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Abstract 
 
   In the present study, we presented analytical solutions for solute transport in a semi-infinite heterogeneous adsorbing porous 
media with time-varying boundary condition. Initially, solute concentration in the domain is function of   the space variable. 

Continuous periodic point source is injected in the domain through left boundary, i.e. 0=x . Due to heterogeneity of the 
medium, dispersion parameter is considered proportional to )1( +ζ th power of linear function of space variable. The 

groundwater flow velocity is considered proportional to multiple of temporal function and ζ th power of linear function of 

space. First-order decay and zero-order production are also considered space as well as time dependent while retardation factor 
is a space dependent function.  Laplace Transformation Technique is employed to get the solution of the proposed problem. 
Certain new transformations are introduced to convert the variable coefficient into constant coefficient. Comparison with 
analytical and pdepe MATLAB solution of the transport equation are illustrated graphically and found to be in excellent 
agreement. 
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1. Introduction 
     
   The contaminants in aquifer mainly transport with ground water flow that may affect subsurface water table. Solute transport in 
the subsurface and the groundwater are also affected by a number of physical, chemical and biological properties of the media.  
The natural hydrological conditions may also affect the behavior of some pollutants because there is potential interaction between 
the water and the porous medium through which it passes. If groundwater gets polluted once, it is very difficult to clean it. 
Contaminant transport through porous medium is described by second order partial differential equation of parabolic type which is 
generally known as advection-dispersion equation (Bear, 1972). In the published literatures, numerous analytical solutions have 
been published for estimation of the solute transport quantitatively in subsurface, lakes, reservoirs, drains, and canals through 
mathematical models. Analytical solutions for conservative, non conservative solute in confined/unconfined aquifers have been 
developed for various types of boundary conditions. Crank (1956) developed the analytical solution of advection-dispersion in 
one-dimension for a point source pollutant in porous medium. Huyakorn et al. (1987) developed an analytical model for predicting 
contaminant transport perpendicular to the direction of groundwater flow.  Park and  Zhan (2001)  developed analytical solutions 
of contaminant transport from one, two, and three-dimensional finite sources using Green’s function method.  
   Workman et al.  (1997) developed an analytical solution for water-table fluctuations in a finite thickness aquifer.  Mazumder and 
Das (1992) and Jiang and Grotberg (1993) studied that the effect of wall absorption on axial dispersion in oscillatory tube flow. 
One-dimensional solute transport through porous media with or without accounting for zero-order production and first-order decay 
is developed by van Genuchten et al. (2013a&b). Kumar et al. (2010) , Yadav et al. (2010), Jaiswal et al. (2011), Yadav and 
Jaiswal (2011) obtained analytical solutions for one and two-dimensional advection-diffusion equation with variable coefficients in 
a longitudinal semi-infinite domain, for temporally and specially dependent dispersion problems. Singh et al.  (2015) derived 
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analytical solution of advection diffusion equation with variable porosity. Generally groundwater contamination   takes place due 
to infiltration of contaminant through the vadoze zone and reaching to the water-table in the direction of groundwater flow. Chen 
et al. (2008) obtained analytical solution with hyperbolic asymptotic distance-dependent dispersivity in porous media. 
Sanskrityayn et al. (2016) obtained analytical solution of advection dispersion equation with spatially and temporally dependent 
dispersion using Green’s function. Singh and Chatterjee (2016) presented a solution of three dimensional advection dispersion 
equation with non-point source of in semi-infinite aquifer with specified concentration along an arbitrary plane using Laplace 
transform technique. 
   The objective of present study is to develop a mathematical model for conservative solute transport in one-dimensional 
heterogeneous porous domain of adsorbing nature. The solution of the present study is derived by using Laplace Transformation 
Technique. Zero concentration gradient is assumed at the exit boundary, i.e. infinity. The adsorption coefficient is taken as a 
function of space variable. The effect of heterogeneity and physical parameters on water flow and solute transport are well 
illustrated. Dispersion coefficient is considered proportional to )1( +ζ th power of linear function of space variable. The ground 

water flow velocity is considered proportional to multiple of temporal function and ζ th power of linear function of space. First 

order decay and zero order production are also taken into account. Two form of temporal velocity are considered as especial cases. 
Solutions have been obtained using a set of hypothetical input data taken from the previous published works. Ground water 
velocity ranges from 2 m/year to 2 m/day, intermediate values are taken in present study (Todd, 1980).  
 
2. Mathematical Description of the Problem 
 
   The pollutant reaches mainly in two ways, inside the subsurface, the first advection which is caused by flow of groundwater and 
the second dispersion caused by mechanical mixing and molecular diffusion.The mathematical relationship of advection–
dispersion equation in one-dimension may be given by a second order partial differential equation of parabolic type (Bear, 1972). 

                       ( ) ( ) ( ) ( ) ( )txctxctxu
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xt
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The Eq. (1) is derived from Darcy’s law and the law of conservation of mass (Freeze and Cherry, 1979) and in this equation 

[ ]3−MLc  is the solute concentration of the pollutant transporting along the flow field through the medium at a position [ ]Lx  and 

time [ ]Tt . [ ]12 −TLD  and [ ]1−LTu  are the longitudinal dispersion and  the  seepage velocity along  axis respectively and [ ]1−Tµ , 

[ ]13 −− TMLγ  represent  the first order decay and  zero order production rate coefficients for solute which represents internal/external 

production of the solute respectively. First term on the left hand side of the equation (1) represents change in concentration with 
time in liquid phase and R  is retardation factor which is a dimensionless quantity. First term on the right-hand side of the Eq. (1) 
describes the influence of the dispersion on the concentration distribution in longitudinal direction while second term is the change 
of the concentration due to convective transport in longitudinal direction.  

   The coefficient of dispersion is considered directly proportional temporally dependent groundwater velocity (Yim and Mohsen, 
1992), i.e. 

                            ( ) ( )txutxD ,, ∝                                                                                                                                        (2)       

   We have assumed groundwater velocity and dispersion as  ( ) ( )( )ζaxmtfutxu += 1, 0  
and 

 ( ) ( )( ) 1
0 1, ++= ζaxmtfDtxD  

where 

[ ]1−Tm  is the unsteady parameter having the dimension inverse of time while [ ]1−La  is a parameter to regulate the spatially 

dependency of dispersion coefficient andζ is arbitrary real number. Thus ( )mtf  
  is an expression of non-dimensional variable. 

Since it is assumed that dispersion is directly proportional to the temporally dependent seepage velocity i.e., uD ∝  or uD η= , 

where η  is constant which depends upon the pore geometry of the porous medium.   First order decay  ( )tx,µ  and zero order 

production  ( )tx,γ  which are temporally proportional to dispersion coefficient, may be defined as ( ) ( )( ) 1
0 1, −+= ζγγ axmtftx , 

( ) ( )( ) 1
0 1, −+= ζµµ axmtftx  

respectively and retardation is  ( ) ( ) 1
0 1, −+= ζaxRtxR  

where [ ]1
0
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0
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0
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are constants. Therefore, Eq.(1) may  be re-written as  
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   Initially, the domain has some concentration which is function of the space variable (Singh et al. 2015). It means domain is not 
solute free. Periodic input condition is assumed at the origin and flux type condition is considered at the other end i.e., at ∞=x , 
of the domain. It appears that pollution spreads in the direction of flow. The mathematically the initial boundary conditions may be 
written as follows: 

                ( ) =txc ,   x
u

ci

γ+ ; 0=t , 0>x                                                                                                                     (4) 

                ( ) =txc ,  ( )( )mtc cos10 + ; 0>t , 0=x                                                                                                        (5) 

                
( )

0
, =

∂
∂

x

txc
; as     ∞→x       ,  0>t                                                                                                         (6) 

where [ ]3
0

−MLc  
,
 [ ]3−MLci  are reference and resident concentration respectively. The practical significance of the equation (5) is 

the periodic concentration at source of the boundary i.e., 0=x . The field observations indicate the source concentration may not 
be negative, therefore ( )( )mtc cos10 +   is taken. 

   Let us introduce a new time variable T   as:  (Crank, 1975),   

                ( )dtmtfT
t

∫=
0

                                                                                                                                                    (7) 

It is evident that the dimension of T  will be that of old time variable t  hence it is referred as a new time variable.  It is also 

ascertained that 0=T  at 0=t . So nature of initial condition does not change in the new time domain. In terms of new time 
variable the advection-dispersion equation (3) reduces into   
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The analytical solution is obtained for  ( ) ( )mtmtf cos=    and ( )
( ) 22 kmt

mt
mtf

+
=  separately. Where k  is any 

dimensionless real number. 

 

 2.1Case 1.   when ( ) ( )mtmtf cos= , (periodic function) 

 using ( ) ( )mtmtf cos=
 
, in Eq. (7)  we have               

                  ( )dtmtT
t

∫=
0

cos                                                                                                                                              (9)                              

Or             ( )mtmT sin=                                                                                                                                                   (10)             

Initial and boundary conditions (4-6) in terms of new time variable T may be written as: 

  

                 ( ) x
u

cTxc i

γ+=, ; ∞<≤ x0  ,   0=T                                                                                                      (11) 

                ( ) { }220 4
2

, Tm
c

Txc −= ; 0=x ,    0>T                                                                                                    (12) 
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     ;0=
∂
∂
x

c
as   ∞→x ,  0≥T                                                                                                                          (13)  

Since   1<<mT , so neglecting higher order terms (third and on wards) in binomial expansion of  ( ) 21221 Tm−  . 

In order to reduce the advection dispersion equation (8) into the constant coefficient a new space dependent transformation is 
introduced as: (Kumar et al. 2012) 

 

                  ( )ax
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X += 1log
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1 −= aX
a

x
                                                                                             (14) 

Dimension of new space variable X
 
is same as of x  and 0=X

 
at 0=x . 

The Eq. (8) and Eqs. (11-13) are reduced into following form with transformation (14) 
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Where 001 auζµµ +=    and  000 aDuw ζ−=                                 

Now introducing a transformation in order to reduce the convective term from advection–dispersion Eq. (15)   
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With transformation Eq. (19), Eqs. (15–18) reduce into 
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Applying Laplace Transformation on Eqs. (20– 23), we get 
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Where  ( ) ( ) dTeTXkpXk pT−∞

∫=
0

,,  , in whichp  is the Laplace transformation parameter.                                                                        

General solution Eq. (24) may be written as: 
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Using conditions Eq. (25, 26) in Eq. (27), the solution of differential Eq. (24) may be obtained as: 

 
 

 

                

( )
( ) { }

( )








+−

+−−









−

−








−++









+−











−

2

0

00

0

2

0

01

0

0

0

2

0

0

0

0

0

0 )(expexp
exp

β

βγ

β

β
µ
γγ

β

γ

a
R

D
p

Xa

au

R

D
p

X

au
c

a
R

D
p

X
D

pR

au i

                  

(28)                           

Taking inverse Laplace transform of Eq. (28), and using the transformation (19), we get the desired analytical solution as:  
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Initial and boundary conditions reduced to 
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γ+=, ; ∞<≤ x0  , 0=T                                                                                                          (31) 

                ( ) =Txc ,








−







−− kmTT

k
m

c
2

3
14

2
2

2
20 ; 0=x , 0>T                                                                        (32)                   

                
( )

0
, =

∂
∂

x

Txc
 ; as ∞→x   , 0≥T                                                                                                                  (33) 

since 1<<mT  so neglecting third  and higher order terms of mT in expansion of ( ){ }kmTmT 2cos 2 + . 
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Now, adopting similar process as in case 1 i.e., Eqs. (14-29), the solution of the present case may be obtained as:                
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                                                                                                   (34)                 
  
4. Result and Discussions  
    
   Parameters governing the solute transport through porous domain vary significantly upon the nature of the pollutant of any 
geological formation. Thus, to illustrate the significant factors accounting for this formulation, a hypothetical case of porous 
domain and parameters are taken. The numerical values of majority of the parameters considered either from the published 
literature or determined using existing empirical relationships. The analytical solutions obtained as in Equation (29) & (34) are 
demonstrated graphically. The concentration values are evaluated in a finite longitudinal space domain, 4)(0 ≤≤ kmx . Two forms 

of ( )mtf  are discussed separately. 

 
4.1 Case1: when pore water velocity is of the form  ( ) ( )mtcosmtf =  

    Figs.(1-4)  are drawn for solution evaluated by Eq.(29) with common parameters 0.10 =c  ,
 01.0=ic  ,

 
( )1

0 01.0 −= yearkmu , 2.1=R , ( )1085.0 −= kma , ( )1
0 05.0 −= yearµ  and 0007.00 =γ  

.The groundwater velocity ranges from 

daym2  to yearm2  depending upon the pore geometry  of porous domain Todd (1980).  

    Fig.1(a). shows dimensionless concentration profiles in the domain  at various times ( ) 10,6,2=yeart . It reveals that as the time 

increases the concentration values continuously increases   inside the domain but the level of concentration   recorded   nearly at 
same level at   the end of the domain.  It also reveals that input concentration, 0cc  at the origin, ( ) 0=kmx  is nearly 0.2 at each 
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time and attenuates with position at each considered time. Figure 1(b) obtained from pdepe of Matlab shows same pattern as of 
Fig.1(a) that validates the accuracy of derived solution. 
   The Fig.2(a). Illustrates the effects of various   dispersion coefficients on concentration profiles at time( ) 2=yeart . The input 

concentration, 0cc at the origin i.e., at( ) 0=kmx , is   same at each dispersion coefficient and   attenuates with position but 

concentration level is lower for lower dispersion coefficient while higher for higher. Fig.2(b) ascertains same the concentration 
pattern.  
   Fig.3. depicts the concentration profiles, 0cc verses time interval 35)(0 ≤≤ yeart  for different values 

of ( ) 00.1,75.0,50.0=kmx . It is observed that the contaminant concentration at each mentioned position initially almost same but 

increases as the time increases and gets stable after some time.  
   Fig.4(a). depicts the surface distribution of concentration for various position and time with a set of input data. This figure 
describes the distribution pattern of solute concentration in the medium with a better visualization. The concentration pattern 
seems to have governed well primarily    by boundary condition and   then relatively other parameters. As far as transport 
processes in the subsurface are concerned, the water movement plays a major impact on the spreading of the solutes. Fig.4(b) 
surface plot obtained from pdepe shows good accuracy of concentration pattern. 

 

4.2 Case 2: when pore water velocity is of the form  ( )
( ) 22 kmt

mt
mtf

+
=

 

   Fig.(5-8)  are drawn for solution evaluated by Eq.(34) with common parameters 0.10 =c  ,
 

01.0=ic , 1.0=k , ( )1
0 01.0 −= yearkmu , 2.1=R , ( )1

0 05.0 −= yearµ , ( )1001.0 −= yearm , ( )1085.0 −= kma , and
 0007.00 =γ . 

   Fig.5(a). shows dimensionless concentration profiles computed for different times( )yeart 14,10,6=  . It reveals that the 

concentration level at particular position is lower for lower time while higher for higher time. The input concentration, 0cc  at the 

origin, ( ) 0=kmx , is nearly 0.2  at each time and   attenuates with position and time. It is also observed that concentration started 

decreasing with respect to space and increasing with time as in periodic form of pore-water velocity but the concentration values 
away from the source position for periodic form of velocity at each position are higher   than those for the algebraic sigmoid form 
of velocity.  It is observed that the contaminant concentration decreases near the source and emerges at a point near 

( ) 0.1=kmx and reaching towards the minimum harmless concentration. Figure 5(b) obtained from pdepe of Matlab follows the 

same pattern as of Figure 5(a) and solution is authenticated from Fig. 5(b).   

   Fig. 6. Illustrates dimensionless concentration distribution at various positions ( ) 00.1,75.0,50.0=kmx  in a time domain 

35)(0 ≤≤ yeart . It is observed that the concentration is higher for lower x and lower for higherx .  

   Fig.7(a) demonstrate the concentration profiles for various dispersion coefficients ( ) =−12
0 yearkmD  3.0,2.0,1.0  . It   reveals 

that concentration value is lower for lower dispersion coefficient near the source boundary and higher for higher. The contaminant 
concentration values in algebraic sigmoid form of velocity are observed lower than the periodic form of velocity and attained 
harmless level near to source boundary. The  Fig. (7b) shows same pattern as same   in Fig. (7a). 

    Fig.8(a). explores the surface plot for distribution of concentration for various position and time with a set of input data. This 
figure describes the distribution pattern of solute concentration in the medium with a better visualization. Advection is considered 
to be the main process driving the movement of solutes from one position to another. Figure 8(b) obtained from pdepe of Matlab 
authenticates the concentration pattern from Eq. (34). 

    Fig.(9) demonstrates the comparison  of  concentration profiles  at different positions between periodic function 

( ) ( )mtcosmtf =   and algebraic sigmoid function ( )
( ) 22 kmt

mt
mtf

+
=

 

for dispersion ( )12
0 1.0 −= yearkmD  

and unsteady 

parameter ( ) 001.01 =−yearm . It is recorded that at a fixed point in the domain contaminant concentration level remains higher for 

( ) ( )mtcosmtf =
 
than that of ( )

( ) 22 kmt

mt
mtf

+
= . 
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   Fig.(10)  shows the comparison of concentration pattern in time domain 35)(0 ≤≤ yeart  between ( ) ( )mtcosmtf =   and 

( )
( ) 22 kmt

mt
mtf

+
=  for dispersion ( )12

0 1.0 −= yearkmD  
and unsteady parameter ( ) 001.01 =−yearm . It reveals that attenuation 

process is faster for( )
( ) 22 kmt

mt
mtf

+
= than ( ) ( )mtcosmtf =  

   Table 1 demonstrates the effect of valueζ  in first case  ( ) ( )mtcosmtf = . As the value of ζ  increases, the concentration at 

fixed position attenuates slightly fast. It may also be ascertained that effect of the value of ζ  is low for the proposed case. 

   Table 2 studies changes in the concentration pattern for varying value of ζ  in second case( )
( ) 22 kmt

mt
mtf

+
= . As the value 

of ζ  increases, the concentration level at fixed position decreases up to distance ( ) 5.0=kmx and increases at the 

distances ( ) 0.45.3,3,0.3,5.2,0.2,5.1,1 andkmx = .  
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   Figure 1(a). Concentration distributions versus distance at 
various time from solution Eq.(29) for  
fixed ( ) 001.01 =−yearm and ( )12

0 1.0 −= yearkmD  

 

   Figure 1(b). Concentration distributions versus distance at 
various time from pdepe of Matlab for 
fixed ( ) 001.01 =−yearm and ( )12

0 1.0 −= yearkmD  
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Figure 2(a).Concentration distributions for various 

dispersion coefficient 0D  from solution Eq.(29) and fixed 

( ) 2=yeart and ( )1001.0 −= yearm  . 

 

   Figure 2(b). Concentration distributions for various 

dispersion coefficient 0D  from pdepe of Matlab and fixed 

( ) 2=yeart and ( )1001.0 −= yearm  
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   Figure 3. Concentration profiles at various positions in domain time 35)(0 ≤≤ yeart  from Eq.(29) for fixed ( )12
0 1.0 −= yearkmD  

and ( )1001.0 −= yearm  . 

 

 

 

 

             

   Figure 4(a). Surface plot for distribution of concentration 
from Eq.(29) for fixed ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD   

 

   Figure 4(b). Surface plot for distribution of concentration 
from pdepe of Matlab for fixed ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD   
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Figure 5(a). Concentration distributions versus distance 
from Eq.(34) for fixed ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD . 

 

   Figure 5(b). Concentration distributions versus distance 
from pdepe Matlab for fixed  ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD  
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Figure 6. Dimensionless concentration distribution at various position in domain time 35)(0 ≤≤ yeart  from Eq.(34) for fixed 

( )12
0 1.0 −= yearkmD  

and ( )1001.0 −= yearm  . 
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Figure 7(a). Concentration distributions for various 

dispersion coefficient 0D  from solution Eq.(34) and fixed 

( ) 10=yeart and ( )1001.0 −= yearm  . 

 

   Figure 7(b). Concentration distributions for various 

dispersion coefficient 0D  from pdepe of Matlab and fixed 

( ) 10=yeart and ( )1001.0 −= yearm  

 



    

   Fig.8(a). Surface plot for distribution of concentration 
from Eq.(34) for fixed ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD   

 

 

   Fig.8(b). Surface plot for distribution of concentration 
from pdepe of Matlab for fixed ( ) 001.01 =−yearm  and 

( )12
0 1.0 −= yearkmD  
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   Figure  9. Comparison of dimensionless concentration pattern between periodic velocity and velocity including algebraic 
sigmoid function in a domain  4)(0 ≤≤ kmx   
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Figure 10. Comparison of dimensionless concentration distributions between 
 
periodic velocity and velocity including algebraic 

sigmoid function of time in a domain time 35)(0 ≤≤ yeart at various positions.  
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Table 1. Concentration 0/cc  for  ( ) ( )mtmtf cos=   

)(kmx   ζ  2=ζ  5.3=ζ  5=ζ  

0 1.99995 1.99995 1.99995 
0.5 1.28715 1.24239 1.19749 
1.0 0.79647 0.74533 0.69594 
1.5 0.47688 0.43540 0.39675 
2.0 0.28308 0.25488 0.22949 
2.5 0.17488 0.15797 0.14321 
3.0 0.12008 0.11090 0.10313 
3.5 0.09581 0.09122 0.08949 
4.0 0.08759 0.08542 0.08366 

 

Table 2. Concentration 0/cc for ( ) ( ) 22 kmtmtmtf +=
 )(kmx   ζ  2=ζ  5.3=ζ  5=ζ  

0 1.99995 1.99995 1.99995 
0.5 0.20287 0.19745 0.19216 
1.0 0.04319 0.04321 0.04323 
1.5 0.05546 0.05556 0.05567 
2.0 0.06844 0.06852 0.06860 
2.5 0.08051 0.08057 0.08064 
3.0 0.09176 0.09181 0.09186 
3.5 0.10228 0.10231 0.10234 
4.0 0.11213 0.11214 0.11216 

 
 

5. Conclusion  
 
    This study derives an analytical solution for one-dimensional advective-dispersive transport in semi-infinite heterogeneous 
porous domain subjected   to time-dependent inlet boundary condition assuming horizontal periodic flow direction, Dispersions is 
considered proportional to multiple of temporally seepage flow and ( )1+ζ th power of   the special variable. Two forms of 
temporally dependent velocities, such as periodic varying and algebraic sigmoid function of time, are considered. The effect of 
these two flow velocities, on solute transport behavior from a periodic point source injection in domain are explained graphically. 
The analytical solution is obtained using the Laplace Transformation Technique. Few new transformations are used to transform 
advection differential equation into ordinary differential equation.The developed analytical solution are compared with solution 
obtained through Matlab. The present result may helpful to understanding contaminant transport in one-dimensional   porous 
domain with arbitrary time-dependent input function. The derived result may help the determining position and time to reach the 
minimum/maximum or harmless concentration. The proposed model has not been authenticated against any experimental data for 
the conditions considered in this study due to unavailable of suitable facilities.  
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