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Abstract 
 
   An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this 
paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for 
state estimation is investigated by testing its applicability on a IEEE 14 bus system. The proposed estimator is compared with 
conventional Weighted Least Squares (WLS) State Estimator on basis of time, accuracy and robustness. It is observed that the 
time taken by the proposed estimator is quite low. The proposed estimator is more accurate and robust in case of gross errors and 
topological errors present in the measurement data.  
 
Keywords:  Radial Basis Function Neural Networks, State Estimation. 

 
1. Introduction 
 

Electric Power System deregulation has transformed state estimation from an important application to a critical one. The system 
operator has to make equitable, security related, congestion management decisions to curtail or deny power transfer rights in real 
time. It has to be founded and justified on a precise model of the power system derived from the state estimation process. 
Moreover fast and accurate state estimation is foundation of locational marginal pricing methodologies for transmission 
management costing. 

The state estimation provides the real time representation of the conditions in a power network. A state estimator is a data 
processing algorithm, which transforms meter readings and the switch status information into an estimate of the system’s state 
(voltage magnitudes and phase angles at all the nodes). Real and reactive bus power injections, and real and reactive line flows and 
bus voltage magnitudes are the measurements, which are transmitted to computer control system via telemetry system. These 
measurements contain random noise due to instrument and phenomenon errors. The state estimation program obtains a best fit for 
the power system state variables by minimizing these errors. Ideally state estimation should run at the scanning rate of the 
telemetry system (say at every two seconds). Due to computational limitations, most practical state estimators run every few 
minutes or when major changes occur. 

Most of the state estimation problems are formulated as over determined system of non-linear equations and solved as a 
weighted least squares problem.  The Weighted Least Squares Estimation (WLSE) is by far the most popular approach in industry. 
The least squares technique is slow and computational requirements are prohibitively large since there is large number of 
redundant measurement data normally available in form of nodal injection and line flows. To overcome this difficulty, a number of 
alternatives algorithms including modification and refinements of the basic WLSE have been presented (Horisberger et al, 1976; 
Garcia et al, 1979). The state of the art in state estimation algorithms is presented in (Wu 1990; Monticelli, 2000). Most of the 
practical implementation of state estimation in electric power systems is based on the Gauss-Newton methods. The state estimates, 
i.e., the voltage magnitudes and the bus voltage angles are solved through an iterative procedure in least squares sense.  
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The slowness of the state estimators due to computational requirements has been a major drawback of the present methods of 
state estimation employed. The conventional state estimation is based on algorithmic method of solving a large number of non-
linear equations based on network line flows and /or bus injections and network constraints similar to power flow problem. 

The present work proposes entirely different paradigm of state estimation problem. In this paper state estimation is addressed as 
a pattern recognition problem and solved using learning approach. The learning based methods have found wide applications in 
some EMS applications such as load forecasting, Topology Processing, Optimal unit commitment, Load Flows etc (Singh et al, 
2001). In this paper an original application of radial basis function neural network for state estimation is proposed. The property of 
massive parallelism of neural network is employed for faster state estimation. The proposed estimator is studied for various cases 
to show its utility for state estimation in terms of accuracy and time requirements. 
 
2. WLS State Estimator  
 

Most state estimation programs in practical use are formulated as over determined systems of nonlinear equations and solved as 
WLSE problem. 
Consider the nonlinear measurement model  

jj exhjz += )(   (1) 

where jz  is the thj  measurement, x  is the true state vector, )(xhj  is a nonlinear scalar function relating the  thj measurements to 

states, and je is the measurement error, which is assumed to have zero mean and variance 2
jσ . There are m measurements and n 

state variables, n<m. 
The WLS state estimation can be formulated mathematically as an optimization problem with a quadratic objective function 
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Equation (1) is an objective function, and )(xgi and )(xci  are the functions representing power flow quantities.  

 
3. Radial Basis Function Neural Network 
 

The RBF model consists of two layers namely, a hidden layer consisting of transfer function and a linear output layer. A radial 
basis neuron receives the vector distance between its weight vector (cluster center) ‘W’ and the input vector divided by the spread 
constant factor unlike sum of product of the inputs and respective synaptic weights as in case of feed forward network. 

The RBF unit or transfer function is similar to Gaussian density function, which is defined by center position and spread. The 
output of the RBF unit is given by 
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The RBF neural network generalizes on the basis of pattern matching. The different patterns are stored in a network in form of 
cluster centers of the neurons of the hidden units. The number of neuron determines the number of cluster centers that are stored in 
the network. If the number of neurons are as large as number of training patterns, permissible maximum number of neurons, all the 
input patterns will be recognized as separate cluster center, thus it acts like a memory. In case the number of neurons is less than 
the training patterns, the network will group the similar inputs patterns a single cluster. Thus it will act like a generalizer. The 
response of particular hidden layer node is maximum (i.e. 1) when the incoming pattern matches the cluster center of the neuron 
perfectly and the response decays monotonically as the input patterns mismatches the cluster center; the rate of decay can be small 
or large depending on the value of the spread. Neurons with large spread will generalize more, as it will be giving same responses 
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(closer to 1) even for the wide variation in the input pattern and the cluster centers whereas a small spread will reduce the 
generalization property and work as a memory. Therefore, spread is an important parameter and depends on the nature of input 
pattern space.   

The output linear layer simply acts as an optimal combiner of the hidden layer neuron responses. The weights ‘w’ for this layer 
are found by multiple linear regression technique. The output of the linear layer is given by 

∑
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1
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The values of the different parameters of the RBF networks are determined during training. These parameters are spread, cluster 
centers, and weights and biases of the linear layer. The number of neurons for the network and spread is determined through 
experimentation with a large number of combinations of spread and number of neuron. The best combination is one which 
produces minimum Sum Squared Error (SSE) on the testing data.  

The optimal set of parameters is determined through following procedure. Initially start training with two neurons. The number 
of cluster centers is the same as number of neurons. The number of neurons is increased gradually till the SSE is reduced to 
required goal on the training data for a predefined spread. This process is repeated for different number of neurons and spread 
constants, and finally the one giving the lowest error on the testing data is taken as final architecture.   
 
4. Design of Neural Network State Estimator 
 

The radial basis function neural network state estimator is designed and tested for IEEE 14 bus test system (Wallach, 1986). The 
line flows and bus injection patterns were generated around the base case using Newton-Raphson power flow. The patterns were 
randomly generated taking random perturbations of %25± around the base case. The patterns included data for intact system and 
various single line outage cases. The power flow patterns were first divided into testing and training patterns. The measurement set 
containing 28 real and reactive bus injections, 80 real and reactive line flows and 20 line switch status were taken. In all 2000 
patterns were generated around the base case out of which 1700 patterns were taken as training patterns and 300 as testing patterns. 
The radial basis function network was designed using MATLAB Neural Network tool box (Demuth et al, 1992). The network 
parameters were selected in the sum squared error range (for training data) of 3.00 to 0.5 in the steps of 0.5 and the spread range of 
5.00 to 0.2 in steps of 0.2. The range was decided by making trail and error guesses. The exhaustive search for the best network in 
the above ranges was made. The network was selected on the basis of sum squared error on the testing data set in the said range of 
sum squared error and spread. The RBF network which had sum squared error of 0.5 on the training data and spread of 4.6 had the 
minimum error on the testing data (0.000233). The network had 19 hidden layer RBF units. This network was selected as state 
estimator for further investigations 
 
5. Test Result and Discussions 

 
The performance of the proposed estimator is compared with a conventional WLS state estimator. The performance comparison 

is made for following test cases. 
Case 1: All the measurements are correct (no gross errors). 
Case 2:  Gross errors in the measurement data. 
Case 3: Topological errors in the measurement data.    

  Gaussian noise of 2% and 4% was introduced in the actual bus power measurements (real and reactive) and line measurements 
(real and reactive) respectively. Tables 1 and 2 shows the estimated voltage magnitudes (V) and bus angle for such a case where 
no gross errors were present. The Absolute Error, Mean Average Error (MAE) and the Maximum Error (Max.) is also compared 
for conventional WLS (indicated as Con.) and RBF neural network (indicated as ANN) estimator in these tables. It is observed that 
the accuracy of the conventional (WLS) method was slightly superior when compared to the proposed method for test case 1. 
However, estimated states by the proposed method were quite accurate for practical purposes.  
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Table 1. Voltage estimates for case 1 
Bus 
No. 

 V 
(Act.) 

 V 
(Con.) 

 V 
(ANN) 

Abs Error 
(Con.) 

Abs Error 
(ANN) 

1 1.06 1.06 1.06 0 0 
2 1.045 1.0454 1.0456 0.0004 0.0006 
3 1.01 1.0104 1.0103 0.0004 0.0003 
4 1.014 1.0143 1.0152 0.0003 0.0012 
5 1.0168 1.0171 1.0178 0.0003 0.001 
6 1.07 1.0704 1.0701 0.0004 1E-04 
7 1.0589 1.0589 1.0627 00000 0.0038 
8 1.09 1.0894 1.0915 0.0006 0.0015 
9 1.052 1.0518 1.0549 0.0002 0.0029 
10 1.0477 1.0478 1.0501 0.0000 0.0024 
11 1.0552 1.0557 1.0573 0.0005 0.0021 
12 1.0551 1.0556 1.0569 0.0005 0.0018 
13 1.0493 1.0495 1.0511 0.0002 0.0018 
14 1.0311 1.029 1.0351 0.0021 0.004 
MAE    0.000429 0.001679 
Max.    0.0021 0.004 

 
Table 2. Bus angle estimates for case 1 

Bus 
No. 

Angle 
(Act.) 

Angle 
(Con.) 

Angle 
(ANN) 

Abs Error 
(Con.) 

Abs Error 
(ANN) 

1 0 0 0 0 0 
2 -0.0864 -0.0855 -0.0853 0.0009 0.0011 
3 -0.2188 -0.2174 -0.2169 0.0014 0.0019 
4 -0.1789 -0.1774 -0.1774 0.0015 0.0015 
5 -0.1522 -0.1508 -0.1508 0.0014 0.0014 
6 -0.2467 -0.2452 -0.2461 0.0015 0.0006 
7 -0.2319 -0.2304 -0.2308 0.0015 0.0011 
8 -0.2319 -0.2303 -0.2308 0.0016 0.0011 
9 -0.2594 -0.2581 -0.2599 0.0013 0.0005 

10 -0.262 -0.2605 -0.2625 0.0015 0.0005 
11 -0.2562 -0.2547 -0.2557 0.0015 0.0005 
12 -0.2607 -0.2593 -0.2598 0.0014 0.0009 
13 -0.2629 -0.2613 -0.2616 0.0016 0.0013 
14 -0.2802 -0.2796 -0.278 0.0006 0.0022 

MAE    0.001264 0.001043 
Max    0.0016 0.0022 

 
Tables 3 and 4 show the estimates for (V) and bus angle for test case 2. The gross errors were introduced randomly in four 

measurements, one each in real power injection, reactive power injection, real power line flows and reactive power line flow 
measurements. These gross errors are indicated in tables 5-8. The measurements given in the brackets are the actual measurements 
which were replaced by gross errors. The gross errors were introduced in real power on bus 3 (Table 5), reactive power on bus 2 
(Table 6), real power flow in line 5-1 (Table 7) and reactive power flow in line 7-8 (Table 8). It is observed from tables 3 and 4 
that the proposed estimator (ANN) outperformed the conventional WLS estimator both on account of MAE (as 0.011464∠0.0146 
for V, and 0.020929∠0.036957 for angles) and maximum errors (as 0.0501∠0.1128 for V and 0.0686 ∠0.129 for angles). The 
Radial Basis Function neural network state estimator was robust when compared with WLSE state estimator for the test case 2. 
This shows that the gross errors present in the measurement data can deteriorate the performance of the conventional state 
estimator and have to be removed or reweighed and are to be re-estimated by going through state re-estimation. However, the 
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proposed state estimator is robust in such cases. The bad data can easily be detected in case of proposed method, as there is no data 
smearing possible unlike conventional state estimation.  
 

Table 3. Voltage estimates for case 2 
Bus 
No. 

 V 
(Act.) 

 V 
(Con.) 

 V 
(ANN) 

Abs Error 
(Con.) 

Abs Error 
(ANN) 

1 1.06 1.06 1.06 0 0 
2 1.0448 1.0427 1.0382 0.0021 0.0066 
3 1.01 1.0459 1.0084 0.0359 0.0016 
4 1.0138 1.0132 0.9947 0.0006 0.0191 
5 1.015 1.0127 1.0028 0.0023 0.0122 
6 1.07 1.0687 1.0698 0.0013 0.0002 
7 1.0658 1.0677 1.0157 0.0019 0.0501 
8 1.09 1.0907 1.0497 0.0007 0.0403 
9 1.0236 1.0443 1.0208 0.0207 0.0028 
10 1.0231 1.0316 1.014 0.0085 0.0091 
11 1.0419 1.0395 1.0518 0.0024 0.0099 
12 1.0527 1.0447 1.0497 0.008 0.003 
13 1.0446 1.0518 1.0417 0.0072 0.0029 
14 1.0127 1.1255 1.0154 0.1128 0.0027 
MAE    0.0146 0.011464 
Max.    0.1128 0.0501 

 
Table 4. Bus angle estimates for case 2 

Bus 
No. 

 Angle 
(Act.) 

 Angle 
(Con.) 

Angle 
(ANN) 

Abs Error 
(Con.) 

Abs Error 
(ANN) 

2 -0.0888 -0.0741 -0.0828 0.0147 0.006 
3 -0.2249 -0.0959 -0.1563 0.129 0.0686 
4 -0.1773 -0.1688 -0.1933 0.0085 0.016 
5 -0.1557 -0.1554 -0.1636 0.0003 0.0079 
6 -0.2845 -0.3194 -0.2561 0.0349 0.0284 
7 -0.1773 -0.2082 -0.2058 0.0309 0.0285 
8 -0.1773 -0.2209 -0.2058 0.0436 0.0285 
9 -0.3316 -0.3727 -0.3336 0.0411 0.002 
10 -0.3279 -0.3728 -0.3322 0.0449 0.0043 
11 -0.3083 -0.3518 -0.2799 0.0435 0.0284 
12 -0.3021 -0.3408 -0.2734 0.0387 0.0287 
13 -0.3052 -0.3477 -0.2791 0.0425 0.0261 
14 -0.3399 -0.3847 -0.3203 0.0448 0.0196 
MAE    0.036957 0.020929 
Max    0.129 0.0686 
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Table 5. Real power injection measurements and estimates (the bracketed values are actual values) 
Bus 
No. 

P Meas. P Est. 
(Conv) 

P Est. 
(ANN) 

Error 
(Con.) 

Error 
(ANN) 

1 2.3494 2.1243 2.3331 0.2251 0.0163 
2 0.141 -0.1385 0.0972 0.2795 0.0438 
3 0.9747 

(-0.9747) 
0.3548 -0.1824 0.6199* 1.1571* 

4 -0.4583 -0.6902 -1.2235 0.2319 0.7652 
5 -0.0709 -0.1856 -0.1492 0.1147 0.0783 
6 -0.11 -0.1747 0.0702 0.0647 0.1802 
7 0 -0.1251 -0.0621 0.1251 0.0621 
8 0 -0.0835 0 0.0835 0 
9 -0.293 -0.4225 -0.2854 0.1295 0.0076 
10 -0.09 -0.1658 -0.3263 0.0758 0.2363 
11 -0.0361 -0.0912 0.1768 0.0551 0.2129 
12 -0.0622 -0.115 -0.0584 0.0528 0.0038 
13 -0.1265 -0.2326 -0.147 0.1061 0.0205 
14 -0.1703 0.0812 -0.0964 0.2515 0.0739 

 
Table 6.  Reactive power injection measurements and estimates 

Bus 
No. 

Q Meas. Q Est. 
(Con) 

Q Est. 
(ANN) 

Error 
(Con.) 

Error 
(ANN) 

1 -0.1504 -0.0446 0.0368 0.1058 0.1872 
2 0 (0.36463) 0.0962 0.289 0.0962 0.289* 
3 0.0862 0.0354 -0.0829 0.0508 0.1691 
4 -0.0408 -0.004 0.0481 0.0368 0.0889 
5 -0.0183 0.0397 -0.028 0.058 0.0097 
6 0.1294 0.0822 0.1418 0.0472 0.0124 
7 0 0.0248 -0.2045 0.0248 0.2045 
8 0.147 0.1427 0.2023 0.0043 0.0553 
9 -0.1803 -0.3108 -0.0783 0.1305 0.102 
10 -0.0666 -0.1276 -0.1341 0.061 0.0675 
11 -0.0188 -0.0569 0.0529 0.0381 0.0717 
12 -0.0166 -0.0779 -0.0334 0.0613 0.0168 
13 -0.0642 -0.1993 -0.0845 0.1351 0.0203 
14 -0.0514 0.5411 -0.0461 0.5925* 0.0053 

 
For proposed estimator it is clear from the tables 5-8 that the maximum errors occur exactly at the same data where the gross 

error is present, which is not the case with conventional WLS state estimator. This is highlighted (*) in Table 5 to Table 8. For 
case 3 a topological error was simulated as inclusion error of line 2-4. The line was actually out but the status (measurement) 
showed it to be in the system. WLS program was run with the line flow measurement as zero (both real and reactive), as 
acceptable. Results for this case are depicted in Tables 9 and 10. It is observed that the proposed estimator out performed the WLS 
estimator both an account of maximum error and MAE for voltage magnitude and bus angles.   

Both the programs were coded in MATLAB for fair comparison. For same data set and file operations. Both programs were run 
on Pentium IV, Compaq Presario machine for 10 different data sets. The average time for the proposed neural network was 0.0550 
seconds, whereas for WLS. State estimator it was found to be 0.8767 seconds. Time is one of the major advantages of the proposed 
estimator 
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Table 7. Real power flow measurements and estimates 
LINE P Flow Meas P Est. 

(Conv) 
P Est. 
(ANN) 

Error 
(Con.) 

Error 
(ANN) 

1  2 1.5179 1.3559 1.5233 0.162 0.0054 
2  3 0.7517 0.1103 0.4063 0.6414 0.3454 
2  4 0.5323 0.5707 0.6693 0.0384 0.137 
1  5 0.7992 0.7684 0.8099 0.0308 0.0107 
2  5 0.4432 0.5046 0.5048 0.0614 0.0616 
3  4 -0.257 0.4644 0.2165 0.7214 0.4735 
4  5 -0.51 -0.2918 -0.6908 0.2182 0.1808 
5  6 0.5593 0.752 0.4221 0.1927 0.1372 
4  7 0 0.2086 0.0621 0.2086 0.0621 
7  8 0 0.0835 0 0.0835 0 
4  9 0.2821 0.3975 0.2635 0.1154 0.0186 
9 10 -0.0356 0.0527 0.0119 0.0883 0.0475 
6 11 0.17 0.2098 0.1479 0.0398 0.0221 
6 12 0.0883 0.1155 0.0945 0.0272 0.0062 
6 13 0.2409 0.2519 0.2499 0.011 0.009 
9 14 0.0411 -0.0777 -0.0337 0.1188 0.0748 
10 11 -0.129 -0.1136 -0.3146 0.0154 0.1856 
12 13 0.0294 -0.0012 0.0349 0.0306 0.0055 
13 14 0.1203 0.0142 0.1333 0.1061 0.013 
2  1 -1.5554 -1.3241 -1.4832 0.2313 0.0722 
3  2 -0.7371 -0.1097 -0.3989 0.6274 0.3382 
4  2 -0.5348 -0.5533 -0.6449 0.0185 0.1101 
5  1 0.7467 (-0.747) -0.7396 -0.7774 1.4863* 1.5241* 
5  2 -0.408 -0.4912 -0.4911 0.0832 0.0831 
4  3 0.2561 -0.4512 -0.2134 0.7073 0.4695 
5  4 0.4644 0.2931 0.6972 0.1713 0.2328 
6  5 -0.6321 -0.752 -0.4221 0.1199 0.21 
7  4 0 -0.2086 -0.0621 0.2086 0.0621 
8  7 0 -0.0835 0 0.0835 0 
9  4 -0.3218 -0.3975 -0.2635 0.0757 0.0583 
10  9 0.0388 -0.0521 -0.0117 0.0909 0.0505 
11  6 -0.1703 -0.2059 -0.146 0.0356 0.0243 
12  6 -0.0938 -0.1138 -0.0934 0.02 0.0004 
13  6 -0.2144 -0.2482 -0.2456 0.0338 0.0312 
14  9 -0.0423 0.0873 0.034 0.1296 0.0763 
11 10 0.1306 0.1146 0.3228 0.016 0.1922 
13 12 -0.0277 0.0014 -0.0347 0.0291 0.007 
14 13 -0.1169 -0.0061 -0.1304 0.1108 0.0135 
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Table 8. Reactive power flow measurements and estimates 
LINE Q Flow 

Meas 
Q Est. 
(Con) 

Q Est. 
(ANN) 

Error 
(Con.) 

Error 
(ANN) 

1   2 -0.1922 -0.1134 -0.075 0.0788 0.1172 
2   3 0.0345 -0.0653 0.0507 0.0998 0.0162 
2   4 0.0092 -0.007 0.0513 0.0162 0.0421 
1   5 0.0604 0.0688 0.1118 0.0084 0.0514 
2   5 0.0366 0.0162 0.0477 0.0204 0.0111 
3   4 0.0697 0.0154 -0.0176 0.0543 0.0873 
4   5 0.1273 0.0994 0.0327 0.0279 0.0946 
5   6 0.1551 0.1621 0.0685 0.007 0.0866 
4   7 -0.139 -0.1506 0.0095 0.0116 0.1485 
7   8 -0.0141 

(-0.141) 
-0.1386 -0.1958 0.1245 0.1817* 

4   9 0.0669 0.045 0.031 0.0219 0.0359 
9  10 0.0205 0.137 0.0771 0.1165 0.0566 
6  11 0.0714 0.0598 0.0277 0.0116 0.0437 
6  12 0.03 0.0459 0.0391 0.0159 0.0091 
6  13 0.0895 0.0147 0.1057 0.0748 0.0162 
9  14 0.0222 -0.2768 0.0365 0.299 0.0143 
10 11 -0.0463 0.0077 -0.0575 0.054 0.0112 
12 13 0.011 -0.0355 0.0034 0.0465 0.0076 
13 14 0.0377 -0.2276 0.016 0.2653 0.0217 
2   1 0.3016 0.1522 0.1392 0.1494 0.1624 
3   2 0.0181 0.02 -0.0653 0.0019 0.0834 
4  2 -0.0016 0.0203 -0.0159 0.0219 0.0143 
5  1 0.0065 -0.0026 -0.0301 0.0091 0.0366 
5   2 -0.0414 -0.0112 -0.0413 0.0302 1E-04 
4   3 -0.0871 -0.0182 -0.0092 0.0689 0.0779 
5  4 -0.1305 -0.1086 -0.0251 0.0219 0.1054 
6   5 -0.0442 -0.0382 -0.0307 0.006 0.0135 
7  4 0.1556 0.1634 -0.0088 0.0078 0.1644 
8   7 0.1517 0.1427 0.2023 0.009 0.0506 
9  4 -0.0189 0.0363 0.006 0.0552 0.0249 
10  9 -0.019 -0.1353 -0.0766 0.1163 0.0576 
11  6 -0.0613 -0.0515 -0.0238 0.0098 0.0375 
12  6 -0.0282 -0.0424 -0.0368 0.0142 0.0086 
13  6 -0.0869 -0.0074 -0.0973 0.0795 0.0104 
14  9 -0.0217 0.2972 -0.0359 0.3189* 0.0142 
11 10 0.0483 -0.0053 0.0766 0.0536 0.0283 
13 12 -0.0107 0.0357 -0.0032 0.0464 0.0075 
14 13 -0.0302 0.2439 -0.0103 0.2741 0.0199 
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Table 9. Voltage estimates for case 3  
BUS 
No. 

 V 
(Act.) 

 V 
(Con.) 

 V 
(ANN) 

Abs 
Error 
(Con.) 

Abs 
Error 
(ANN) 

1 1.06 1.06 1.06 0 0 
2 1.045 1.0428 1.0443 0.0022 0.0007 
3 1.01 1.0136 1.0092 0.0036 0.0008 
4 1.0019 1.0137 1.0103 0.0118 0.0084 
5 1.0073 1.0171 1.0142 0.0098 0.0069 
6 1.07 1.0776 1.0699 0.0076 1E-04 
7 1.0532 1.0613 1.058 0.0081 0.0048 
8 1.09 1.0976 1.0928 0.0076 0.0028 
9 1.0461 1.0536 1.0517 0.0075 0.0056 
10 1.0426 1.0497 1.0459 0.0071 0.0033 
11 1.0525 1.0597 1.0576 0.0072 0.0051 
12 1.0538 1.0614 1.0557 0.0076 0.0019 
13 1.0484 1.0559 1.0493 0.0075 0.0009 
14 1.0271 1.0331 1.0328 0.006 0.0057 
MAE    0.006686 0.003357 
Max    0.0118 0.0084 

 
 

Table 10. Bus angle estimates for case 3 
BUS 
No. 

 Angle 
(Act.) 

  Angle 
(Con.) 

Angle 
(ANN) 

Abs 
Error 
(Con.) 

Abs 
Error 
(ANN) 

1 0 0 0 0 0 
2 -0.0824 -0.0903 -0.0832 0.0079 0.0008 
3 -0.2588 -0.2362 -0.2347 0.0226 0.0241 
4 -0.2377 -0.1876 -0.1908 0.0501 0.0469 
5 -0.1932 -0.1578 -0.1665 0.0354 0.0267 
6 -0.2959 -0.2522 -0.2601 0.0437 0.0358 
7 -0.287 -0.2423 -0.2442 0.0447 0.0428 
8 -0.287 -0.2438 -0.2442 0.0432 0.0428 
9 -0.3124 -0.2681 -0.2769 0.0443 0.0355 
10 -0.3144 -0.2701 -0.2806 0.0443 0.0338 
11 -0.3075 -0.263 -0.2688 0.0445 0.0387 
12 -0.3111 -0.2654 -0.2745 0.0457 0.0366 
13 -0.3123 -0.2669 -0.277 0.0454 0.0353 
14 -0.331 -0.2863 -0.2939 0.0447 0.0371 
MAE    0.036893 0.031207 
Max.    0.0501 0.0469 

 
 

6.  Conclusion 
 

Radial Basis Function neural network is designed and tested for IEEE 14-bus system. The performance of the proposed neural 
network estimator is compared with conventional WLSE on basis of time and accuracy. The time taken by the RBF estimator was 
very less, compared to its conventional counterpart.  It is shown that for gross error and topological error present in the 
measurement data, the proposed RBF state estimator was more accurate as compared to WLSE. The bad data analysis shows that 
the gross errors can easily be detected in case of RBF estimator as there is no data smearing as in case of conventional WLSE. 
However, WLSE method was superior in cases where the gross is not present in the measurements. However, state estimates 
obtained by the RBF estimator were accurate for practical purposes. 
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