=12,a= 0085(km‘1),,u0 = Oodyear'l) andy, =0.0007 .The groundwater velocity ranges from
2m/day to 2m/year depending upon the pore geometry of porous doffadtd (1980).
Fig.1(a). shows dimensionless concentratiofilpsoin the domain at various timeéyear) = 2610. It reveals that as the time

increases the concentration values continuousheases inside the domain but the level of comatah recorded nearly at
same level at the end of the domain. It alseaés/that input concentratiagic, at the originx(km) =0 is nearly 2.0at each
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time and attenuates with position at each consiblénee. Figure 1(b) obtained from pdepe of Matlalovgs same pattern as of
Fig.1(a) that validates the accuracy of derivedtsorh.

The Fig.2(a). lllustrates the effects of varioudispersion coefficients on concentration prefiéd tima(year) =2. The input
concentration,c/c, at the origin i.e., at(km):o, is same at each dispersion coefficient andtenattes with position but

concentration level is lower for lower dispersiavefficient while higher for higher. Fig.2(b) asans same the concentration
pattern.

Fig.3. depicts the concentration profilesc/c,verses time interv@l<t(year)<35 for different values
of x(km): 0500.75100. It is observed that the contaminant concentratibeach mentioned position initially almost saroe b

increases as the time increases and gets stablesafhe time.

Fig.4(a). depicts the surface distribution ohcentration for various position and time with & skinput data. This figure
describes the distribution pattern of solute cotregion in the medium with a better visualizatidrhe concentration pattern
seems to have governed well primarily by bouypdzondition and then relatively other parametéys.far as transport
processes in the subsurface are concerned, the mateement plays a major impact on the spreadinthefsolutes. Fig.4(b)
surface plot obtained from pdepe shows good acgurfaconcentration pattern.

mt

4.2 Case 2: when pore water velocity is of theform ¢ (mt) =+
(mt)* +k?

Fig.(5-8) are drawn for solution evaluated Dby q.(B4) with common parameters ¢, =10
¢ =001,k=01,u,= 0.0](km year 'l), R=12,4, = 0.05(year’1), m= 0001year*),a= 0084km™), and y, = 0.0007.

Fig.5(a). shows dimensionless concentrationilesofcomputed for different timeéyear) = 61014 . It reveals that the
concentration level at particular position is lovier lower time while higher for higher time. Theput concentratiom:/c0 at the

origin, X(km) =0, isnearly2.0 at each time and attenuates with position and.tit is also observed that concentration started

decreasing with respect to space and increasirgtimiie as in periodic form of pore-water velocitytlthe concentration values
away from the source position for periodic formvefocity at each position are higher than thaselie algebraic sigmoid form
of velocity. It is observed that the contaminamin@entration decreases near the source and ematgaspoint near

x(km) = 1.0and reaching towards the minimum harmless cond@ntraFigure 5(b) obtained from pdepe of Matladwis the
same pattern as of Figure 5(a) and solution isemtittated from Fig. 5(b).

Fig. 6. lllustrates dimensionless concentratibstribution at various positionsx(km)z 0500.75100 in a time domain
O<t(year) < 35. Itis observed that the concentration is higleddwer X and lower for highekK.

Fig.7(a) demonstrate the concentration profitesvarious dispersion coefficient@o(kmzyear'l): 010203 . It reveals

that concentration value is lower for lower dispanscoefficient near the source boundary and hidgdvehigher. The contaminant
concentration values in algebraic sigmoid form efoeity are observed lower than the periodic fofvelocity and attained
harmless level near to source boundary. The Flg.ghows same pattern as same in Fig. (7a).

Fig.8(a). explores the surface plot for disttibn of concentration for various position anddinvith a set of input data. This
figure describes the distribution pattern of solewacentration in the medium with a better viswalon. Advection is considered
to be the main process driving the movement ofteslérom one position to another. Figure 8(b) atgdifrom pdepe of Matlab
authenticates the concentration pattern from E¢). (3

Fig.(9) demonstrates the comparison of conceatraprofiles at different positions between pertodunction

f(mt):‘cog(mt)‘ and algebraic sigmoid functiom(mt):Lt for dispersion DO:O.l(kmzyear‘l) and unsteady
(mt)® + k2
parametern(yearl):o,ooj. It is recorded that at a fixed point in the domabntaminant concentration level remains higher fo

mt

f(mt) = |cogmt) than that off (mt) =
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Fig.(10) shows the comparison of concentrafiattern in time domair0<t(year) <35 betweenf(mt)=|co{mt)] and

f(mt) = (;nt for dispersionD, = 0.1(km2year‘l) and unsteady parameta'(year'l):o,ooj. It reveals that attenuation
mt)* + k2
process is faster fofr(mt) = ™ than f(mt) =|cogmt)
(rnt)2 + k2

Table 1 demonstrates the effect of vafuén first case f(mt)=|cogmt). As the value of¢ increases, the concentration at

fixed position attenuates slightly fast. It maycabe ascertained that effect of the valug/ofis low for the proposed case.

Table 2 studies changes in the concentraticenpator varying value of in second case(mt) = M Asthe value
(mt)* +k?
of { increases, the concentration level at fixed pwmsitdecreases up to distanoe(km): 0.5and increases at the

distances(km) = 11.52.0,2530335and 4.0.

concentration-space graph

t = 10(year) : 18]
t = 6(year)

tiyear)=10

tlyean=6 T

concentratio C/CC

t = 2(year)

Concentration c/c0

tlyear=2

3 4 5 . . ; . ; ; :
Distance tkm) a s 1 1 SDIstam:Ze K(km)z ) <) 35 4
Figure 1(a). Concentration distributions versus distance at Figure 1(b). Concentration distributions versus distance at
various time from solution Eq.(29) for various time from pdepe of Matlab for
fixed m{year)=0.001andD, = 0.1(km?year ) fixedm{year™) = 0.001andD, = 0.1(km?year *)

concentration-space graph

DO = 0.3(km? year?)
DO = 0.2km? year?)
DO = 0.1(km? year?)

concentratio C/CC
Concentration c/c0

o tSrTaa

L L L L L L L
L L a 05 1 1.5 =2, 25 3 35 4

3 4 Distance x(km)
Distance ¥km) ) ] ) ] ) )
Figure 2(a).Concentration distributions for various Figure 2(b). Concentration distributions for various
dispersion coefficierd, from solution Eq.(29) and fixed dispersion coefficienD, from pdepe of Matlab and fixed

t(year )= 2and m= 0001 year) - t(year) = 2and m= 000{year?)
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Figure 3. Concentration profiles at various positions in éamtime0 < t(year) <35 from Eq.(29) for fixedD, = 0.1(km2year‘1)

and m= 0007 year) .

Figure 4(a). Surface plot for distribution of concentration
from  Eq.29) for fixed m(year)= 0001 and
D, = 0(km?year )

Concentration Surface Graph
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Figure 4(b). Surface plot for distribution of concentration
from pdepe of Matlab for fixedm(year )= 0001 and

D, = 0(km?year )
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Figure 5(a). Concentration distributions versus distance Figure 5(b). Concentration distributions versus distance
from  Eq.34) for fixed m(year?)=0001 and from pdepe Matlab for fixed m(year”)=0001 and
D, = 04kmPyear ) D, = 0.{kn*year )

concentratio C/CQ

Distanct  x(km)

Figure 6. Dimensionless concentration distribution at vasipwsition in domain tim@< t(year) < 35 from Eq.(34) for fixed
D, = 0(kmPyear ) and m= 000{year™) .
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Figure 7(a). Concentration distributions for various
dispersion coefficienD, from solution Eq.(34) and fixed
t(year)=10and m= 0po{year*) .

Figure 7(b). Concentration distributions for various
dispersion coefficienD, from pdepe of Matlab and fixed

t(year) =10and m= 0001 year*)
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Fig.8(a). Surface plot f_or distribution of concentration Fig.8(b). Surface plot for distribution of concentration
from Eq.34) for fixed m(year?)=0p01 and from pdepe of Matlab for fixedm(year*)= 0001 and
D, = 01(km?year ) D, = 0.1{km?year )
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Figure 9. Comparison ofdimensionless concentration pattern between perigdlocity and velocity including algebraic
sigmoid function in a domair < x(km) < 4
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Figure 10. Comparison of dimensionless concentration distrdngibetweenperiodic velocity and velocity including algebraic
sigmoid function of time in a domain tirQe< t(year) < 35at various positions.
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Table 1. Concentratio€/ G, for f(mt)= |cos(mt)|

ey ——— | (=2 (=35 (=5
0 1.99995 1.99995 1.99995
0.5 1.28715 1.24239 1.19749
1.0 0.79647 0.74533 0.69594
1.5 0.47688 0.43540 0.39675
2.0 0.28308 0.25488 0.22949
2.5 0.17488 0.15797 0.14321
3.0 0.12008 0.11090 0.10313
3.5 0.09581 0.09122 0.08949
4.0 0.08759 0.08542 0.08366

Table 2. Concentratio®/ C,for f(mt)= mt/\l(mt)z +k?

ey ——— | J=2 {=35 =5
0 1.99995 1.99995 1.99995
0.5 0.20287 0.19745 0.19216
1.0 0.04319 0.04321 0.04323
15 0.05546 0.05556 0.05567
2.0 0.06844 0.06852 0.06860
25 0.08051 0.08057 0.08064
3.0 0.09176 0.09181 0.09186
3.5 0.10228 0.10231 0.10234
4.0 0.11213 0.11214 0.11216

5. Conclusion

This study derives an analytical solution forealimensional advective-dispersive transport imisefinite heterogeneous
porous domain subjected to time-dependent irdahtary condition assuming horizontal periodic fldirection, Dispersions is

considered proportional to multiple of temporallgepage flow ano(Z +1)th power of the special variable. Two forms of

temporally dependent velocities, such as periodiying and algebraic sigmoid function of time, amnsidered. The effect of
these two flow velocities, on solute transport hédrafrom a periodic point source injection in damare explained graphically.
The analytical solution is obtained using the Lapldransformation Technique. Few new transformatiame used to transform
advection differential equation into ordinary difatial equation.The developed analytical solutgme compared with solution
obtained through Matlab. The present result mayfbkelto understanding contaminant transport in dimeensional porous
domain with arbitrary time-dependent input functidime derived result may help the determining pasiand time to reach the
minimum/maximum or harmless concentration. The psed model has not been authenticated against@eyimental data for
the conditions considered in this study due to ailakle of suitable facilities.
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