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Abstract 
 
   This article presents a novel technique to distinguish between magnetizing inrush current and internal fault current of power 
transformer. An algorithm has been developed around the theme of the conventional differential protection method in which 
parallel combination of Probabilistic Neural Network (PNN) and Power Differential Protection (PDP) methods have been used. 
Both PNN and PDP method are independent of harmonic contents of differential current. The proposed algorithm is capable of 
detecting fault and its type in the eventuality of fault in the transformer. Moreover, the combination of PDP method with the 
PNN makes it capable to detect light internal faults for all ratings of transformers which improve the overall performance of 
digital differential protection scheme. For evaluation of presented algorithm, relaying signals of various operating conditions of 
power transformer, including internal faults, external faults, over-excitation and inrush conditions were obtained through 
modeling of transformer in PSCAD/EMTDC. The performance of proposed amalgamated technique (i.e. combined PNN and 
PDP method) is compared with the PNN, Feed Forward Back Propagation (FFBP) neural network and the conventional 
harmonic restraint methods. The results amply demonstrate the capability of the proposed algorithm in terms of accuracy and 
speed. The algorithm has been implemented in MATLAB.  
 
Keywords: Digital differential protection, Protective relaying, Probabilistic neural network, Active power relays, Power 
differential method. 
 
1. Introduction 
 
   Protection of large and medium power transformers by means of differential relaying has been a common practice. Differential 
relaying technique is based on comparison of the transformer’s two winding currents. When these currents deviate from a pre-
defined relationship an internal fault is assumed and relay operates. However, during magnetizing inrush condition, very high 
current of the order of 10-15 times of full load current of transformer may pass through the primary side of power transformer 
(Sidhu et al, 1992). This high current causes mal-operation of the relay. Therefore, main challenge is to precisely distinguish 
between magnetizing inrush and fault current to avoid any mal-operation of relay. Literature review suggests that broadly two 
approaches are applied to discriminate between magnetizing inrush and fault currents; these are Harmonic Restraint (HR) based 
method and Waveform Identification (WI) based method (Tripathy et al, 2005). The HR method is based on the fact that the 
second/fifth harmonic component of the magnetizing inrush current is considerably larger than that in a typical fault current. It has 
been extensively used in comparison of WI method (Tripathy et al, 2005, Wang et al, 2009). However, this method sometimes fail 
to discriminate between magnetizing inrush and internal fault currents because high second harmonic components are generated 
during internal faults and low second harmonic component are generated during magnetizing inrush having modern core material 
of power transformer and due to the presence of shunt capacitance or distributive capacitance in long Extra High-Voltage (EHV) 
transmission line to which power transformers are connected (Shin et al, 2003). Therefore, the detection of second/fifth harmonic 
is not a sufficient index to discriminate between the inrush and fault currents of a power transformer. 
   The second method distinguishes magnetizing inrush current from internal fault current on the basis of WI method. In 1986, 
Verma and Basha reported microprocessor based waveform differential relaying scheme (Verma et al, 1986). The magnetizing 
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inrush current exhibits a characteristic peaked wave, which is caused by asymmetric saturation of the transformer core. In 2006, B. 
He et al. presented an algorithm to identify inrush current and internal fault current in transformer by using the characteristic of 
inrush current i.e. peaked wave and dead angle (He et al, 2006). Another group of researchers have investigated the use of wavelet 
analysis for the classification between fault and healthy state of power transformer. Wavelet transform based methods have better 
ability of time-frequency location. Their disadvantages are that they need long data window and are also sensitive to noise and 
unpredicted disturbances, which limit their application in relaying (Arboleya et al, 2006, Tripathy et al, 2009). 
   It has been demonstrated that the advanced Digital Signal Processing (DSP) techniques and Artificial Intelligence (AI) 
approaches to power system protection can improve discrimination between normal and fault conditions and facilitate faster, more 
secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial 
Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to 
implement than the conventional waveform approach. The use of neural network can provide an intelligent digital differential 
protection scheme. Since 1994, many researchers have proposed ANNs based transformer differential protection with various 
topologies. Most of them used Multilayer Feed Forward Neural Network (MFFNN) with back-propagation learning technique 
(Bastard et al, 1995, Tan et al, 2004). Another ANN model called Radial Basis Function Neural Network (RBFNN) has also been 
reported in the literature for power transformer protection (Moravej et al,2003, Borghetti et al, 2008). However, they have so far 
left some unsolved problems, including those of local minima and slow convergence in training and the need of empirical 
determination of structure and neural network parameters. In (Tripathy et al,2007),  Probabilistic Neural Network (PNN) has been 
used to discriminate between inrush current and internal fault current of power transformer but it fails to detect  turn-turn fault 
current (i.e. light internal fault current). 
   This paper presents an algorithm in which PNN is applied in conjunction with Power Differential Protection (PDP) method 
(Yabe, 1997). The PNN and PDP methods together are used to discriminate between magnetizing inrush current and internal fault 
current, and also used to determine the type of fault in a power transformer. They are able to detect internal fault current even if the 
fault current contains a large second harmonic component, as PNN method and combined PNN and PDP method are independent 
of harmonic components present in operating signal to the relay. PNN method is based on pattern recognization while PDP method 
is based on the average instantaneous power flowing into the transformer. The proposed amalgamated technique is used to 
improve the reliability and accuracy as compare to PNN based method and conventional HR method. In this paper, the results of 
the proposed algorithm are compared with the conventional Discrete Fourier Transform (DFT) based method, Feed Forward Back 
Propagation (FFBP) based method and optimal PNN based transformer differential protection method. 
 
2.  Probabilistic Neural Network (PNN) 
 
   PNN is a kind of feed forward neural network. The original PNN structure is a direct neural network implementation of Parzen 
nonparametric Probability Density Function (PDF) estimation and Bayes classification rule (Specht, 1990). The standard training 
procedure of PNN requires a single pass-over all the patterns of training set (Specht, 1990). This characteristic renders PNN faster 
to train as compared to FFBP neural network and RBFNN (Specht et al, 1991). The only drawback of PNN is the requirement of 
larger storage for exemplar patterns. As the computer memory has become very cheap and effective, the cost and size of large 
storage are no longer of concern these days. PNN is widely used in the area of pattern recognization, nonlinear mapping, fault 
detection and classification, estimation of probability of class membership and likelihood ratios (Tian et al, 2001). 

∑

∑
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Input  Layer Pattern Layer Summation
Layer Output Layer  

Figure 1. Probabilistic neural network structure 
 

   The PNN structure is shown in Figure 1. It is a four layer feed forward neural network that is capable of realizing or 
approximating the optimal classifier. Generally, Gaussian activation function is used in PNN because if the pattern falls within 
certain region then the function output is ‘1’ otherwise function output is ‘0’. It is not related to any assumption about normal 
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distribution. The activation function for PNN is derived from estimates of PDF based on the training patterns as following (Bose et 
al, 1996): 
   Let dRX ∈  be a d-dimensional pattern vectors and its associated class be ( )1 2 3, ,  , ...,  ki S S S S∈ . Where, k is the number of 

possible class. If a posteriori probability, ( )xSP ir /  that is from class iS , is by Bayes’ rule, 

( ) ( ) ( )
( )xP

SPSxPxSP irir
ir

// =      (1) 

where, 
( )/ ,   1,  2 ,  3, ...,  r iP x S i k=  is a priori PDF of the pattern in classes to be separated. 

( ) ,  1, 2 , 3, ...,  r iP S i k=  are the priori probabilities of the classes. 

( )xP is assumed to be constant. 

The decision rule is to select class iS for which ( )xSP ir /  is maximum. This will happen if for all ij ≠  
( ) ( ) ( ) ( )jrjiri SPSxPSPSxP  / / >      (2) 

It is assumed that a priori probabilities ( )ir SP of the classes are known and the a priori PDF, ( )iSxP /  is Gaussian then the 
estimator for a priori PDF is 
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Where, 
i
jx  is jth  exemplar pattern from class iS  

|| iS  = in  the cardinality of the set patterns in class iS  

iσ   = Smoothing factor 
The input layer has d units, to which the d-dimensional input vector dX R∈  is applied. The first hidden layer has one pattern 

unit for each pattern exemplar. Therefore, each such pattern unit may be associated with a generic term depicted in the summation 
of equation (3) for the ith class. The second hidden layer contains one summation unit for each class. The output layer is decision 
layer used for implementing the decision rule by selecting maximum posteriori probability, ( | )rp S xi  from outputs preceding 

summation layer for each i. The network is constructed by setting weight vector to one of the pattern unit equal to each distinct 
pattern vector in the training set from a certain class and then connecting the outputs of the pattern units to the appropriate 
summation units for that class. 

For PNN, many algorithms are available in the literature to achieve optimized exemplar pattern set that means removing 
redundant data or duplicate information. It increases the speed of classification with reduced size of exemplar pattern set while still 
providing sufficient data to fill the data space (Berthold et al, 1998). The optimal selection of smoothing parameter in PNN 
classifier is very important factor. The PNN decision boundary varies from a hyper plane to a very nonlinear boundary when the 
smoothing parameter varies from 0 (Zero) to ∞ (infinite). In literature many methodology are reported for the selection of 
appropriate widths or smoothing factor (Hammond et al, 2004, Musavi et al, 1992). In the present paper a very simple method is 
used for the calculation of smoothing factor to avoid complex calculation (Bose et al, 1996): 

i
javggi d =σ

     (4) 

Where, 
i
jd  = Distance between the jth exemplar pattern and nearest exemplar pattern in class i. 

g  = Constant that has been by found trial and error. 
 
3. Power Differential Protection (PDP) Method 
 
   The inflow and outflow of instantaneous power through transformer is according to the magnetic energy stored in transformer 
winding. Under normal operating condition, about 1% of the transformer power flows in the magnetizing circuit. In normal 
operating condition, total power flowing into transformer is about 1% of the transformer capacity because the copper losses and 
core losses are of the same order. The PDP method is based on average instantaneous power flow into transformer winding during 
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one cycle period T (20 ms for 50 Hz system). The PDP algorithm calculates the products of instantaneous current and voltage and 
then calculates the average instantaneous power as given by 

( ) ( )2 2
1 1 2 2 1 1 2 2

1 i i - - 
t

T t

w t u u r i r i dt
T −

= +∫      (5) 

To implement the PDP method by digital relay the following mathematical expressions are given as (Yabe, 1997): 
2 2

1 1 2 2  1 1 2 2( )    i i -  -  p t u u r i r i= +      (6) 
 

1

1( )  T     n 1 , 2 , 3 , . . . ,
T

N

n

nw t p t N
N=

⎡ ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑      (7) 

Where, 

1 2 1 2, , ,u u i i  are instantaneous voltage and current at primary and secondary winding terminals respectively. 
r1, r2  =  Primary and secondary winding resistances respectively 

)( tp  = Instantaneous power 
)( tw  = Average power of one period time 

N = Number of samples per cycle 
 
   PDP method is not affected by the harmonic components present in either internal fault current or inrush current because it uses 
average instantaneous power (Yabe, 1997). In magnetizing inrush condition, average instantaneous power from second period after 
energization is almost equal to core losses plus stray losses. On the other hand, under an internal fault condition large amount of 
power is consumed proportional to fault degree (as a portion of winding is short circuited). Therefore, by setting a suitable 
threshold of average power flowing into the transformer, magnetizing inrush and fault condition can be discriminated. 
   In the proposed algorithm, the PDP method is utilized to distinguish light internal fault current only as it needs at least one cycle 
to discriminate different operating condition of power transformer and this is affordable in case of light internal fault only. This 
technique is capable of detecting fault and its type in the eventuality of fault in transformer. It is operated in conjunction with PNN 
method. The trip decision of the relay is based on ORing of the two decisions obtained. 
 
4. Simulation and Training Cases 
 
   During power transformer operation, it encounters any one of the following conditions: 

• Normal condition 
• Over-excitation condition 
• Magnetizing / sympathetic inrush condition 
• Internal fault condition 
• External fault condition 
 

   In normal condition, rated or less current flows through the transformer. In this condition normalized differential current is 
almost zero (only no load component of current). Whenever, there is large and sudden change in input terminal voltage of 
transformer, either due to switching-in or due to recovery from external fault, a large current is drawn by transformer from the 
supply. As a result, the core of transformer gets saturated. This phenomenon is known as magnetizing inrush. 
   Magnetizing inrush can also occur in an already energized transformer when a nearby transformer is energized. A common 
situation of sympathetic inrush is encountered when a transformer is energized in parallel with another transformer already in 
service. The phenomenon which causes inrush current to flow in a previously energized transformer is known as the ‘sympathetic 
inrush’. As the paralleled transformer is being energized by closing the breaker, an inrush current is established in the primary of 
this transformer and this inrush current has DC component. The DC component of the inrush current can also saturate the already 
energized transformer, resulting in an apparent inrush current. This transient current, when added to the current of already 
energized transformer, results in an asymmetrical current that is very low in harmonics. This would be the current flowing in the 
supply circuit to both transformers. Sympathetic inrush current may not have sufficient amount of the second harmonic in it to 
prevent the relay from tripping. Sympathetic inrush current depends on same factors on which switching-in and recovery from 
fault magnetizing inrush current depends. 
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   PSCAD/EMTDC simulation is used to generate training as well as testing signals under different operating conditions of 
transformer as mentioned above. The simulation set up is given in Figures 2-4. While simulating magnetizing inrush condition, 
energization angle, remanent flux in the core and load condition are considered because the magnitude and the wave-shape of 
magnetizing inrush current depends on these factors. 

Figure 2. Simulation diagram of magnetizing / sympathetic inrush condition of transformer 

Figure 3. Simulation diagram of phase-to-ground fault under full-load condition of transformer 
 

Figure 4. Simulation diagram of magnetizing inrush under no-load considering remanence flux in transformer 
 

   Energization angle is varied from 0 to 360 degrees in steps of 30 degrees, and remanent flux is varied from 0 % to 80 % of the 
peak flux linkages generated at rated voltage with no load and full load conditions to generate training signals, whereas, the testing 
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signals are generated by varying energization angle in step of 15 degrees. The desired remanence can be set in un-energized 
transformer with controlled DC current sources in PSCAD/EMTDC simulation model (Woodford, 2001). 
   For internal fault, training and testing is formed by simulating fault from 1% to 99% of power transformer winding turns. Phase-
to-ground fault at different locations as 5%, 15%, 25%, 40% and 50% of the winding as well as terminal fault are simulated. The 
detailed information of power transformer PSCAD/EMTDC simulation model to simulate internal fault (Figure 18) is given in the 
Appendix-1. Three-phase transformer of 315 MVA at 400/220 kV, 200 MVA at 220/110 kV and 160 MVA at 132/220 kV are 
modeled using PSCAD/EMTDC. For the simulation of these transformers through PSCAD/EMTDC, the parameters are used that 
are obtained from M. P. State Electricity Board, Jabalpur India. The test signals so acquired by simulating various operating 
conditions of a transformer are shown in Figures.5-11. The simulation was done at the rate of 12 samples per cycle of 50 Hz A.C. 
supply in view of reported experience on different digital relay designs (Sachdev, 1998). The developed fault detection algorithm 
was implemented in MATLAB. 
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Figure 5. Typical differential current waveform under normal operation 
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Figure 6. Typical differential current waveform for ground fault 
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Figure 7. Typical differential current waveform for magnetizing inrush 
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Figure 8. Typical differential current waveform for over-excitation 
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Figure 9. Typical instantaneous power waveform for ground fault 
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Figure 10. Typical average power waveform for magnetizing inrush 
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Figure 11. Typical average power waveform for ground fault 
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5. Implementation and Relay Logic 
5.1. Implementation of PNN Based Algorithm and Comparison with FFBP Neural Network 

   Four layered PNN structure is used as shown in Figure 1. Input layer of PNN model has 12 neurons. The number of neuron of 
input layer are decided based on the dimension of feature space i.e. 12 samples per cycle. The first hidden layer consists of 777 
neurons and it is decided based on total number of exemplar pattern set used to construct the PNN model. In training exemplar 
pattern set, 444 patterns of magnetizing inrush (including sympathetic inrush patterns), and 333 patterns of faults are used. Second 
hidden layer has two neurons, as there are only two classes to be classified. In output layer, single neuron is used, as it is the 
decision layer and it is used for selecting the maximum posteriori probability, from the outputs of the summation layer. 
   The PNN requires one node or neuron for each exemplar pattern. Various clustering techniques have been used to reduce this 
requirement to one node per cluster center. Clustered data is required to construct the PNN because the output of first hidden layer 
is added and this belongs to one specific cluster that is clear from the PNN architecture. To construct an optimized and efficient 
PNN, the training data are clustered by using K-means clustering (Specht, 1992), and the smoothing factor for each class is 
calculated by equation (4). The optimal value of multiplication factor (g) is obtained by trial and error method and thus optimal 
smoothing factor is achieved (see Appendix-2). 
   Out of 925 sets of data (patterns), 777 patterns sets are used to construct PNN with optimal smoothing factor which is already 
obtained by the conventional method and remaining 148 sets are used to test the network’s generalization ability that are different 
from those used to train the network. These 148 test exemplar pattern sets contain internal fault and magnetizing inrush condition 
only as these two conditions are very difficult to discriminate as compared to other operating conditions like external fault 
condition, over-excitation and normal operation from protection point of view. Out of these 148 cases 74 are that of magnetizing 
inrush and rest are for internal faults. As other conditions have been taken care before this stage, hence there is no chance of 
getting exemplar patterns of other operating conditions at this stage. 

 

Start

Input data (Operating Signal )

Over excitation/ Normal Operation ?

Issue Trip Signal

Fault

NO

Check for Inrush or Fault by PNN ?

Yes

Inrush

 

Figure 12. Flow chart of PNN based algorithm 

   External fault and normal operating condition are ruled-out by comparing two consecutive peaks of operating signal whereas the 
over-excitation condition is determined by comparing actual value of voltage-to-frequency ratio with its rated value (shown in 
Figure 12). If these conditions do not exist then the processing is continued to detect the magnetizing inrush and internal fault 
conditions by PNN. The posteriori probabilities are calculated by the summation layer of PNN and the decision layer selects 
maximum posteriori probability from the preceding summation layer and on the basis of maximum posteriori probability, the 
patterns are classified. Accordingly, the PNN gives tripping signal if an internal fault condition is detected. 
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   Many experiments have been made to evaluate the performance of the PNN model. The fault and magnetizing inrush conditions 
are tested with all possible patterns. The results are given in Table-1 which presents the natural logarithm of probability of the test 
pattern to be internal fault or inrush condition. By comparing the magnitude of these probabilities, the test data belongingness is 
decided. The values given in the Table-1 are the conditional probability estimated by PNN. On the basis of these conditional 
probability PNN based classifier takes decision i.e. the test data represents either internal fault current or inrush current. 
   To obtain data for the testing of relaying algorithm fault current magnitude, remanent flux, load condition and switching-in angle 
are varied to investigate their effects on the performance of the PNN model. Since the profile of magnetizing inrush current wave 
changes with variation of switching-in instant of transformer hence, it is varied between 0 to 360 degrees. Similarly, due to 
remanence flux, the magnitude of magnetizing inrush current may be as high as 2 to 6 times to that of the magnetizing inrush 
without that, although the wave-shape remains same. It is found that the PNN classifier based relay is stable even with such high 
magnitude of magnetizing inrush current caused by remanence flux whereas the conventional harmonic based relay may mal-
operate due to such high magnitude of magnetizing inrush current. 

 
Table-1. Conditional probability estimated by PNN 

Type of test data Probability of fault Probability of inrush 

Inrush data 18.901 26.004 

Fault data 31.742 22.991 

 
   The PNN is faster than FFBP neural network. The training required for PNN is very different and much faster than that required 
for FFBP neural network (Specht et al, 1991). The training process of PNN is one pass without any iteration for the weight 
adaptation, as against a large number of iteration (epochs) necessary in case of FFBP neural network. As an example, 1000 
iterations are required for convergence in case of FFBP neural network implemented by the authors, thereby giving a ratio of about 
1000:1 in terms of the training time. Therefore, the PNN is free from the demerits like local minima and slow convergence in 
training and empirical determination of network structure and parameters. Furthermore, in PNN, single parameter namely 
smoothing factor is to be tuned whereas in the FFBP neural network at least four parameters like learning rate, momentum 
coefficient, weights etc. are to be tuned during training of neural network. This makes PNN easy to design and simple in use than 
the classical ANN. 

 

 
Figure 13. Variation of accuracy versus multiplying factor (g) on 315MVA power transformer using PNN classifier 

 
   Table-2 demonstrates that the optimal PNN fails to discriminate some light internal fault i.e. false negative error. This optimal 
PNN is designed with optimal value of smoothing factor that is obtained by classical method given in Table-3. Figure 13 shows the 
effect of the multiplying factor on the classification accuracy of a PNN classifier in case of 315MVA power transformer. From the 
experimental results, it is found that when PNN is trained with one transformer and tested on different rating of transformer, it fails 
in case of light internal fault condition only. Figure14 illustrates the typical waveform of light internal fault case. The nature of 
waveform is similar to the typical inrush waveform, and because of similarity in wave-shapes of typical inrush waveform and light 
internal fault waveform, the boundary of classification becomes narrow and therefore, it is difficult to discriminate the light 
internal fault cases. Therefore, for such cases PDP technique is applied, which is also independent of harmonic component present 
in fault current and inrush current. 
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Figure 14. Typical waveform of phase-to-ground fault at 2% of the winding from the neutral end 
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Figure 15.  Flow chart of PNN and PDP algorithm 

 

5.2. Implementation of Hybrid PNN & PDP method and Result Discussion 

   The PNN and PDP methods are parallely operated. The flow chart (Figure 15) illustrates all the steps of the hybrid PNN and 
PDP method to discriminate between inrush and internal fault conditions. In PDP method instantaneous power (shown in Figure 9) 
and average power (shown in Figure 11) are calculated by using equation (6) and (7) respectively. From Figure 10 and Figure 11, 
it is clear that there is large difference in average power after one cycle of time. Therefore, with proper setting of threshold value, 
operating condition of transformer can be monitored. The threshold value depends on transformer rating and its other parameters. 
By this method, the type of fault in transformer can also found due to large difference among the threshold values and that for light 
internal fault, external fault and phase-to-phase fault conditions. This technique is used for the detection of low level internal faults 
only as there is one cycle delay in decision making which is affordable in this case only, whereas in other cases PNN will 
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recognize the different operating conditions of power transformer within half cycle of its occurrence. Therefore, by combining 
these two methods, fault can be detected with certainty which improve the reliability and stability of differential relaying 
algorithm. The relay utilize OR logic that means, any input signal either OA or OP is high the relay will issue the trip signal. 
Where, OA and OP are the output of PNN method and PDP method respectively. O is output of the relay and the high state of 
output implies the trip signal to be generated. 

 
No.of False Positive No.of False NegativeClassification Error (in %)    100

Total Number of  Test Cases
+

= ×
 

 
Classification Accuracy (in %) = 100 – Classification Error (in %)     (8) 
 
   Table-4 presents the classification in accuracies (in percentage) with FFBP neural network, PNN and combined PNN and PDP 
method. The classification in accuracy is calculated by using (8). From the results of Table-4, it is clear that the classification 
ability of PNN is better than the FFBP neural network in this application. However, from Table-4, it is observed that the proposed 
combined method has ability to discriminate between the light internal fault (turn-to-turn fault) as well as magnetizing inrush 
condition and classification in accuracy of the combined (PNN and PDP) method has improved as compare to the FFBP neural 
network and PNN method. 
   Discrete Fourier Transform (DFT) based harmonic restraint method is implemented, to compare performance of the proposed 
optimal PNN based algorithm in power transformer differential protection. Figures 16-17 show the ratio of second harmonic to 
fundamental of the differential current under typical magnetizing inrush and internal fault condition respectively. During one cycle 
under internal fault condition, the ratio of the second harmonic is quite high and in the same range as in case of magnetizing inrush 
condition. Therefore, it is difficult to discriminate between internal fault and inrush conditions merely setting a preset threshold. 
From Figures 16-17, it is also clear that the ratio values are fluctuating, which create problem to decide a preset threshold. 
Moreover, due to the presence of second harmonic during internal fault condition digital relay will take longer time to make trip 
decision (one cycle or more than one cycle).  In contrast, the optimal PNN based method is able to detect such a fault in 6 ms (half 
cycle or with in half cycle) except light internal fault (turn-to-turn fault) cases. However, the harmonic restraint method is capable 
to discriminate between these two conditions but does not seems to be intelligent to take decision in case of fluctuating ratio of 
second harmonic to fundamental of the differential current due to different loading conditions, severity of internal faults, 
switching-in angles etc. and hence mal-operation of relay will occur. While the proposed amalgamated technique (i.e. combined 
PNN and PDP method) is intelligent and more reliable than the conventional harmonic restraint method, FFBP based method and 
PNN based method. 
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Figure 16.  Ratio of second harmonic to fundamental of the differential current under typical inrush condition (inrush occurs at 

0.04 sec.) 
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Figure17.  Ratio of second harmonic to fundamental of the differential current under typical internal fault condition (internal fault 

occurs at 0.04 sec.) 
 
   Table-5 shows the number of post abnormality samples required for decision by FFBP neural network, PNN and PNN 
conjunction with PDP method based relays. From Table-5, it is clear that the PNN is faster than the FFBP neural network and PNN 
conjunction with PDP method. However, it fails to recognize some typical light internal fault (turn-to-turn fault) cases whereas the 
PNN conjunction with PDP method has 100% classification capability with a reasonable speed as compared among these three 
methods. In this table actual value indicates the number of post abnormality sample required for detection of a test pattern by 
concerned algorithm while logical value provides information regarding the of maximum number of post abnormality samples 
available in a pattern. 
   Tremendous capability of PNN for classification problems shows suitability for differential transformer protection. It is also 
immune from the different harmonics contained in operating signals which makes it simpler and robust than the conventional 
digital filtering algorithms. 
 

Table – 2. Number of false detections in optimal PNN 

Tested transformer ratings 

315 MVA 200 MVA 160 MVA 

False positives False negatives False positives False negatives False positives False negatives 
Inrush Faults Inrush Faults Inrush 

Switching -in 
angles 

Phase-to- 
ground 
fault 

Phase-to- 
phase 
fault 

Switching -in 
angles 

Phase-to- 
ground 
fault 

Phase-to-
phase 
fault 

Switching -in 
angles 

Phase-to- 
ground 
fault 

Phase-to-
phase 
fault 

Training 
transform
er ratings 

% 
** Degrees % 

** 
% 
* 

% 
** 

%  
* 

% 
** Degrees % 

** 
% 
* 

% 
** 

% 
* 

% 
** Degrees % 

** 
% 
* 

% 
** 

% 
* 

315 MVA 0 - 0 - 0 - 0 - 1 2 0 - 0 - 0 - 0 - 

200 MVA 0 - 0 - 0 - 0 - 0 - 0 - 0 - 2 2,5 0 - 

160 MVA 0 - 1 2 0 - 0 - 2 2, 5 0 - 0 - 0 - 0 - 

% * Represents location of winding from the neutral end at which fault occurs 
% ** Represents number of recurrence 
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Table-3. Optimal multiplication factor (g) 
Tested transformer ratings 

Trained transformer ratings 
315 MVA 200 MVA 160 MVA 

315 MVA 1.1 1.4 1.1 

200 MVA 0.5 0.3 0.5 

160 MVA 0.3 0.3 1.1 
 

Table -4. Classification accuracies (in %) with FFBP, PNN and combined PNN and PDP method 
Tested transformer ratings 

315 MVA 200 MVA 160 MVA 
Trained transformer 

ratings FFBP 
(%) 

PNN 
(%) 

PNN 
& 

PDP 
(%) 

FFBP 
(%) 

PNN 
(%) 

PNN 
& 

PDP 
(%) 

FFBP 
(%) 

PNN 
(%) 

PNN 
& 

PDP 
(%) 

315 MVA 99.32 100  100 94.59 98.65 100 98.64 100  100 

200 MVA 96.62 100 100 99.32 100 100 98.64 96.93 100 

160 MVA 98.64 98.65 100 96.62 97.3 100 100 100  100 

 
Table – 5.      Number of post abnormality samples required for decision by FFBP, PNN and  

             PNN & PDP method based relays 
FFBP neural 

network PNN PNN and PDP 
method 

Number of samples 
required 

Number of samples 
required 

Number of samples 
required 

Cases 

Actual Logical Actual Logical Actual Logical 

Magnetizing inrush  
(00) 11 12 05 12 05 12 

Internal fault (Light phase-
to-ground fault at 2%) 10 12 06 12 18 24 

 
 
6. Conclusions  
 

   This paper presents a novel approach, by amalgamation of PNN and PDP methods, to enhance discrimination between 
transformer internal fault and magnetizing inrush and to classify the type of fault in power transformer. The PNN is faster than the 
classical ANNs and easy to design. The reported PNN algorithm is based on wave-shape identification technique which is 
independent of amount of harmonic contents of operating signal of relay, and suitable for modern power transformers that use 
high-permeability low coercion core materials. With these core materials high second harmonic components may be generated 
during internal faults while these components may remain low during magnetizing inrush, and hence the conventional harmonic 
restraint technique that uses second harmonic component as the indicator of magnetizing inrush may fail. As the PDP method 
monitors the power flow into transformer irrespective of the harmonic contents of fault currents, and hence is suitable for 
protection of modern power transformers. In the proposed hybrid method, stability of differential relay is ensured during the 
magnetizing inrush, sympathetic inrush, over-excitation and external fault conditions. The combination of PDP method with PNN 
makes it capable to detect light internal faults (turn-to-turn faults) for all ratings of transformers which improve the overall 
performance of digital differential protection scheme. In addition to that the hybrid method is intelligent, reliable and capable to 
take decision even in case of fluctuating ratio of second harmonic to fundamental of differential current unlike the conventional 
harmonic method. Real time implementation of differential relaying using the proposed algorithm applying PNN as the core 
classifier would essentially require a PNN processor and it is matter of further research. 
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Nomenclature 
x  Input of neural network 
y  Output of neural network 
| |iS   Cardinality of the set patterns in class iS  

( )/r iP x S   Class conditional probability density function of x 

( )r iP S   Probability that a vector belongs to class iS  regardless of the identity of that vector 

d i
j   Distance between the jth exemplar pattern and nearest exemplar pattern in class i 

g   Multiplication factor (Constant) 

iσ   Smoothing factor 
i
jx   jth  exemplar pattern from class iS  

1 2,u u   Instantaneous voltage at primary and secondary winding terminals respectively 

1 2,i i   Instantaneous current at primary and secondary winding terminals respectively 
r1, r2  Primary and secondary winding resistances respectively 

)( tp  Instantaneous power 
( )w t   Average power of one period time 

N  Number of samples per cycle 
 
 
 
Appendix-1 
 

Figure 18 shows a typical PSCAD/EMTDC transformer model to simulate internal faults (turn-to-turn, phase-to-ground, and 
phase-to-phase) at different location of transformer winding from the neutral end of the windings. In this model MVA rating, 
voltage rating, base frequency, leakage reactance, magnetizing current, and fault location (in %) etc. can be defined. 

 

 
        Figure18(a). Typical PSCAD/EMTDC transformer model to simulate internal fault 
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Figure 18(b). Typical PSCAD/EMTDC transformer model to simulate internal faults at different locations 

 
Appendix-2 

 
i. Calculate smoothing factor (σ ) by using Euclidean distance between the points representing the training 

patterns in feature space for each class i.e.  k
ijd  Euclidean distance between k

ix and k
jx in class k. 

ii. Take average of Euclidean distances 
iii. Select a constant g by trial and error method 

Find optimal value of g based on the application.  
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