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Abstract

The high-quality processes usually have morentofi zeros than are expected under chance variaftiots underlying
Poisson or other count distribution. Therefore séhprocesses are usually referred to as zeroedflptocesses. The zero-
inflated processes are commonly modelled by zdiated Poisson (ZIP) or zero-inflated negative bl (ZINB)
distribution. In a manufacturing set up, the evatraof process capability index of a zero-inflafgdcess can be useful in
many ways, e.g. i) predicting how well the procefishold the specifications, ii) selecting betweemmpeting vendors, and
iii) assisting product developers/designers in rfyadg the process, etc. However, researchers hawengvery little
attentions on this aspect of zero-inflated proces@mly one such attempt is reported in literat&et, it does not always
represent the true capabilities of zero-inflatedcpsses, and sometimes it may give very misleadipgession about the
capability of the concerned process. In this atitthe concept of Borges and Ho (2001) is applbezkto-inflated processes
and a new approach for computation of process dipaindex of zero-inflated processes is develop&tie proposed
method reveals the true capabilities of zero-ieflaprocesses consistently. Application of the psepoapproach and its
effectiveness are illustrated using two dataseldighed by past researchers.
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1. Introduction

Statistical quality control (SQC) plays an im@mt role in many manufacturing and service indestrand it includes
primarily the areas of acceptance sampling, sidistprocess control (SPC), and capability evabrati Acceptance
sampling uses statistical sampling to determine tindreto accept or reject a production lot of materDodge (1943)
presented the pioneering work on acceptance sagapline fundamentals of SPC and control chartingewmoposed by
Walter Shewhart in the 1920s and 1930s. One ofnthan purposes of control charts is to identify tregiation due to
assignable causes so that appropriate correctiasunes can be taken in the manufacturing processder to keep the
process as stable under the influence of chancgesanf variation alone. The process capability igility measure which



38 Pal and Gauri / International Journal Bhgineering, Science and Technology, Vol. 13,3\@021, pp. 37-48

indicates the total amount of variation in a stgiiecess. The concept 6f, the first process capability index, is introduced
by Kane (1986). Process capability index providesyle number assessment of the ability of the mect® meet
specification limits for the quality characterigtiof interest. Subsequently, many other indi€&gg,(Cpm, Cpomi €tC.) are
developed to overcome the limitations@t Over the years, there were many important adincell the areas of SQC and
these advancements are well documented in différawits on SQC, e.g. Montgomery (2012) and Polhg2@%8).

The quality revolution caused by an increasingtympetitive global market since 1990s coupled wiitle rapid
advancement of technologies and automation in tedesprld has led to tremendous improvement in thmlity of
manufactured products, where process performanmoeasured in terms of number of defectives pefianillinits instead of
percentage of defectives. In such processes, marthe produced items are defect free and ordar@ minimum number
of items are observed as defective items contaisingle/multiple types of defects. One assumpt®that these processes
are so good that, in general, the produced itemslefect-free but the process is subject to ranstemeks (Chang and Gan,
1999; Xie and Goh, 1993). The random shocks cacserences of some defects (or defectives) andthneber of defects
(or defectives) follows a Poisson (or binomial)tdisition. Such high-quality processes usually henae count of zeros
than are expected under chance variation of iteulyidg Poisson or other count distribution (Guptaal., 1996; Sim and
Lim, 2008). Therefore, these processes are uswuelfrred to as zero-inflated processes (Lambe@2,1%im and Lim,
2008).

The traditional techniques of SQC, epgchart, c-chart andu-chart for process monitoring, published sampliteng for
lot sentencing, available methodologies for procesgsability evaluation become no more applicableh® zero-inflated
processes. This is because Poisson distributidninmmial distribution fails miserably to model sampount data obtained
from zero-inflated processes where most of thestane defect free. Since 1990s researchers hage salbstantial interests
in zero inflated processes and attempted to devampopriate techniques that can be applied effegtito zero inflated
processes.

The aspect of process control and monitoringerd inflated processes has drawn maximum attewtidhe researchers.
Xie and Goh (1993), Xie et al. (2001) and Sim anch (2008) advocated to fit a zero-inflated Pois¢diP) model to
account for the excess number of zeros and thefetermine the control limits of the control chansng the parameter
value estimated from the fitted model. Chang and @#99) developed control charts based on zetatgdf Geometric
(ZIG) distribution. Sim and Lim (2008) constructedntrol chats using the parameter values estinfabed the fitted zero-
inflated binomial (ZIB) model to the observed coudata. Alevizakos and Koukouvinos (2020) proposenibie
exponentially weighted moving average (DEWMA) cohtrthart for monitoring of zero-inflated binomialgezesses. Rakitzis
et al (2016) have proposed CUSUM control chartsronitoring ZIB processes. Mahmood and Xie (2018)ehreviewed in
details the past and current trends for the moaledsmonitoring of zero-inflated processes. Considlerresearches are also
carried out, in the recent past, on determinatioappropriate acceptance sampling plans underrdiifezero inflated count
distributions (Loganathan and Shalini, 2014; Ra Aslam, 2017).

However, the problem of assessment of capadslibf zero inflated processes has taken very ldttention of the
researchers. Traditionally, capabilities of proessare assessed in terms of different indices,(g,0k, Cpm, andCppy
(Chen at al., 2017; Kane, 1986; Kotz and Johns@@2p Historically, these indices are developed #&omproduct
characteristic which can be described as a contmwariable that follows normal distribution. Thengralization of these
indices for continuous non-normal quality charasters are suggested by Clements (1989), PearnClreth (1995) and
many others. But, in reality, there exists manyligu@haracteristics which are neither continuoasiable, nor do they
follow normal distribution. These data (e.g. defemtror etc.) are typically obtained by countingdamown as attribute
(count) data, which usually follow Poisson or binalhndistribution. Therefore, standard formulas aanbe used for
computation of capability indices of a process law@ such characteristics. To alleviate the prohlesome generalized
indices, e.gC index (Yeh and Bhattacharya, 1998)jindex (Borges and Ho, 2001}, index Perakis and Xekalaki, 2005)
andcC,, index (Maiti et al., 2010) are proposed in literat These indices are applicable to any processadkess of whether
the quality characteristic is discrete or contimsiand its underlying probability distribution. Th#ribute characteristics are
usually smaller-the-better (STB) type and havinty apper specification limit. Thus, the approprigtneralized indices for
these characteristics afg,, C,, Cpc, @andC,,y,. Pal and Gauri (20202020) have compared the relative accuracies of these
one-sided generalized indices for binomial as aglPoisson processes.

In a manufacturing set up, the evaluation otpses capability index of a zero-inflated processtmauseful in many ways,
e.g. i) predicting how well the process will holeetspecifications, ii) selecting between competiegdors, and iii) assisting
product developers/designers in modifying the psecetc. So, process capability analysis of zeftated process has an
important role in the context of quality controloWever, researchers have given very little attastion this aspect of zero-
inflated processes. To the best of our knowledgéy Batil and Shirke (2012) have attempted to messapability of a
zero-inflated process. They have incorporated tifiation of zero £) parameter intoC,, index, proposed by Perakis and
Xekalaki (2005), and denoted the new indexCgs,. However, it fails to represent the true capabsitof zero-inflated
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processes consistently. Particularly, for smalleabfn (say< 0.2), the value of/,, index becomes unusually high, which
gives a wrong impression about the capability ef¢bncerned process.

In this article, the concept of Borges and HOO®) is applied to zero-inflated processes and & approach for
computation of process capability index for zerfeited processes is developed, which reveals treedapabilities of zero-
inflated processes consistently. In section 2, ugeuss about the two most commonly used models &i& ZINB
distributions) for modelling of zero-inflated coudaita. In section 3, the procedures for estimafiagameters of these
distributions and selection of the most appropriditdribution for describing the concerned zerdaitgfd count data are
discussed. The proposed approach for assessmeapability of a zero-inflated process is discusseskection 4. Analysis
of two datasets published by past researchershenglated results are presented in section Slfstriations of the proposed
approach and its effectiveness. Section 6 concltidepaper.

2. Modelling Zero-inflated Count Data

A sample of sizen collected from a zero-inflated process always a@mst more count of zeros than are expected under
chance variation of its underlying standard disttiitn. This extra zeros cause overdispersion\agance be larger than the
mean) and thus, modifications in the underlyinghdéad distributions are needed to avoid the inoorestimation of the
model parameters and standard errors. Zero idflRtEsson (ZIP) model is usually used in modeltrego-inflated count
data where the overdispersion is solely causethdextra zeros. Test procedures for checking zdtation are available in
Zhao et al. (2009) and Kumar and Ramachandran §28020g et al. (2011) have proposed a method firepudentification
and robust parameter estimation in a zero-infl&edson process. For count data where the overdispeis caused by
excess zeros and also by unobserved heterogetiggtymost commonly recommended model is zero irflategative
binomial (ZINB). This is because it employs additb parameter that models additional variabilithé@ey et al., 2013;
Martin and Hall, 2017). Some other models thatus®d for such overdispersed count data are zdededfdouble Poisson
(ZIDP) model (Phang and Loh, 2013) and zero inflajeneralized Poisson (ZIGP) (Wagh and Kamalja8p0Workie and
Azene (2021) have proposed Bayesian zero-inflaagdession model. Favero et al. have proposed méiedeid generalized
linear mixed models. All these models are developgdssuming that the outcome variable containgxaure of a point
mass at zero and a count distribution. Howevernibst popular zero inflated models used by mangareers are ZIP and
ZINB models. So, here only these two models arsidaened for modelling zero-inflated processes.

2.1 Zero-inflated Poisson (ZIP) model
Let us assume that only one type of random slockrs in the zero-inflated process and the pritibabf occurrence of
that random shock i€ (where,1 < Q < 1). If Y is an independent random variable havingeao-inflated Poisson
distribution, the zeros are assumed to occur in Wwags corresponding to two distinct underlying etatThe first state
(random shock) occurs with probabil®yand when it occurs, the counts of defects, i.aconformities in samples follow a
Poisson distribution with parameter(where A > 0), and the other state occurs with probability(l-The zeros from the
Poisson distribution are called sampling zeros zems from the second state are called structwasz The probability
mass function (pmf) for ZIP model is given by
(1-Q)+ Qe fory=0

Q) = -1 1
foed) o fory =1,23,. @)

Here, mean and variance of the underlying Poissstnillition is4, and the mean and variance of the ZIP distribugion
E(Y) = QA andVar (Y) = QA[1 + (1 — Q)A] respectively.

2.2. Zero-inflated negative binomial (ZINB) model

For count data where the overdispersion is ahbgeexcess zeros as well as unobserved heterdgethel most commonly
recommended model is ZINB (Chaney et al., 2013)s Thbecause it employs additional parameter thadels additional
variability. Suppose, the probability of occurrerafea random shock iQ and when a random shock occurs, the counts of
nonconformities follow a negative binomial (NB) tisution with parameter& and A, wherek (> 0) is the dispersion
parameter andl is the mean of NB distribution. Then the probapithass function (pmf) for ZINB model is given by

(1—Q)+Q(kkj)k fory =0

X % (ﬁ)y (%)k fory =1,2,3,..

Here, the mean and variance of the underlying negainomial distribution areé andA (1 + %) respectively. On the other
hand, the mean and variance of the ZINB varialde&dr) = QA andVar (Y) = Q [/1 + (1 -Q+ %) Az] respectively.

fiQk 1) = )
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3. Estimating Parameters of ZIP and ZINB Distributions

Let us assume that units of products are randomly collected from anuwofacturing process and numbers of
nonconformities present in each of the sample waies observed. Suppose, number of units each hei/imgmber of
nonconformities, i.e. frequency 6f (i = 0,1,2,3,..m) number of defects (or nonconformities) in thelexted sample units is
denoted asi;. Therefore )2, n; = n. The total number of nonconformities insample units can be computed as D =
YiZolXn.

3.1 Estimation of parameters of ZIP distribution

In the ZIP modelQ is the probability of occurrence of a random shacH is the average number of nonconformities in a
sample, when the shock occurs. The paramé€taard can be easily estimated from the observed datgstte method of
maximum likelihood (Xie and Goh, 1993). The logdlihood function of2 andi for the observed dataset can be written as

InL(Q,1) = nyIn[(1 — Q) + Qe + I nyln (Qe_:”) (3)

The partial derivatives of the log-likelihoodnfition with respect ta2 and A result in the following two likelihood
equations:

ng (—1+e_}“) n-ng

(1-Q)+Qe~4 Q 0 4)
_mofe™? D _ (n—ny) =0 ) (5
rqei Tz T )=

The maximum likelihood estimates (MLEs)@fand) can be determined by solving the two likelihoodiaipns, which
are complicated. Therefore, these likelihood eguatneed to be solved numerically. It is obserbatl the optimal values of
Q and can easily be determined by performing enumera@arch using the ‘Solver’ tool of Microsoft Excdlsing the
‘Solver’ tool, the effects of all the possible vatuofQ and) (subject to the constraints due to the two likedith equations)
on the log-likelihood function can be examined &meh, the values a2 and) that maximizes the log-likelihood function
can be determined. These valueSadndi will be the MLEs ofQ andA respectively.

Once the MLEs of2 and LA are obtained, the expected proportions of unitgnga’i’ (i = 0,1,2,3,..m) number of
nonconformities and expected frequencyitfi = 0,1,2,3,..m) number of nonconformities in a sample of sizenits can
easily be determined. It is important to carry the Chi-square goodness-of-fit test for checkirg adequacy of the fitted
model. If it passes the goodness-of-fit test, it be& assumed that the fitted ZIP model is apprtofiar representing the
distribution of nonconformities in the producechite

3.2 Estimation of parameters of ZINB distribution
The parameter<), A andk) of the ZINB distribution can be estimated frone thbserved dataset by applying maximum
likelihood method. The log-likelihood function & A andk for the observed dataset can be written as under:

k k
INLQ Kk, A) = ny X ln{(l —0) +Q(m) }+

o [In(Q) + In{T(y; + k)} — In(y) — In{T(k)} + + k in(k)+y; In(A) — (v; + k)In (A + k)] (6)

An iterative optimization procedure is requineddetermine the values 61, A and k that maximize the log-likelihood
function. These values are the MLEs of the threknawn parameters of the ZINB distribution. It issebved that the
optimal values of2, A andk can be determined by performing enumerative seasatng the “Solver” tool of Microsoft
Excel. Taking into account the applicable constsirthe “Solver” tool can examine the effectsaiff the possible values of
Q, A andk on the log-likelihood function and thus, it carsidafind out the values of2, A andk that maximize the log-
likelihood function. In this case, the appropriatmstraint is that the mean of the fitted ZINB dizition is equal to the
sample mean.

Once the MLEs of2, A and k are obtained, the expected proportions of unitgniga’i’ (i = 0,1,2,3,..m) number of
nonconformities and expected frequencyitfi = 0,1,2,3,..m) number of nonconformities in a sample of sizanits can
easily be determined. Then, Chi-square goodne$s-tafst should be carried out for checking the cqaiey of the fitted
model.

3.3 Selection of the most appropriate model

To a given dataset, both ZIP and ZINB distribos can be fitted, and both the fitted distribusionay pass Chi-square
goodness-of-fit test. However, one should use thstrappropriate models for the purpose of stasispicocess control. For
identification of the most appropriate model farexo-inflated process generally the following twéormation criterion are
used: i) Akaike Information Criterion (AIC) and iBayesian Information Criterion (BIC). The AIC aBdC are formally
defined as
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AIC = 2K — 2 X In(L) @)

BIC = KIn(n) — 2 X In(L) (8)
whereK is the number of estimated parameters in the maagl) is the log-likelihood function for the model, ands the
sample size. A smaller value of AIC (or BIC) imglithat the existing discrepancy between the fittediel and the data is
less, and thus the fitted model that results inniremum value of AIC (or BIC) can be consideredttas most appropriate
one.

It is important to note that AIC (or BIC) valueveals the relative goodness of two or more fitremtlels. But it does not
say anything about the adequacy of the fitted motleérefore, the primary criterion for consideriaditted model as the
candidate model for the comparison is that it npasts the Chi-square goodness-of-fit.

4. Proposed Approach for Assessment of Capabilities of Zero-inflated Processes

The standard formulas for process capabilityciesl are developed for normal processes, whictsyarenetric about the
mean. However, count data (known as attribute da)discrete and its distributions (usually Paisso binomial) are not
symmetric about the mean. Similarly, ZIP and ZINBtributions also are not symmetric about the mé&aerefore, standard
formulas cannot be used for computation of capghidices of these processes that involve atteilgutality characteristics.
To alleviate the problem of evaluation of capaypilitdex of Poisson or binomial process, some gdigechindices, e.gCr
index (Yeh and Bhattacharya, 1998index (Borges and Ho, 2001}, index (Perakis and Xekalaki, 2005) afyg, index
(Maiti et al., 2010) are proposed in literature eTdttribute characteristics are usually smalleribteer (STB) type having
only upper specification limit (USL), and thus, thppropriate generalized indices for one-sided ifipation of these
characteristics ar€,, C,, Cp, andCy,,. Pal and Gauri (20202020) have compared the relative accuracies of these on
sided generalized indices for binomial as well ass$bn processes. They have found thaindex (Borges and Ho, 2001)
gives the most accurate estimate of the procesthddyp for the binomial as well as Poisson proesss

The(C, index (Borges and Ho, 2001) has one-to-one cooregnce (mapping) between the proportion of noramomdnce
and Z-value of the standard normal distribution. this method, the expected proportion of nonconforce of a
characteristic above USL is mapped to the Z-saotee right side of standard normal distributiomg &/3rd of this Z-score
is considered as the measure of the process cipatith respect to USL and it is denoted@s It is proposed to use the
same procedure for evaluation of capabilities ebZeflated processes. Thg, index can be evaluated from a zero-inflated
process using the following procedures:

1) Collect a sample ofi units from the concerned zero-inflated process aloskrve the numbers of nonconformities
present in each of the sample items. Let the randarable Y represents number of nonconformitiessents in an
item.

2) Fit appropriate zero-inflated distribution to theserved count data.

The procedure for fitting of the two most commonlsed zero-inflated models and subsequent seleofidime most
appropriate zero-inflated model is described irtisac.

3) Estimate the expected proportion of nonconformtagis with respect to USIPNU ;) in the concerned zero inflated
process. Letys; be the USL specified by the manufacturer on thaber of nonconformities in a unit. A unit will be
considered nonconforming if the number of noncamites in it is more thawys;. ThenPNUyg, can be estimated as
follows:

* For ZIP process, theNUys, can be estimated as
PNUys, = P(Y > cysp) = 1= P(Y < cygy) ]
~ Ve~ ]

=1- [(1 —Q)+Qet + TUED ”
[Q(l —e ,1) ZCUSL = lye. ] )

* For ZINB process, theNU can be estimated as
PNUys, = P(Y > cys) = 1= P(Y < cysy)

—1- [(1 -~0)+a(= A) + U x Iy+k) (kﬂ)y ( L)k] (10)

k+2 yir(k) k+2
4) Determine the Z-value in the right side of the d&md normal distribution that results in probapilérea equal to
PNUyq value. In other words, map the computeNU,, value to the Z-score in the right side of standaodmal
distribution. LetZ,, is the value of Z that results in probability af@él,, above it. TheZ, value can be obtained by
using inverse cumulative probability of the stamdiaormal distribution function as follows:
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0 PNUy, = 0.5
Zy = {® (1 - PNUys,) 0.0 < PNUyg <0.5 (11)
4’ PNUUSL = O

where,®(+) denotes the standard normal cumulative distrilpuimction.
5) Finally, obtain the estimate of the process cafighiidex (,) of the concerned zero-inflated process as follows:
C,= (1/3)x Zy (12)
If the value of indexC, is greater than 1, then the capability of the eoned zero-inflated process can be considered
good. In this case, the process is capable of pindumore than 99.865% conforming items, i.e. nitbhexn 99.865% of
produced items will have nonconformities less tegnal tocyg,, (the specified USL).

It is important to mention that if the valueRIWU 5, is more than or equal to 0.5, thBp (and henc&))) is considered as
zero. WherPNU,, is more than 0.5, it means that more than 50%adyced items are nonconforming, i.e. more than 50%
of produced items will have nonconformities morearthc,g, (the specified USL). Thus, it is considered thage t
corresponding manufacturing process is not capsttad.

4.1 Estimation of confidence interval 6f,

Since(, is a point estimate obtained from sample datis, fiecessary to construct confidence interval (Ekhe capability
index C,, for inference purpose, especially when the samjle is relatively small. However, constructionQifusing the
sampling distribution of the estimatéy is found to be quite difficult. Hence, we use Nagand Nagahata (1994) proposed
generalized approximation formula for constructidnwo-sided Cl ofC,,. According to Nagata and Nagahata (1994),

. A 1 ¢z A 1 c2
(1 — a)% two-sided Cl ofC, = (Cu - Zl_% /g + D)’ C,+ Zl_% /% + Z(n_1)> (13)

where,a is the level of significance and (&) is the confidence coefficient.

5. Analysisand Results

For the purpose of illustrations of computatiofiprocess capability indices using the propoggat@ach and assessing its
effectiveness, two datasets published by past refsers are analyzed here as two case studies.

5.1 Case study 1
The vyield, performance and reliability of semicoann devices become more and more sensitive toicpkate
contamination as the chip density increases andcseductor devices shrink in size. Therefore, mniig of particles
(particularly, which are bigger than a setting @lin the air of semiconductor manufacturing féieii is an important issue.
The particles in the air can be measured and Gleg$nto discrete size using a laser particle ¢eun

With the aim to establish a control chart for moriitg of particles in a clean room of a semiconduechanufacturing
facility, Tian et al. (2019) counted the particlgeater than a setting value using a Lasair Il-p@éticle counter and
collected 250 measurements on particle counts,hwvtintain only 90 non-zero particle counts. Thipligs that these are
zero-inflated count data. Therefore, it is decidedinalyze the same data for evaluation of procagabilities using the
proposed method and Patil and Shirke’s (2012)aaar. The full data set is available in Tian et(2019). The frequency
distribution of different counts in Tian et al. %) observed data is shown in Table 1.

Table 1. Frequency distribution of different counts of pelds
Particle 0 1 > 3 4 5
counts
Observed 160 | 49 27 11 2 1
frequency
Sample 0.640| 0.196| 0.108 0.044 0.008 0.0p4
proportion

The purpose of Tian et al.’s (2019) data collectieas to establish appropriate control chart for iaoimg the particles in a
clean room of the semiconductor manufacturing itgcdnd so they did not require taking into accotive USL for the
number of particles that can be tolerated in a $arapit. However, the USL must be known for compiata of process
capability index. So it is decided to assume thatWSL for the number of particle is 5.

Now ZIPQ, 1) as well as ZINBQ, k, A) distributions are fitted separately to these Zeflated count data. Also the
optimum log-likelihood value, AIC value and BIC ualare observed for each case. These values aenprd in Table 2.
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Table 2. MLEs and values of model selection criterion foPZind ZINB distributions

Elements ZIP(Q, A) distribution ZINB(Q, k, A) distribution
O =0.53699 O =0.88743
MLEs of the parameters 1 =1.10990 A =0.67894
k=10
Optimum log-likelihood value —261.289 —263.408
AIC value 526.578 532.815
BIC value 533.621 543.380

It may be noted that AIC (or BIC) value revetis relative goodness of two or more fitted modBlst it does not say
anything about the adequacy of the fitted modekr&fore, it is important to carry out the Chi-squgoodness-of-fit for
both the fitted distributions. The results of thiei-Square goodness-of-fit tests for the two fittéstributions are presented in
Table 3.

Table 3. Chi-square goodness-of-fit tests for the fitted ZHel ZINB distributions

Based on fitted ZIP Based on fitted ZINB
Particle Observed distribution distribution
counts frequency | Expected | Expected Expected Expected
proportion| frequency | proportion| frequency
0 160 0.6400 160.00 0.64113 160.28
1 49 0.1964 49.11 0.21374 53.44
2 27 0.1090 27.25 0.08644 21.61
3 11 0.0403 10.08 0.03495 8.74
4 2 0.0112 2.80 0.01414 3.53
5 and above 1 0.0031 0.76 0.0096p 2.40
Computedy? value x2=0.391 x% =13.781
Significance level#) p = 0.942 p = 0.151

It can be observed from Table 3 that in bottesake computed Chi-square value is not statistisajnificant at 5% level.
This implies that both the fitted models may be sidered adequate to describe the particle courtes thowever, the
computed AIC as well as BIC values (see Table &8)cdnserved lower for the fitted ZIP distributiohah the fitted ZINB
distribution. Thus the ZIP model is selected fesctibing the particle count data, and subsequelysis.

Computation of process capability index
The expected proportion of nonconforming items wétbpect to USL (i.€?NU) is estimated using the fitted ZIP distribution
as

exp(—1.1099) x 1.1099¥
y!

5
PNU =1—|[(1—-0.53699) + 0.53699 X exp(—1.1099) + Z 0.53699 x
y=1

= 0.00054
So the mapped Z-score in standard normal distdbuis found asZ; = ® (1 — 0.00054) =3.267. Thus, the process
capability index,C, is estimated ag, = (1/3) x 3.267 = 1.089, and using Nagata and Nagahata’s j1§&deralized
approximation formula, the 95% CI 6f, is obtained as [0.9847, 1.1931].

It is of interest to estimate Patil and Shirke (20proposed’/ ., index from the same dataset (2019) and compare the
same with the estimated), value. TheC/,,, index is a modified version of Perakis and Xeka{@R05) proposed,, index
and it is defined as follows:

Chov = mo> (15)
wherep, is the desired proportion of conforming units wigspect tdJSL, p is the actual proportion of conforming units
with respect tdJSL, and=n (0O<r<1) is the amount of inflation of zeroes in the wbdata. The recommend value fay is
0.9973 (Perakis and Xekalaki, 2005), and hére; Q = 0.53699, p = 1 — PNU = 0.99946. Thus, the estimate €f,, is
obtained a£#., = 9.245, and using Nagata and Nagahata’s (1994) genedadigproximation formula, the 95% CI 6f,,
is derived as [8.432,10.058]. The estimate«,pfand CZ., indices and their 95% CI are presented in Tabler4n easy
comparison.
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Table 4. Estimates of’, andCZ,, indices and their 95% Cls

Sr. Proce.ss capability Esumate of the 95% Cl

No. index index

1 Cy ¢, = 1.089 (0.9847, 1.1931)
2 Cécy CZ.y = 9.245 (8.432, 10.058)

It may be worth to mention that since introductafrthe concept of process capability index, coneeatly the indice<,,

Cpy andC,; are estimated from normal processes to faciliteteer decision making in product and process mamagt.
The analysts/users of the indices can easily dpsedict the expected proportion of conforming prats in the process

outputs based on an estimated index value by vattiee following relationships:

) P(LSL<X<USL)=20(3xC,)—1,
iy P(X<USL)=P (z <3x ”SL‘ﬁ)z ®(3 % Cpy,)

3G

iy P(X>LSL)=1-P(X <LSL)=1-®(-3xC,)

For exampIeCpu = 0.5 implies that the process is capable of producBi@P0% conforming products with respeciisL,
Cpu = 1 implies that the process is capable of produci®@&% conforming products amfpu = 1.3 implies that the
process is capable of producing 99.995% confornpr@ducts. Over the years, process managers, engiaae other
decision makers have become accustomed to relagstimates of process capability indices and xpeated proportion of
product conformance to specifications in this wagcordingly, general thumb rule is being followad@ng the users of the
indices that the capability of a process is god?;!,{yfz 1 and the capability is very good ﬁpu > 1.33.

Here the results shown in Table 4 reveal that 8tamated values of the two indices obtained from shme dataset
differs widely. The estimated, value & 1.089) gives an idea that the concerned semiconductowfaaturing process is
capable enough to maintain particle counts in tearcroom within the USL. However, the estimafig, value & 9.245)
gives an impression that the concerned semicondotnufacturing process is very highly capable (tpayero defective)
for maintaining particle counts in the clean roonthim the USL. This is obviously a false impressibecause in this
process, the expected proportion of nonconformasgs with respect to USL is found to be 0.00059 (&m), which is not
very low in reference to the concept of six sigmacpss.

5.2 Case Study 2

In the context of highlighting the problem of mitwring and control of a type of process in whiohg series with no
nonconformities are observed together with occadisamples containing a large number of nonconfiemiXie and Goh
(1993) presented a set of real life data on redtkwerrors discovered in 208 computer hard diskaals observed that 180
hard disks had no error and only 28 hard disksasoetl non-zero errors. This implies that thesezare-inflated count data.
Therefore, it is decided to analyze the same dat&Valuation of process capabilities using theppsed method and Patil
and Shirke’s (2012) approach. The full data setvigilable in Xie and Goh (1993). The frequencyrilistion of different
counts in Xie and Goh (1993) observed data is sHowrable 5.

Table 5. Frequency distribution of different counts of egor

Counts of 0 1 5 3 4 5 6 9 11 15 and
errors above
Observed | 14, | 47 | 5 2 1 1 2 2 1 3
frequency
Sample

. 0.865| 0.053| 0.024 0.010p 0.005 0.0p5 0.010 0.p10050(0 0.014
proportion




Xie and Goh (1993) presented the count dathercontext of process control and so they did egtire taking into account the
USL of the number of errors that can be tolerated hard disk. However, the USL must be known famputation of process
capability index. So it is decided to consider tihat USL for the number of errors in a hard diskQs

Now ZIPQ, 1) as well as ZINBQ, k, ) distributions are fitted separately to these Zeflated count data. Also the optimum
log-likelihood value, AIC value and BIC value afgserved for each case. These values are preseriiadblie 6.

Table 6. MLEs and values of model selection criterion foPZnd ZINB distributions

Elements ZIP(Q, 1) distribution ZI_NB(Q, k, A)

distribution

MLEs of the parameters O =0.1346 O =0.21999

1=8.6413 A =1.69911

k =1.09145
Optimum log-likelihood value —192.985 —154.54
AIC value 389.969 315.08
BIC value 396.644 325.09

It may be noted that AIC (or BIC) value revets relative goodness of two or more fitted modBlst it does not say anything
about the adequacy of the fitted model. Therefiires, important to carry out the Chi-square goodreffit tests for both the
fitted distributions. The results of the Chi-squgo®dness-of-fit tests for the two fitted distriloms are presented in Table 7.

Table 7. Chi-square goodness-of-fit tests for the fitted ZHel ZINB distributions

Based on fitted ZIP Based on fitted ZINB
Particle counts Observed frequency distribution distribution
Expected |Expected Expected Expected
proportion |frequency proportion frequency
0 180 0.8654 180.00 0.8590 178.67
1 11 0.0002 0.04 0.0481 10.00
2 5 0.0009 0.18 0.0293 6.09
3 2 0.0026 0.53 0.0178 3.71
4 1 0.0055 1.15 0.0109 2.26
5 1 0.0096 1.99 0.0066 1.37
6 2 0.0138 2.86 0.0040 0.84
9 2 0.0176 3.66 0.0009 0.19
11 1 0.0120 2.49 0.0003 0.07
15 and above 3 0.0220 4.58 0.0186 3.87
Computedy? value X% = 2946.92 x: =1.114
Significance levely) p < 0.0001 p = 0.573

It can be observed from Table 7 that the contb@ki-square value for the fitted ZIP distributierstatistically significant at
5% level. This implies that the ZIP distributionnist a good fit for the sample dataset. However cibmputed Chi-square value
for the fitted ZINB distribution is observed notlie statistically significant at 5% level. This iliegs that the ZINB distribution
adequately fits the sample data. The presenceefdispersion in the sample data caused by unobddreterogeneity may be
the possible cause for failure of the ZIP moddittadequately. Since the ZINB model fit adequatélys decided to use ZINB
model for describing the error count data, and sgbent analysis.

Computation of process capability index
The expected proportion of nonconforming items wéspect to USL (i.e?NU) is estimated using the fitted ZINB distributios a

— 1.092\1:092 10 [(y+1.092) (1.699\Y [ 1.092\ [1.092)1-092
PNU =1-(1-02199) +0.2199 (2.791) + %=1 02199 x yI[(1.092) (2.791) (2.795) (2.795) ]
= 0.0190

So the mapped Z-score in standard normal distdhuig found asZ;, = ® *(1 — 0.0190) = 2.076. Thus, the process capability
index, C, is estimated a€, = (1/3) x 2.076 = 0.692, and using Nagata and Nagahata84jl§eneralized approximation
formula, the 95% CI of, is obtained as [0.611, 0.772].

Patil and Shirke (2012) proposég.,, index is estimated from the same dataset (XieGwit, 1993). Heref = O =0.21999,
p=1—PNU = 0.981. Thus, the estimate 6f., is obtained a€%., = 0.646 and using Nagata and Nagahata's (1994)
generalized approximation formula, the 95% CIC#f, is derived as [0.569, 0.723]. The estimate€,pfand C%., indices and
their 95% CI are presented in Table 8 for an easyparison.
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Table 8. Estimates of’,, andCZ., indices and their 95% Cls

Sr. No. Process capability index Estimate of thein 95% ClI
1 Cy ¢, = 0.692 [0.611, 0.772]
2 Chey CZ, = 0.646 [0.569, 0.723]

The estimated,, value & 0.692) gives an idea that the concerned process isapattde enough to maintain read-write errors in
the hard disks within the USL. It is also computidt about 1.90% items are expected to be nonawmirigrwith respect to the
USL of number of read-write errors. In the sampéad1.92% items (4 out of 208) have more thared@d-write errors. So it may
be considered that th&, value gives quite a good assessment about thegs@apability. On the other hand, the estiméfeg
value computed based on the fitted ZINB distributie found to be).646, which is reasonably close to the estimafgdvalue
(= 0.692). This implies that, in this case, Patil and ShifR012) proposed., index gives a reasonably acceptable estimate of
the true capability of the concerned zero-inflgbedcess.

It may be worth to mention that Patil and Shi(R812) analyzed the same dataset (Xie and Gol3)1f@9 illustrating their
proposed method for estimating capability of a defated process. The estimatéd, value obtained by them was 0.0549,
which was much smaller than the estimafgg, value obtained by us. The main reason behinddifference is that they carried
out all the computation based on fitting of ZIPtdimition to the observed data. But actually ZINBtdbution fit well to the
observed data, not ZIP distribution, which is ewnidimm the results presented in Table 7. This défifee in the estimated values
CZ, also highlights the importance of fitting appraei zero-inflated distribution.

It may be noted that Xie et al. (2001) have alsed the same dataset (Xie and Goh, 1993) fatitition of their proposed
control chart for ZIP processes. They applied vwaitests of Poisson distribution and zero-infld@eisson (ZIP) alternative to the
dataset, and all the tests suggested that the @tfelnshould be used instead of the conventionas®ai model. Accordingly, they
fitted ZIP model to the dataset and determinedupper control limit of the proposed control chatfowever, they did not
consider fitting of zero-inflated negative binom{@INB) distribution. On the other hand, in the @nt research works, both ZIP
and ZINB distributions are fitted separately to Haene dataset (Xie and Goh, 1993). Also the optinagiikelihood value, AIC
value and BIC value are observed in each casedfattification of better fitted distribution. Based examination of the log-
likelihood, AIC and BIC values, it is determinedathZINB model fit better to the dataset (Xie andhG&993). Accordingly,
expected proportion of nhonconforming items withpexs to USL (i.ePNU) is estimated using the fitted ZINB distributionda
process capability index is computed using the @sed method. The analysis of the current researdhdicative that the
performance of the proposed control chart of Xi@le{2001) could be better if they would haveefittZINB distribution to the
dataset and determined the upper control limit thasethe fitted ZINB distribution.

6. Conclusions

One of the important characteristics of zerdaiefd processes is that these have more countro$ zlean are expected under
chance variation of its underlying Poisson or otkeunt distribution, and therefore, the standardssém or other count
distribution fails to model sample count data aledi from the zero-inflated processes. These preses® commonly modelled
by ZIP or ZINB distribution. Evaluation of capali#is of zero-inflated processes in producing owpithin specification limit(s)
is an important issue. For the purpose of assessipgbility of a zero-inflated process, estimatdrCZ., index is proposed in
literature. But, it does not always represent the tapabilities of zero-inflated processes, amdedimes it gives very misleading
impression about the capability of the concernaxtgss (as observed in case study 1). In this ertiick concept of Borges and
Ho (2001) is applied to zero-inflated processes am@w approach for computation of process cappliildex of zero-inflated
processes is developed. The proposed method retheatsue capabilities of zero-inflated processassistently. The results of
analysis of two datasets (published in literatwad)date the same. Thus, the proposed method caedaeded as a procedure for
evaluating capability of zero-inflated processes.

One important assumption in this study is thdy @ single type of random shock occurs in the@4eflated process. But in real
life zero-inflated processes, multiple types ofa{somay occur resulting in different types of namfoomities. In such situations
multivariate ZIP or multivariate ZINB models may fitted to the sample dataset. Future research tedsk carried out for
evaluating capability of multivariate zero-inflatptbcesses.
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