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Abstract 
 
   This paper proposes an optimal trading strategy for a generation company (GenCo) in multi-market environment including 
day-ahead spot and long term bilateral contract markets using self-organising hierarchical particle swarm optimisation with 
time-varying acceleration coefficients (SPSO-TVAC). The proposed trading strategy is formulated as a two-stage optimisation 
problem. Firstly, the GenCo’s objective model which is to maximise expected profit and to minimise risk of profit variation is 
solved by SPSO-TVAC. Secondly, the market clearing model which is to minimise system cost of locational marginal price 
(LMP) based market is solved by DC optimal power flow (DCOPF). The Monte Carlo method is employed to simulate other 
bidders’ behaviour in competitive environment. Test results on the PJM 5-bus system indicate that SPSO-TVAC is superior to 
inertia weight approach particle swarm optimisation (IWAPSO) and genetic algorithm (GA) in searching the optimal trading 
solution. In addition, different bilateral contract prices and spot demand significantly impact GenCos’ trading behaviour. 
Accordingly, the proposed approach could be a beneficial decision-making tool for a GenCo in energy trading.  
 
Keywords: Optimal bidding strategy, energy trading, locational marginal price, bilateral contract market, particle swarm 
optimisation, Monte Carlo simulation. 
 
1. Introduction 

 
In energy market, generation companies (GenCos) should have strategies to maximise their profits and to avoid price risk 

(Shahidehpour et al., 2002). For example, GenCos may allocate their power into several markets including spot, bilateral contract 
or reserve markets. For trading in spot market, a GenCo could develop a bidding strategy to maximise its profit especially in 
imperfect competitive environment. In fact, spot price could be influenced by market participants’ behaviour and demand 
fluctuation. Therefore, hedging price risk with low risk transaction such as bilateral contract is necessary for GenCos. 

Recently, there are a number of researchers investigating optimal bidding strategies in locational marginal price (LMP) based 
markets. In Li and Shahidehpour (2005), a game-based bidding strategy for GenCos with incomplete information is proposed to 
find the supply function equilibrium. However, with the complexity of the problem, the global optimal solution is difficult to be 
found by this approach. In Gountis and Bakirtzis (2004), genetic algorithm (GA) and Monte Carlo (MC) simulation are applied to 
provide the optimal bidding strategy. Different risk profiles of market participants are also considered. However, only single 
period trading without technical constraints is considered. Finally, in Badri et al. (2008), a network-constrained bidding strategy 
considering bilateral contracts based on the primal dual interior point method (PDIPM) is proposed. It is assumed that all players’ 
cost functions are known and the equilibrium point is provided. However, it is virtually impossible to know such confidential 
information.  

With the complexity and large scale of the network-constraint bidding strategy problem, an efficient heuristic approach is 
needed to provide the optimal solution. In Bajpai and Singh (2008), fuzzy adaptive particle swarm optimisation (FAPSO) is 
proposed to solve the strategic bidding problem. The simulation results indicate that FAPSO is superior to GA in both searching 
performance and execution time. However, a proper design of the fuzzy set is needed to adapt the velocity weight for the particular 
problem. 
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In Ratnaweera et al. (2004), self-organising hierarchical particle swarm optimisation with time-varying acceleration coefficients 
(SPSO-TVAC) is proposed. It is applied to a non-convex economic dispatch (Chaturvedi et al., 2008). The results show that 
SPSO-TVAC is efficient to solve a non-convex and non-differentiable function and its performance is superior to several other 
particle swarm optimisation (PSO). In addition, the velocity weight coefficient which is a key parameter of PSO is eliminated. 
Thus, it is applicable to solve various optimisation problems. 

This paper proposes an optimal trading strategy for a GenCo in multi-market environment including day-ahead LMP-based and 
long term bilateral contract (Hou and Wu, 2007) markets using a novel stochastic search technique, SPSO-TVAC. The trading 
strategy is formulated as a two-stage optimisation problem. The first subproblem is the GenCo’s objective model, maximising 
expected profit from trading in the both markets and minimising risk of profit variation. The second is the market clearing process 
based on DCOPF to minimise system cost. MC simulation is employed to deal with the uncertainties from other bidders’ 
behaviour in spot market. The proposed strategy is illustrated on the PJM 5-bus system and compared to the well-known stochastic 
search approaches, inertia weight approach particle swarm optimisation (IWAPSO) and GA. 

The rest of the paper is organised as follows: Section 2 expresses problem formulation including the GenCo’s objective model 
and the market clearing model. Section 3 describes the solution methodologies including SPSO-TVAC and MC simulation, and 
the solution algorithm. Section 4 illustrates the proposed strategy through numerical examples and discussions. Finally, Section 5 
concludes the paper.  
 

2.  Problem Formulation 
 
2.1  GenCo’s objective model: To maximise the expected profit for a GenCo from spot and bilateral contract markets and to 
minimise risk of profit variation, the GenCo’s objective model could be expressed as 
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In (1), the multiple objectives of a GenCo are considered as the single objective function. Generally, for conflicting objectives, 

the tradeoff technique could also be implemented as ( )1 2E d b

nt nt ntw wη η σ ⋅ + − ⋅   (Boonchuay and Ongsakul, 2009). Here, it is 

assumed that all GenCo’s objectives are equally weighted so that all weight coefficients could be set to one. The technical 

constraints, which are the maximum and minimum generation limits in (2), and ramping up/down limits in (3) and (4), are 

considered. The minimum up/down time constraints could also be included if some units need to be shut off. 

The detail of the GenCo’s objective model in (1) is written as 
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In (9) to (10), the cost function of unit i at period t is described as (Bajpai and Singh, 2007) 
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2.2  Market clearing model using DCOPF: In LMP-based market, the system operator generally provides electricity price with 
minimum system cost considering transmission limits.  ACOPF is an efficient tool to determine electricity price and quantity for 
each bus. However, ACOPF requires a long execution time to obtain the optimal solutions. Therefore, DCOPF is used to provide 
market clearing price and quantity, which can be expressed as  

1

min
I

i i

i

p q
=

⋅∑                                                                                                 (11) 
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where the system loss Loss
P  is  calculated by 2
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Wollenberg, 1996). 
In the DCOPF model, the entire system loss will be compensated by the generator at the reference bus. Therefore, for more 

accurate LMP calculation, the fictitious nodal demand (FND) is included in the line flow equation as (Li and Bo, 2007) 
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In (15), 
iE  is the FND at bus i, which can be calculated by 
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LMP at the reference bus is equal to the Lagrangian multiplier of the equality constraint in (12). For providing LMP at the other 
buses, the inequality constraint Lagrangian multiplier and the marginal loss factor have to be determined (Li and Bo, 2007). 
 
3. Solution Methodologies 

 

3.1 Self-organising hierarchical PSO with time-varying acceleration coefficients: SPSO-TVAC is an efficient population-based 
optimisation technique, which is appropriate for non-convex optimisation problems (Chaturvedi et al., 2008). Mathematically, it is 
defined as 
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In (17), the first component is the cognitive component that represents the individual experience of each particle. The last 
component is the social collaboration of the particles in finding the global optimal solution. The position of the ith particle on the 
dth dimension is updated by (18). With the TVAC concept, the acceleration coefficients are given as 
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In addition, SPSO-TVAC has a reinitialised process to enhance its performance when particles stagnate during the search. The 
pseudocode is shown as follows. 
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Main procedure 

Velocity update equation in (17) 

if vid=0  

    if rand3<0.5 

     vid=rand4*vdmax  

    else vid=-rand5*vdmax 

    end if 

end if 

vid=sign(vid)*min(abs(vid,vdmax)) 

Position update equation in (18) 

vid is the velocity of the ith particle on the dth dimension, and vdmax is the maximum velocity limit on the dth dimension, which 
could be set as 10% of the dynamic range of the variable on each dimension (Chaturvedi et al., 2008). 
 
3.2  Monte Carlo simulation for bidding strategy: MC simulation is a stochastic computational technique which is performed by 
statistical sampling experiments on a computer. It needs a probability density function (PDF) of uncertainty source to generate the 
sampling. For strategic bidding problems, the uncertainties come from bidding behaviour of market participants. A PDF that 
appropriately represents the distribution of historical bidding behaviour could be used. However, in this paper, a normal PDF is 
employed to estimate rivals’ bidding behaviour, which can be expressed as (Bajpai and Singh, 2007) 
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3.3  Solution algorithm: The proposed solution algorithm based on PSO and MC simulation for the strategic trading problem is 
described in 10 steps as shown in Figure 1. 
 

 

Import input data, i.e., gen.,

rivals, lines, load, contract price

Start

Initialise decision variables

Specify iter_max and mc_max

Set mc = 1

Generate rivals’ bid prices

Provide market settlement Calculate GenCo’s profit

7)       mc < mc_max

Evaluate fitness function

Define best particles

Update particles

10)       iter < iter_max

End

mc = mc + 1
No

No
iter = iter + 1

1

2

3

4

5 6

8

9

 

Figure 1. Solution procedure 

 

Step 1) Input data: The concerned GenCo’s cost data, historical rivals’ bidding data, transmission lines, load, and bilateral contract 
price are given.  

Step 2) Initial value: Decision variables including bid price and quantity, and amount of bilateral transaction are randomly 
initialised. The maximum number of PSO iterations and MC trials are specified. 

Step 3) Reset MC counter: The MC counter is set/reset to be 1. 

Step 4) Rivals’ strategy estimation: The rivals’ bid prices are generated based on their PDF. 

Step 5) Market settlement process: The DCOPF model in (11) to (16) is solved by a linear programming approach to provide LMP 
and dispatched quantity for each bus. 
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Step 6) Profit evaluation: GenCo’s profit from trading in spot market is calculated using (6). This finishes one trial of MC 
simulation.  

Step 7) MC loop stopping criteria: If the maximum number of the simulation is not reached, go to Step 4 and the MC counter is 
increased by 1. Otherwise go to the next step. 

Step 8) Evaluating fitness value: The fitness function including the objective function in (1) and the penalty function (PF) is 
evaluated by  

( )
1 1

E
T N

d b

nt nt nt

t n

Fitness PFη η σ
= =

 = + − − ∑∑                                                                                (22) 

where PF is a constant that is larger than zero if the constraints in (2) to (4) are not satisfied. Otherwise PF equals to 0. 

Step 9) Updating particles: The best fitness particles, global and local best particles, are defined and all particles are updated by 
(17) and (18). 

Step 10) PSO loop stopping criteria: If the PSO counter is less than maximum number of the PSO iterations, go to Step 3 and 
increase the PSO counter by 1. Otherwise stop. 
 
4. Numerical Example and Discussion 

 
The proposed optimal trading strategy is tested on the PJM 5-bus system. The optimisation problem in (1) to (4) is solved by 

different optimisation techniques including SPSO-TVAC, IWAPSO, and GA. In addition, the DCOPF model in (11) to (16) is a 
suboptimisation problem. As the simulation is performed on the MATLAB environment, the DCOPF model is conveniently solved 
by ‘fmincon’ function included in the software package. To reduce the computing effort, an artificial neural network (ANN) is 
used to approximate the LMP. The simulation is performed on a 2.8 GHz Pentium IV personal computer with 1GB RAM. 

The configuration and parameters of the PJM 5-bus system are shown in Figure 2 and Table 1, respectively. There are four 
GenCos participating in the market. In this example, the concerned GenCo, GenCo-A, needs to provide the optimal bid price, bid 
quantity, and amount of bilateral transaction to maximise expected profit and to minimise risk of profit variation. Therefore, the 
rest GenCos are the opponent bidders and the bidding data is given in Table 2. 

The production cost function of GenCo-A is expressed in (9). The cost coefficients and the technical parameters are given in 
Table 3. 

 

 

Figure 2. PJM 5-bus system 
 

Table 1. Transmission line data of PJM 5-bus system 

 A-B A-D A-E B-C C-D D-E 
R(%) 0.281 0.304 0.064 0.108 0.297 0.297 
X(%) 2.810 3.040 0.640 1.080 2.970 2.970 
Limit 999 999 999 999 999 240 
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Table 2. Rivals’ bidding data 

GenCo 
Mean of bid price, 

$/MWh 
SD. of bid price, 

$/MWh 
Bid quantity, MW 

C 30 4 520 
D 35 5 200 
E 10 3 600 

 

Table 3. GenCo-A’s data 

c0 c1 c2 c3 c4 
qmax, 
MW 

qmin, 
MW 

UR, 
MW 

DR, 
MW 

0.00482 7.97 78 150 0.063 210 20 30 50 
 
In the simulation, it is assumed that there is no demand elasticity and each load bus equally shares the spot demand. In addition, 

there is a large customer at Bus-D who prefers to purchase power from GenCo-A through bilateral transaction at specific prices 
and the bilateral congestion charge is ignored.  

 
4.1  Solution convergence comparison: Three different global search approaches including SPSO-TVAC, IWAPSO, and GA are 
employed to provide the optimal trading strategy. For the PSO parameters, the maximum number of iterations is taken as 300 with 
the swarm size of 20 particles. For SPSO-TVAC, the coefficient of cognitive component (a1) is decreased in the range of 2.5 to 0.5 
and the social learning factor (a2) is increased from 0.5 to 2.5. For IWAPSO, the inertia weight is varied from 0.9 to 0.4 and the 
acceleration coefficients are equal to 2. For the GA parameters, the maximum number of generation, population size, and mutation 
and crossover probabilities are used as 300, 20, 0.2, and 0.6, respectively. 

The single period trading with spot demand of 900 MW and bilateral contract price of $10/MWh is used to compare the 
performances of the optimisers in the strategic trading problem. The 100-trial MC simulation is performed to simulate the rivals’ 
behaviour. By 20 runs of the simulation, the convergence characteristics of the best solutions from SPSO-TVAC, IWAPSO, and 
GA are compared in Figure 3.  
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Figure 3. Convergence characteristics of different optimisers 

 
In the beginning of the search, the SPSO-TVAC and IWAPSO fitness values dramatically increase, while the GA fitness value 

slightly increases. After the 50th iteration, SPSO-TVAC provides higher fitness solutions than IWAPSO and GA. An advantage of 
SPSO-TVAC is that the reinitialised process will be active when a particle stagnates during the search. Therefore, all particles are 
always encouraged to find a better solution. At the last iteration, the SPSO-TVAC fitness value is $1,478.8, whereas the IWAPSO 
and GA fitness values are $1,461.2 and $1,410.5, respectively. For the execution time, the PSO-based approaches require 
approximately 60 minutes, but the GA approach needs around 80 minutes to provide the optimal solution. 
 

4.2  LMP approximation using ANN: A feed-forward ANN with 15 hidden nodes and 3 hidden layers is used to find LMP. The 
ANN has been trained by 30,000 input/output patterns from the DCOPF solutions. The ANN diagram for the LMP approximation 
is shown in Figure 4. In this case, a single period trading with spot demand of 900 MW and bilateral contract price of $10/MWh is 
considered. SPSO-TVAC is employed to maximise the GenCo’s objective model. The solutions from the DCOPF and the ANN-
based LMP approximations are shown in Table 4.   
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Figure 4. Diagram of the ANN-based LMP approximation 
 

Table 4. Comparative results from different LMP approximation approaches 

 100 trials of MC 500 trials of MC 
DCOPF ANN DCOPF ANN 

Bid price, $/MWh 15.26 16.54  15.48 16.65 
Bid quantity,MW 84.38 83.84 84.46 83.83   
Bilateral transaction, MW 115.43 115.64 114.95 115.67 
Expected LMP at Bus-A, $/MWh 29.68 29.67 29.60 29.65 
Expected profit  from spot,$ 1716.52 1705.54 1713.16 1703.51 
Profit from bilateral,$ 76.18 78.35 77.65 78.37 
Risk of profit variation,$ 313.81 324.64 332.18 327.49 
Execution time, min 53.12 2.51 255.48 14.35 
Computer Configuration: 2.8 GHz, PIV Processor, 1GB RAM 

 

In Table 4, the decision variables of GenCo-A are bid price, bid quantity and amount of bilateral transaction. The other 
parameters are state variables. For the ANN approach with 100-trial MC simulation, on average, the decision variables differ 
3.06% from the DCOPF solutions while the other parameters differ 1.74%. Using 100-trial MC simulation, the ANN approach 
requires 2.51 minutes, whereas the DCOPF approach needs 53.12 minutes to provide the optimal solution.  For the ANN approach 
with 500-trial MC simulation, the decision and the state variables differ from the DCOPF solutions 2.98% and 0.76%, 
respectively. Using 500-trial MC simulation, the execution times of the ANN and the DCOPF approaches are 14.35 minutes and 
255.48 minutes, respectively. The results indicate that the ANN approach could significantly reduce the computing effort in 
providing the optimal trading strategy.  

Note a higher number of MC simulation could provide more accurate solutions. However, it is necessary to consider the 
execution time. When MC simulation is taken as 100 trials, the execution time is reduced by 5 times, but the solutions are not as 
diverse as the 500-trial solutions.  

 
4.3  Different bilateral contract prices: In this case, the optimal trading strategies for GenCo-A with different bilateral contract 
prices are illustrated. The bilateral contract price at Bus-D varies from $15 to $28/MWh with the spot demand of 900 MW. The 
optimal solutions are shown in Table 5. 
 

 

Table 5. Optimal solutions with different bilateral contract prices 

 Bilateral contract price $/MWh 
15 20 25 28 

Bid price, $/MWh 16.94  16.44 15.50   15.28 
Bid quantity, MW 83.83 83.69 80.42 2.26 
Bilateral transaction, MW 115.66 126.22 129.56 207.24 
Expected LMP at Bus-A, $/MWh 29.67 29.62 29.62 29.49 
Expected profit from spot, $ 1705.31  1660.93 1594.36 54.54 
Profit from bilateral, $ 656.69 1288.54 1970.42 3773.51 
Risk of profit variation, $ 324.47 324.44 311.20 18.48 

 
 
In Table 5, the optimal solutions for GenCo-A with different bilateral contract prices are compared. The bid price and the 

expected LMP at Bus-A are quite stable even the bilateral contract price varies. Furthermore, the relation between the allocated 
power in each market and the bilateral contract price is non-linear as shown in Figure 5. When the bilateral contract price is less 
than $24/MWh, GenCo-A keeps the same amount of allocated power in each market. However, when the bilateral contract price 
increases to $27/MWh, GenCo-A might allocate the entire power to the bilateral contract market.  
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Figure 5. GenCo-A’s trading behaviour versus different bilateral contract prices 

In Figure 6, GenCo-A’s expected profit and risk of profit variation from spot market, and profit from bilateral transaction with 
different bilateral contract prices are shown. Varying the bilateral contract prices from $15 to $24/MWh, the expected profit is not 
diverse because the expected LMP and dispatched quantity at Bus-A are rather flat as shown in Table 5. In bilateral contract 
market, as the price increases, the profit is linearly growing. Nevertheless, when the bilateral contract price is higher than 
$25/MWh, profit from the both markets will sharply changes. The risk correlates with the expected profit from spot market 
trading, which is close to zero when the bilateral contract price is equal to $28/MWh. 
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Figure 6.  Profit and risk of GenCo-A versus different bilateral contract prices 

 
4.4  Multi-hourly trading strategy: Day-ahead spot and bilateral contract markets are considered to provide the optimal bid price 
and power allocation for GenCo-A. The day-ahead spot demand is shown in Figure 7. It is assumed that the bilateral contract price 
at Bus-D is $15/MWh for the entire trading periods. 
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Figure 7.  Forecast demand for day-ahead spot market 
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In Figure 8, the allocated power in spot and bilateral contract markets and total dispatched power of GenCo-A for 24-hour 
trading period are shown. The results indicate that different spot demands cause strategy changes of GenCo-A. However, in entire 
trading periods, GenCo-A allocates a higher energy proportion in bilateral contract market to hedge price risk. The average 
dispatched output of GenCo-A is 199.58 MW. With the different demands, dispatched levels of GenCos vary as shown in Table 6. 
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Figure 8.  Total dispatch and allocated power of GenCo-A in day-ahead spot and bilateral contract markets 

 

Table 6. Expected power dispatch of each GenCo with different spot demands 

GenCo  
dispatch, MW 

Spot demand, MW 
900 1000 1100 1200 1300 

A 84.39    68.13  51.84 57.23    91.78 
C 186.35  300.88   415.40   486.86   499.71 
D 35.41   36.72   38.20    61.44   114.60 
E 600.00   600.00  600.00  600.00   600.00 

 
 

In Figure 9, the expected LMP at Bus-A and the optimal bid price of GenCo-A for 24-hour trading period are shown. During 
peak demand periods of 1300 MW, the expected LMP at Bus-A increases to $34.94/MWh, whereas the lowest LMP, with spot 
demand of 900 MW, is $29.68/MWh. The optimal bid prices of GenCo-A are, on average, 58.11% lower than the LMPs. 
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Figure 9.  Optimal bid price and expected LMP at Bus-A 

 
In Figure 10, the expected profit and risk of profit variation from spot market, and profit from bilateral transaction of GenCo-A 

for 24-hour trading period are shown. For all trading periods, the cumulative expected profit and risk of profit variation from spot 
market are $40,722 and $7,060, respectively. Profit from bilateral trading depends on amount of sold energy, which the cumulative 
bilateral profit is equal to $16,969. 
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Figure 10.  Profit and risk of GenCo-A in day-ahead spot and bilateral contract markets 

 
5. Conclusion  

 

In this paper, SPSO-TVAC and MC simulation are used to provide the optimal trading strategies for a GenCo in LMP-based and 
long term bilateral contract markets. The proposed trading strategy includes two optimisation stages. The first stage is the GenCo’s 
objective model, which is to maximise expected profit in spot and bilateral contract markets and to minimise risk of profit 
variation, solved by SPSO-TVAC. The second stage is the market clearing model based on DCOPF to provide the LMP. The 
uncertainties from other bidders’ behaviour are estimated by the MC approach. Test results indicate that SPSO-TVAC could 
provide a better solution than IWAPSO and GA in the strategic trading problem. The ANN-based LMP approximation approach is 
effective to reduce the computing effort in the optimisation process. With different bilateral contract prices and spot demands, the 
proposed approach could be used as a decision-making tool for a GenCo in energy trading. 
 
Nomenclature 

 

1

k
a , 2

k
a             Acceleration coefficients of cognitive and social components at iteration k, respectively. 

1ia , 2ia  Initial values of cognitive and social acceleration coefficients, respectively. 

1 f
a , 2 f

a  Final values of cognitive and social acceleration coefficients, respectively. 

0n
c , 1nc , 2n

c  Production cost coefficients of unit n. 

3nc , 4n
c   Constants of the valve point loading effect of unit n. 

( )ntc ⋅    Production cost function of unit n at period t ($).  

nDR   Ramping down limit of unit n (MW). 
E[ ]d

ntη  Expected profit from trading in spot market of unit n at period t ($). 

k
F   Line flow at line k (MW). 
ˆ
k

F   Line flow at line k from the previous iteration of the DCOPF calculation. 

k iGSF −   Generator shift factor of line k and bus i. 
I    Number of buses. 
k  Iteration index. 

maxk  Maximum number of iterations. 
K   Number of transmission lines.  

iL   Spot market load at bus i (MW). 

kLimit  Line flow limit at line k (MW). 
M  Maximum number of rivals’ strategies. 
N  Number of generation units of the concerned GenCo. 

i
p   Bid price at bus i ($/MWh). 

r

np�   Bid price of unit n of rival r. 
k

id
p   Best position of particle i on dimension d reached at iteration k. 

k

gd
p   Global best particle on dimension d reached at iteration k. 

LossP   System loss (MW). 

iq   Generation dispatch at bus i (MW). 

nt
q   Generation output of unit n at period t (MW). 

max iq   Maximum generation dispatch at bus i (MW). 
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min iq   Minimum generation dispatch at bus i (MW). 

max nq   Maximum generation limit of unit n (MW). 

min nq   Minimum generation limit of unit n (MW). 
d

ntq  Bid quantity in spot market of unit n at period t (MW). 
b

ntq   Sold power through bilateral contract of unit n at period t (MW). 
d

ntq   Expected dispatched quantity in spot market of unit n at period t (MW). 
d

nmtq�  Dispatched quantity in spot market of unit n for the mth rivals’ strategy at period t (MW). 

ntq∆  Generation change from the previous period of unit n at period t (MW). 

irand   Random number between 0 and 1, i = 1, 2,…, 5. 

kR   Resistance at line k (pu). 
T   Maximum number of trading periods. 

nUR   Ramping up limit of unit n (MW). 
k

idv   Velocity of particle i on dimension d at iteration k. 
k

idx   Position of particle i on dimension d at iteration k. 
b

ntη  Profit from bilateral transaction of unit n at period t ($). 
d

nmtη   Spot market profit of unit n for the mth rivals’ strategy at period t ($). 

nt
σ   Standard deviation of profit of unit n at period t ($). 

r

nµ , 
r

nσ   Mean value and standard deviation of 
r

np� , respectively. 
b

tλ  Bilateral contract price at period t ($/MWh). 
d

mtλ   Spot price at the concerned bus for the mth rivals’ strategy at period t ($/MWh). 
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