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Abstract 
 
   In this paper the meaning of a nonlinear partial differential equation (nPDE) of the third-order is shown to the first time. The 
equation is known as the ‘Rand Equation’ and belongs to a class of less studied nPDEs. Both the explicit physical meaning as 
well as the behaviour is not known until now. Therefore we believe it is indispensable to study this evolution equation in detail. 
We perform a classical Lie Group analysis to analyze the point symmetries. By using a similarity reduction we are able to 
deduce more classes of solutions of general character. Special nonlinear transformations are given in a most general form. In 
addition, we also study Lie’s non-classical case relating to potential and generalized symmetries. Both the potential and 
approximate symmetries are discussed to the first time leading to new results. So we expect a better understanding and concrete 
physical as well as technical application in future. 
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1. Introduction - outline of the problem 
 
   The scaled nPDE in (1+1) dimension under consideration is given by: 
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where the function ),( txu  is related to a variation of a physical quantity depending upon the positive time t . We seek for classes 
of solutions for which ),( txFu = , where ∈F  R3 and ⊂D  R2 is an open set and further we exclude 

{ }0),(:~)),(,(: ≠∈= txuDtxuD . Suitable classes of solutions are Iu∈ an interval so that DI ⊆  and →Iu :  R 2 . Note:     
   We suppress the item ‘classes’, so that ‘classes of solutions’ are simply ‘solutions’. Firstly, taking a look at eq.(1) concluding the 
following: Unlike classical evolution equations (e.g. the Korteweg de Vries equation and many others (Whitham, 1974; Drazin and 
Johnson, 1989; Eilenberger, 1983; Ablowitz and Clakson, 1991; Dodd et al., 1988; Huber, 2010)), where the nonlinear part is 
counterbalanced by a linear part and therefore responsible for stable waves. Here, on the contrary, we have no such balance. That 
means we cannot expect a priori classical wave motion where the steepening effect is counterbalanced by some linear parts since 
both the l.h.s. and the r.h.s. of eq.(1) are nonlinear.  
   In other words, e.g. the effect of beach wave breaking cannot occur. This leads to the assumption that other types of waves might 
appear (if we assume that the eq.(1) at least admits wave solutions). 
   This is the main task of the given paper whereby we are interested in questions about the meaning, validity and existence of 
solutions. Another question of importance is how we can associate a concrete physical and/or technical application with the eq.(1). 
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1.2. Classical symmetry analysis - algebraic group properties 
   We take up now the developments given in (Ibragimov, 1994a; Olver, 1986; Bluman and Kumei, 1989, Gaeta, 1994) omitting all 
technical details.  
To use symmetry groups in any application we first deduce the symmetries of eq.(1).  
The result is a well-defined system of eight linear homogeneous PDEs (describing the point symmetries) for the infinitesimals 

),( uxii ξ=ξ  and ),( uxii φ=φ . These constitute the so-called determining equations for the symmetries of eq.(1) generated 
by Fréchet’s derivative (Ibragimov, 1994a; Huber, 2007a,b; Huber, 2008a,b; Huber, 2009):     
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Solving the above given set of equations (1.1) to (1.5) we derive at the infinitesimals: 
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   The result shows that the symmetry group of eq.(1) constitutes an infinite four-dimensional point group where the group 
parameters are denoted by ik , 3,2,1i = . The infinite part of the group is generated by the function ),( txF  whereby the latter 

function has to satisfy the linear third-order equation: 09 =− xxxt FF . The arbitrary function ),( txF  does not satisfy any 
further equation(s).  
   So, in what follows we have the freedom to set the function ),( txF  equal to zero (or individually otherwise). Eq.(1) admits the 
four-dimensional Lie algebra L of its classical infinitesimal point symmetries related to the following vector fields: 
                                          uxttx uVxtVVV ∂=∂+∂=∂=∂= 4321 ,3,,  .                             (1.7) 

This group of four vector fields contains translations in time and space so that { }λ+→λ+→ xxtt ','  holds for { }21 V,V  

and the associated differential operators 3V  and 4V  are related to dilatation operations. The symmetry vector fields form a Lie 
algebra L by: 
                            [ ] [ ] [ ] 334224343242 ],[,3,,,,3, VVVVVVVVVVVV −=−===  .                        (1.8) 

   For this four-dimensional Lie algebra the commutator table for the iV  is a (4 x 4)- table whose 

th)j,i( entry expresses the Lie Bracket [ ]ji VV ,  given in (1.8). The table is skew-symmetric and the diagonal elements vanish. 

The coefficient kjiC ,,  is the coefficient of  iV  of the th)j,i( entry of  Table 1 and the related structure constants can be read from 
Table 1: 
                                         1,3,1,3 3,3,42,2,43,4,32,4,2 ==−=−= CCCC .                                     (1.9) 
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                                          Table 1 The commutator table of the Rand Equation                    

 1V  2V  3V  4V  

1V  0 0 0  0  

2V  0 0 0  23V−  

3V  0  0  0 3V−  

4V  0  23V  3V  0 

 
Theorem: The Lie algebra of eq.(1) is solvable. 
Proof: A Lie algebra L is called solvable if 0)( =nV  for some n > 0. It can be shown that L is reducible to 0)4( =V  starting by 

the ideal { })4()1( ....,, VV  since the algebra is four-dimensional. 

Other useful algebraic group properties are mentioned: Eq.(1) has the Casimir operator by 1V , the group order is four containing 
15 subgroups. These subgroups are important below to perform a similarity reduction deducing suitable solutions. The metric 
( 44⊗ Cartanian tensor ) satisfies:  
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and, since the condition 0)gdet( =  holds, the given algebra is therefore degenerate and commutative. Note: Alternatively one 

can write with eq.(1.9) ∑
=
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2. Similarity solutions 
 
Let us now discuss the most important three similarity solutions for special subgroups. If we set the 
group parameters 132 == kk  and 041 == kk , the following linear ODE of the third-order results: 
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, S : R ×  R →  R , ∈ζ  R, ∞≤ζ≤∞− , { }0)(:~),(: ≠ζ∈ζ= SDSD  .            (2) 

The similarity variable ζ  together with the relevant transformation (Case H) reads as uSxt =ζ=− , which is closely related 
to the case of traveling waves. Following Peanos’ theorem we expect that at least solutions exist (locally in this sense) and 
secondly solutions are unique on the entire real axis. We calculate a superposition of harmonic wave trains by 

                                             [ ] [ ]{ }ζ+ζ+=ζ 3sin3cos
3
1)( 213 CCCS ,                                             (2.1) 

where the iC , 3,2,1=i  are arbitrary constants of integration. A compact written form gives 
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where (.)Γ means the gamma function. 
At this stage a question is of interest: What physical meaning can we associate with this solution, eq.(2.1) or otherwise, represent 
this solution a solitary wave? If so, the following condition must hold: 0→S  as ∞→ζ . It is shown that ∞→S  as 

∞→ζ , that means no solitary motion is possible. So we have periodic wave trains on the entire real axis which is seen in 
Figure 1. 
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Figure 1  A planar sketch of the periodic wave train solution eq.(2.1) by using different values of the integration constants 

iC , 3,2,1=i . We chose 11 <<− iC  for the domain of the constants and the periodic wave trains are stable. 
 
The further behaviour strongly depends on the choice of the constant 3C . If we set 03 =C  the function vanishes R∈∀ζ \ 

{ }412 /,/ ππ− , otherwise, if ±∈ NC3 , especially 13 =C  the function vanishes ∈ζ∀ ℜ \ ( )
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that is numerically )5,08,0( i+−≈ . 

If we consider another choice for the group parameters, i.e. 143 == kk  and 021 == kk  (corresponding to Case C) the 

transformation is ζ=
+ 3)1( x
t

, Su =  and the following linear homogeneous ODE of the third-order with non-constant 

coefficients result: 
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, S : R ×  R →  R ,  ∈ζ  R,  ∞≤ζ≤∞− .               (2.3) 

This is solved explicitly by introducing the transformation )(' ζ= pS  to get a second-order equation 

              0)320('36''9 23 =+ζ+ζ+ζ ppp ,  { }0)(:~),(: ≠ζ∈ζ= pDpD                          (2.4) 
where the prime means the derivation ζdd / . This is solved by Bessel functions of broken order: 
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   Finally we get the solution function after integrating once to 
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   Here (.)Γ  means the gamma function and );;;( 21 zbbaFq
p  is the generalized hypergeometric function. In our case we 

explicitly have the function { } { }[ ]ζ;.....,;...., 11
2
1 qp bbaaF . 

   For further considerations we are interested in the asymptotic case ∞→ζ . By using the asymptotic behaviour of the 
hypergeometric function we have 
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The calculation for the real part leads to the asymptotic representation which is shown in Figure 2: 
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Figure 2  A planar sketch of the asymptotic solution function eq.(2.8) with 1321 === CCC . The asymptotic behaviour 

is clearly seen. The point 0=ζ  is the irregularity of the gamma function and the function decreases rapidly for 
∞→ζ . Here, for relevant applications only the real part is considered. 

 
Note: The solution function eq.(2.5) can be expressed in terms of Airy functions. Imagine the fact that Bessel functions of order 
1/3 are expressible so that we have alternatively by putting together 
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Both expressions are similar and do not describe any periodic or traveling wave motions. Finally, the Case N is of interest if we 
use the following choice for the group parameters: 

1321 === kkk  and 04 =k . The transformation reads as ζ=− xt  and Sue x =− . This choice represents the case of 
traveling waves and we have to solve the following nODE of the third-order: 
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This equation cannot be solved explicitly so we decided to perform a power series representation up to order five: 
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with arbitrary chosen coefficient ia , 2,1,0=i  whereby this polynomial solution is continuously differentiable on the entire real 
axis. A graphical overview is given in Figure 3. 
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Figure 3  The behaviour of the solution function eq.(2.11) for the similarity function S. This polynomial solution was 

generated by the choice of the coefficients ia  for the values 11 1 <<− a and the same for 2a and 3a . 
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If we transform by ζ=− xt  and Sue x =−  we show a sequence of solution surfaces depending on the independent variable x  
and t considering special values for the parameter λ  in Figure 4. 
This shows that a traveling wave solution does not appear. 
If we introduce the notation )(ζP  for the polynomial part of eq.(2.11), one can write the complete solution )(),( ζ= Petxu x  in 
short and comparing with the animations given, we conclude:               
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Figure 4 An animation of different solution surfaces of eq.(2.11), left: 2=λ , middle: 10=λ , right: 10−=λ , all 1=ia . 

 
   The exponential part influences the solution in the sense of a damping effect whereby the exponential part either does not 
decrease or increase. So, this part covers a domain of saturation. After we have discussed all similarity cases of relevance we finish 
this chapter to proceed further with the analysis.  
   For completeness, in Table 2 we show all relevant nonlinear transformations by considering special values of the group 
parameters.  
 

Table 2  Symmetry calculation and nonlinear transformations for the Rand Equation 
Case Choice of the group parameters Transformation for ζ  Transformation for S 

A 1,0 4321 ==== kkkk  ζ=−1tx  Su =  

B 1,0 3421 ==== kkkk  ζ=t  Su =  

C 1,0 4321 ==== kkkk  ζ=+ −3)1( xt  Su =  

D 1,0 2431 ==== kkkk  ζ=x  Su =  

E 1,0 4231 ==== kkkk  ζ=+ −33)31( xt  Su =  

F 1,0 4321 ==== kkkk  ζ=++ −3)1(3)31( xt  Su =  

G 1,0 1432 ==== kkkk  non-solvable non-solvable 

H 1,0 3241 ==== kkkk  ζ=− xt  Su =  

I 1,0 4132 ==== kkkk  ζ=−3xt  Sxu =−1  

J 1,0 3142 ==== kkkk  ζ=t  Seu x =−  

K 1,0 4312 ==== kkkk  ζ=+ −3)1( xt  Sxu =+ −1)1(  

L 1,0 2143 ==== kkkk  ζ=x  Su =  

M 1,0 4213 ==== kkkk  ζ=+ −33)31( xt  Sxu =−1  

N 1,0 3214 ==== kkkk  ζ=− xt  Seu x =−  

O 14321 ==== kkkk  ζ=++ −3)1(3)31( xt  Sxu =+ −1)1(  
 
3. Analysis by the dominant balance method 
 
Again, consider the Rand Equation, eq.(1). If we introduce the similarity ‘ansatz’ )(),( ξ= ftxu , tx λ−=ξ , we derive the 
following nODE of the third-order: 
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Let the domain 131 RRRDD~ ×⊆×= . We seek proper solutions on the interval I , DI ∈  and 2RI:f → . Unfortunately, 
this nODE cannot be solved analytically in a closed form. Therefore, we apply the Dominant Balance Method in order to generate 
new solutions. Generally, from eq.(3) follows that 32 '3''' fff = and 0'''00''' 22 =∨=→= ffff . This is not possible 
since we require both the existence of the function and their derivation. By balancing we have to treat the following cases 
considering a two-term balance: 

Case(i): 02 ≈xxxff  requiring that 23 /)'(3'' fff >>  otherwise the condition holds: 0)'(30 32 <→> fff xxx  from 

eq.(3) for a suitable balance. 

Case(ii): 0)'(3 3 ≈− f  requiring that 0)'( 3 =f  with the condition 00)'( 23 <→> xxxfff . 

The ODE for Case(i) is solved explicitly by 3
321~)( ξ+ξ+ξ cccf .  

For proper of solutions (e.g. if )R ±∈ζ  it is seen that this solution contradicts the given inequalities. So we conclude that the 
polynomial of the third-order represents a consistent balance solution and therefore we have 
                                          3

321 )()(~),( txctxcctxu λ−+λ−+ ,  0≠λ ,                                        (3.1) 

as proper solutions as before with suitable chosen coefficients ic , but 02 ≠c , 03 ≠c . 

For practical calculations we perform a series representation of the nODE, eq.(3) with arbitrary constants ia , 2,1,0=i  up to 
order four: 
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For this series solution we give a graphical overview in Figure 5 by using suitable chosen values for the parameters ia . 
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Figure 5 A planar plot of the series solution, eq.(3.2) generated with the choice of the parameters for all ia  so that the 

domain of the parameters is given by 20 << ia , the curves are all  symmetrically to the x-axis. 
          
4. The non-classical case I: Potential symmetries 
 
For more technical details we refer to (Olver, 1986; Bluman and Kumei, 1989, Gaeta, 1994, Huber, 2009) respectively.  For the 
Rand Equation, eq.(1) we found the following: The equation admits only one possible potential system, 1Ψ  consisting of two 

relations. The systems can be formulated for the dependent variable 1V  and can be treated in their derivations w.r.t. the 
independent variables ),( tx denoted by subscripts: 
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Unlike other evolution equations having two or more potential systems, here we are confronted with an unexpected case: 
Calculating the infinitesimals we see that no new potential symmetry occurs: 
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It is of interest to compare with the classical case, eq.(1.6). The dimension of the group increases (we have a five-dimensional 
group) and also an infinite group generated by the function ),( txu  is seen.  Here no new potential symmetry could observe. 
 
5. The non-classical case II: Generalized symmetries 
 
We find it advisable to mention some basic notes. It is obvious from Lie theory that point 
symmetries are a subset of generalized symmetries (Ibragimov, 1985; 1994c). The determination of the characteristics for the 
general case follows by a similar algorithm as in the case of point transformations (PT) in the classical case. 
Classical symmetries of a (n)PDE (assumed to be in a general form 0=Δ ) are  PT which guarantee the invariance of the solution 
space and so, PT are created by infinitesimal transformations. 
The determining equations for the characteristics αGS  are consequences of the relation 

                                                                00=Δυ =ΔGSpr
r

,                                                                  (5) 

where GSpr υr  denotes the prolongation of the vector field GSυ and ‘GS’ means generalize symmetry. The main difference 
however is the fact that in general the characteristics depend on derivatives of an infinite order. If the order is equal to identity we 
arrive at the so-called contact transformations. By increasing the order of derivatives 1>n  we shall find higher order GS.  
In case of the Rand Equation, eq.(1) we found GS depending on the first derivative: 
                                                  ( ) xtx ukukuuutxGS 121 ,,,, += .                                                       (5.1) 
This symmetry also changes from the symmetries given in (1.6), (4.1). Here we are confronted with a two-dimensional finite group 
of transformations where the second part xu ∂∂ /  is related to dilatation operations. For the case 2=n  by assuming second 
partial derivatives we further found 
                                                  ( ) xtx ukukuuutxGS 122 ,,,, += .                                                       (5.2) 
as a quite similar result. 
 
6. Approximate symmetries 
 
In this section we follow (Ibragimov, 1985, 1994c; Huber, 2009) respectively and our intension is to present new results without 
referring too much theory. However, some remarks will be indicated. 
Definition: Approximate symmetries: 
We assume that ,..)( 21xxx =  are independent coordinates of functions which are analytic in their arguments. Let us further 
assume that ε  is a small parameter on which the functions additionally 

depend. We will denote the involved infinitesimal small functions of order 1+ε p  by ),( εθ xp , where 

0≤p  and p is a positive constant. This condition is expressed by p
p Ox ][),( ε=εθ . In addition an equivalent representation of 

this condition can be written by 

                                                               p
p x

ε

εΘ

→ε

),(
lim

0
.                                                                         (6) 

Let f  and g  be analytic functions in x . We define an approximation of order ,p gf ≈  by the relation 

                                                    pOzgzf ][),(),( ε+ε=ε                                                           (6.1) 
for some fixed value of 0≤p  . 
This definition is the basis of all calculations we will carry out in the following.  
Let us introduce ε  as a small parameter measuring the influence of the nonlinear term of the eq.(1) so that we can write 

xxxt uuu 223 =ε . First order approximate symmetries follow by 
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Here we have another unexpected situation comparing with the symmetries as above. The order remains equal (four-dimensional) 
toward the classical case but the dimension is finite. The generating vector fields containing the perturbation parameter reads as 
                                       txut VVVV ∂=∂ε+=∂ε+=∂ε= 4321 ,)1(,)1(, ,                                    (6.3) 
and the associated coefficients of these vector fields are given by 
                             ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }0,1,00,11,0,0,0,,0 ε+ε+ε .                     (6.4) 
In total we have four possible combinations for the vector fields. Possible reductions can be calculated by combining several sub-
groups, that is nml VVV ⊗⊗  with { } 4,3,2,1,, =nml . 
We now restrict the analysis to the most important case, the case of traveling waves.  
This case arises by calculating the combination 43 VVVl ⊗⊗  which gives the traveling-wave transformation for the similarity 

variable xt −=ζ  and Su =  for the similarity function once again. 
The relating linear ODE of the third-order is similar as in the classical case, eq.(2), however the 
difference is the occurrence of a linear part: 
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which is solved explicitly by 
                              [ ] [ ] [ ]ζ−+ζ−+ζ−−=ζ 3/23/1
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where 21 ,CC  and 3C  are arbitrary constants of integration.  

Considering special values of the constants, say, 1321 === CCC  the real part of the solution, eq.(6.6) is written as 

                                    [ ] [ ] [ ]ζ+ζ+ζ−=ζ 6/1
2

33/2
2

13/2 3cos)3(exp2)3(exp)(S .                                 (6.7) 
The function has a finite value at 0=ζ  and it is further proven that 3)(lim

0
=ζ

→ζ
S  holds.  

The limiting behaviour is ∞=ζ
∞+→ζ

)(lim S  but vanishes for −∞→ζ ,  that is 0)(lim =ζ
∞+→ζ

S . Since the second derivative 

vanishes as 0=ζ , takes positive real-valued as 1−=ζ  and negative real-valued as 1=ζ , one can conclude that the solution is 
not stable at least in the domain 11 <ξ<− . 
In addition a compact written form of eq.(6.7) follows by the representation 
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In Figure 6 we give a graphical overview of the behaviour of the real-valued function, eq.(6.7) by considering special values of the 
integration constants.  
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Figure 6  A planar plot of the real-valued solution, eq.(6.7) by using different values of the integration constants iC ; 

that is 50 1 << C , 91 2 <<− C , 53 3 <<− C . The solution is unstable in the domain 11 <ξ<− . 
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   Marked maxima and minima could observe on the real positive domain and both the maxima and minima lay on a vertical 
straight line. Consider the unusual behaviour in the range near the origin recognizing the instability. 
 
7. Conclusion 
 
   The present paper represents a valuable contribution to the understanding of a rarely studied evolution equation, the so called 
Rand Equation. Unlike many other evolution equations well known in this field, properties and behaviour of the Rand Equation are 
not available. This paper however is suitable to extend the spectrum of knowledge to get a deeper insight in the solution manifold. 
As a first step we performed a classical Lie Group analysis to study the point symmetries. Applying the procedure of similarity 
reduction several cases of interest were shown especially the traveling wave reduction leading to periodic wave trains. Due to 
complexity of the underlying nODEs asymptotic solutions were given as well as some series representations using in practical 
calculations were shown. A complete symmetry table containing nonlinear transformations was performed. By using the Dominant 
Balance Method further similar solutions could derive. Secondly, the non-classical cases were studied. We show how one can 
derive potential as well as generalized symmetries. Here, interestingly the nPDE does not admit potential symmetries. Otherwise, 
the nPDE behave in a same kind to other evolution equations relating to generalize symmetries. By increasing the order (remains 
two-dimensional finite) the symmetry does not change and physically speaking the group transformation correlates with dilatation 
operations.  
   As a last fact of interest approximate symmetries were studied in order to show how one can calculate new solutions. The special 
case of traveling waves leads to unstable solutions at least in a certain domain. We also did not found any kinds of solitons, neither 
line solitons nor loop or cusp solitons and actually, the highly nonlinear eq.(1) admits therefore no physical description correlating 
to known processes. Further studies in future done by the author are necessary, especially concerning the following: We shall 
stress some theoretical basic questions such like the complete integrability. If the eq.(1) can be integrated completely we further 
can show the existence of a related Bäcklund system. Another question of interest is the affiliation to a known hierarchy also 
closely related to the integrability. Further it is of interest to know if the eq.(1) possesses the Painlevé property. If so, one can proof 
that the highly nonlinear eq.(1) can be solved in principle by the Inverse Scattering Method. Otherwise the Painlevé algorithm is 
suitable to solve the eq.(1) on the singular manifold. At this stage we can expect the limitation of calculating intensions, since, due 
to the complexity of the eq.(1), future theoretically derivations might fail. 
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