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Abstract 
 
    In present paper, advection-dispersion equation is considered one dimensional longitudinal semi-infinite domain. The solute 
dispersion parameter is considered temporally dependent and flow velocity is considered uniform. Nature of pollutant and 
porous medium are considered chemically non-reactive. The first order decay term which is inversely proportional to the 
dispersion coefficient is also considered. Initially the porous domain is considered solute free. Analytical solutions are obtained 
by using Laplace transform technique for continuous uniform and increasing input source concentration.  
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1. Introduction 
 
   Advection-dispersion equation is applicable in many disciplines like groundwater hydrology, chemical engineering bio sciences, 
environmental sciences and petroleum engineering. It helps understand the contaminant or pollutants concentration distribution 
behavior through an open medium like air, rivers, lakes or porous medium like aquifers, underground oil reservoirs. A list of 
previous work in which analytical solutions have been obtained for advection-dispersion equation by Bastian and Lapidus (1956), 
Banks and Ali (1964), Ogata (1970), Marino (1974) and Al-Niami and Rushton (1977). In most of works, porous parameter s are 
taken adsorption, first order decay, zero order production. Such solutions have been compiled by Lindstrom and Boersma (1989). 
Coming nearer to real problems, Lin (1977), considered the layered porous media and non linear adsorption, Banks and Jerasate 
(1962), Kumar (1983) considered the porous media flow unsteady/ non-uniform flow in homogeneous domain.  
   van Genuchten and Alves (1982) complied the analytical solutions with first order decay  and zero order production term. Yates 
(1990, 1992) obtain the analytical solution for one dimensional advective dispersion equation with linearly or exponentially 
increasing dispersion coefficient. Toride et al. (1993) presented a comprehensive set of analytical solutions for one-dimensional 
non-equilibrium solute transport through semi-infinite soil systems. The models involve the one-site, two-site, and two-region 
transport models, and include provisions for first-order decay and zero-order production. Zhuo and Selim (2002) proposed two 
methods for describing the scale dependent dispersivity. Pang et al. (2003) obtained the temporal moment solutions for one–
dimensional advection–dispersion solute transport with linear equilibrium sorption and first-order degradation for time pulse 
sources to analyze soil column experimental data. Su et al. (2005) presented an analytical solution to advection-dispersion equation 
with spatially and temporally varying dispersion coefficient for predicting solute transport in a steady, saturated sub-surface flow 
through homogeneous porous media. De Smedt (2006) presented analytical solutions for solute transport in rivers including the 
effects of transient storage and first order decay. Advection-dispersion phenomena occur in many physical situations including the 
transfer of heat in fluids, flow through porous media, and the spread of contaminants in fluids and in chemical separation processes 
(Najafi and Hajinezhad, 2008). Jaiswal et al. (2009) and Kumar et al. (2010) obtained analytical solutions for temporally and 
spatially dependent solute dispersion in one dimensional semi-infinite media.  

Decay coefficient, which represent the production or decay of solute concentration within the porous medium. The decay 
coefficient is the rate coefficient that represents increasing concentration when it is negative and decreasing when it is positive 
(Hurst, 1991). In present paper, advection-dispersion equation is considered one dimensional longitudinal initially solute free semi-
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infinite domain. The solute dispersion parameter is considered temporally dependent and flow velocity is considered uniform. The 
first order decay term, the value of the quantity is dependent upon the concentration in the solutions which is inversely 
proportional to the dispersion coefficient is also considered. The input condition is assumed at the origin of the domain. The 
second condition is considered at the end of the domain.  

2. Advection-dispersion equation 

 The linear advection-dispersion equation with first order decay in one dimension may be written as follows 

   ( , ) ( , )c cD x t u x t c c
t x x

γ∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                                                                              (1)              

 Let us write 0 1( , ) ( , )D x t D f x t=   and 0 2( , ) ( , )u x t u f x t= and the first order decay term which is inversely proportional to the 
dispersion coefficient i.e., 0 1( , ) / ( , )x t f x tγ γ=  in eq. (1), we may get 

   0 1 0 2 0 1( , ) ( , ) / ( , )c cD f x t u f x t c c f x t
t x x

γ∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                                                       (2) 

where 0D , 0u and 0γ   are constants. 
Let us introduce a new independent variable X  by a transformation (Jaiswal et al., 2009; Kumar et al., 2010) 

   
( )1 ,
dxX

f x t
= ∫    or  

( )1

1
,

dX
dx f x t

=                                                                                                                     (3) 

Eq. (2) becomes 

   1 0 0 2 0( , ) ( , )c cf x t D u f x t c c
t X X

γ∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                                                                (4) 

 
3. Unsteady dispersion along uniform flow 
  
 Let 1( , ) ( )f x t f mt=   and 2 ( , ) 1f x t =  where m  is a resistive coefficient whose dimension is inverse of that the time variable 
t . ( )f mt  is chosen such that for 0m =  or 0t =  , ( ) 1f mt = . Thus ( )f mt  is an expression in non-dimensional variable ( )mt . 
Then from eq. (3), we have 

   
( )
xX

f mt
=                                                                                                                                                                    (5) 

Eq. (4) becomes 

   0 0 0( ) c cf mt D u c c
t X X

γ∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                                                                             (6) 

Let us introduce a new time variable using the following transformation (Crank, 1975), 

   
( )0

t dtT
f mt

= ∫                                                                                                                                                                   (7) 

The partial differential eq. (6) reduces into that with constant coefficients as 

   
2

0 0 02

c c cD u c
T XX

γ∂ ∂ ∂
= − −

∂ ∂∂
                                                                                                                                          (8) 

 
3.1. Uniform input condition 
 
 Let the domain is initially solute free. Thus initial and boundary conditions for eq. (1) in a semi-infinite longitudinal domain 
are as follows: 
   ( , ) 0c x t = , 0x ≥  , 0t =                                                                                                                                               (9) 
   0( , )c x t C= , 0x = , 0t >                                                                                                                                            (10a) 
   ( , ) 0c x t = , x →∞  , 0t ≥                                                                                                                                         (10b) 
These conditions in terms of new space and time variable may be written as 
   ( , ) 0c X T = , 0X ≥  , 0T =                                                                                                                                        (11) 
   0( , )c X T C= , 0X = , 0T >                                                                                                                                      (12a)    
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   ( , ) 0c X T = , X →∞ , 0T ≥                                                                                                                     (12b) 
Now introducing a new dependent variable by following transformation 

   
2

0 0
0

0 0

( , ) ( , )
2 4
u u

c X T K X T exp X T
D D

γ
⎧ ⎫⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

                                                                                      (13) 

the set of eqs. (8), (11) and (12) reduced into 

   
2

0 2

K KD
T X
∂ ∂

=
∂ ∂

                                                                                                                                                             (14) 

   ( , ) 0K X T = , 0X ≥  , 0T =                                                                                                                                       (15) 

   2
0( , ) ( )K X T C exp Tα= , 0X = ,  0T > , 

2
2 0

0
04

u
D

α γ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

                                                                                     (16a)    

   ( , ) 0K X T = , X →∞ , 0T ≥                                                                                                                                    (16b)                  
Applying Laplace transformation on eqs. (14) – (16), we have 

   
2

0 2

d KpK D
dX

=                                                                                                                                                              (17) 

   0
2( , )

( )
C

K X p
p α

=
−

, 0X =                                                                                                                                      (18a)    

   ( , ) 0K X p =  , X →∞                                                                                                                                (18b) 
Thus the general solution of eq. (17) may be written as 
   ( ) ( )1 0 2 0( , ) / /K X p C exp X p D C exp X p D= − +                                                                                                  (19) 

Using condition (18a,b) on the above solution we get, 0
1 2( )

C
C

p α
=

−
   and  2 0C = .   

Thus the particular solution in the Laplacian domain may be written as 

   ( )0
02( , ) /

( )
C

K X p exp X p D
p α

= −
−

                                                                                                                        (20) 

Taking inverse Laplace transform, the solution of advection-dispersion solute transport for continuous uniform input condition 
may be written in terms of  ( , )c x T  by using transformations (13), (7) and (5) as, 

   ( ) ( )1/221/ 22 0 0 0
00

0 0

4
( )( , )

2 ( ) 2

x u D TxC f mtc x T exp erfc
f mt D D T

γβ β γ
⎡ ⎤⎧ ⎫− +⎧ ⎫⎢ ⎥⎪ ⎪− +⎪ ⎪ ⎪ ⎪⎢ ⎥= ⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 

      ( ) ( )1/ 221/ 22 0 0 0
00

0 0

4
( )

2 ( ) 2

x u D TxC f mtexp erfc
f mt D D T

γβ β γ
⎡ ⎤⎧ ⎫+ +⎧ ⎫⎢ ⎥⎪ ⎪+ +⎪ ⎪ ⎪ ⎪⎢ ⎥+ ⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

,                                                     (21) 

where  
2

2 0

04
u
D

β =    and  
( )0

t dtT
f mt

= ∫  . 

 
3.2. Input condition of increasing nature  
  
 The pollutant concentration may not be uniform. It may increases due to human and other responsible activities. This type of 
condition is taken to be of flux type or mixed type i.e., 

   0 0( , ) ( , )cD x t u x t c u C
x
∂

− + =
∂

 , 0x = , 0t >                                                                                                                 (22) 

Eq. (22) reduces by applying the previous transformations, into 

   20
0 0 0 ( )

2
uKD K u C exp T

X
α∂

− + =
∂

 , 0X = , 0T >                                                                                                        (23) 

Applying Laplace Transformation on eq. (23), we may get 
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   0 0 0
0 22 ( )

u u CKD K
X p α
∂

− + =
∂ −

 , 0X =                                                                                                                           (24) 

Now using input condition (24) in place of (18a) in general solution (19), we get 

   0 0
1 2

0 ( )( )
u C

C
D p pα β

=
− +

                                                                                                                                       (25) 

Thus the particular solution in the Laplacian domain may be written as 

   ( )0 0
02

0

( , ) /
( )( )

u C
K X p exp X p D

D p pα β
= −

− +
                                                                                                  (26) 

Taking inverse Laplace transform, the solution of advection-dispersion solute transport for varying input condition may be written 
in terms of  ( , )c x T  by using transformations (13), (7) and (5) as, 

   
( ){ }

( ) ( )1/221/ 22 0 0 0
00 0

1/ 22
0 00 0

4
( )( , )

( ) 22

x u D Txu C f mtc x T exp erfc
f mt D D TD

γβ β γ

β β γ

⎧ ⎫− +⎧ ⎫ ⎪ ⎪− +⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ + ⎩ ⎭ ⎪ ⎪⎩ ⎭

 

      
( ){ }

( ) ( )1/221/22 0 0 0
00 0

1/ 22
0 00 0

4
( )

( ) 22

x u D Txu C f mtexp erfc
f mt D D TD

γβ β γ

β β γ

⎧ ⎫+ +⎧ ⎫ ⎪ ⎪+ +⎪ ⎪ ⎪ ⎪+ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− + ⎩ ⎭ ⎪ ⎪⎩ ⎭

 

        
02

0 0 0
0

0 0 0 0

( )
2 ( ) 2

x u T
u C u x f mtexp T erfc

D D f mt D T
γ

γ

⎧ ⎫+⎪ ⎪⎧ ⎫ ⎪ ⎪+ −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪

⎪ ⎪⎩ ⎭

,                                                              (27) 

where  
2

2 0

04
u
D

β =    and  
( )0

t dtT
f mt

= ∫  . 

 
4. Illustration and discussion 
  
 The concentration values are evaluated from the analytical solutions described by eq. (21) for uniform input and eq. (27) for 
varying input in a finite domain  0 10x≤ ≤  (m). The other input values are considered as:  0 1.0C = ,  0 1.25D =  (m2/day),  

0 1.15u =  (m/day). In addition to these, 0.1m =  (day-1 ) , 0 0.04γ =    have been considered. The solutions are computed at times  
2.5t =  (day), 3.0   and 3.5 . In Figure 1, curves represent the solution for an expression 2( ) (1 )f mt mt= +   which is of increasing 

nature.  
 In Figure 1, the concentration values are uniform at different time which is shows the condition of problem. 
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 Comparison have been done between concentration distribution patterns for an decreasing ( ) ( )f mt exp mt= −  and increasing  

2( ) (1 )f mt mt= +  , at 3.0t =  (day), in Figure 2. 
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Figure 1. Distribution of solute concentrations of  2( ) (1 )f mt mt= +  at time  2.5t = , 3.0  , 3.5 for solution (21). 
 

Figure 2. Comparison of solute concentration of increasing and decreasing function at time 3.0t = for solution (21) 
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 For increasing input concentration, the Figure 3 is drawn for same input data and increasing function of time. In Figure 3, the 
concentration values are increases, when the time increases.  
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Comparison have been done between concentration distribution patterns for an decreasing ( ) ( )f mt exp mt= −  and increasing  

2( ) (1 )f mt mt= +  , at 3.0t =  (day), in Figure 4. 
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   Solute concentrations are higher for increasing function than decreasing function at same time and decreasing function rapidly 
decreases correspond to increasing function at same position in Figures 2 and 4. The values are coincided far from the origin in all 

Figure 4. Comparison of solute concentration of increasing and decreasing function at time 3.0t = for solution (27). 

Figure 3. Distribution of solute concentrations of  2( ) (1 )f mt mt= +  at time  2.5t = , 3.0  , 3.5 for solution (27). 
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figures. Since our assumption is decay term is inversely proportional to dispersion coefficient which correlate the accepted concept 
that the decay term vary with dispersion coefficient, i.e., when dispersion increases then decay term decreases and vice-versa. The 
time dependent behavior of solutes in subsurface is of interest for many practical problems where the concentration is observed or 
needs to be predicted at fixed positions. Problems of solute transport involving sequential first order decay reactions frequently 
occurs in soil and groundwater systems, for example the migration of simultaneous movement of interacting nitrogen species, 
organic phosphate transport and the transport of pesticides and their metabolites. The accuracy of the numerical method is 
validated by direct comparisons with the analytical results given in eqs. (21) and (27). 
 
5. Conclusion 
  
   Advection-dispersion equation is considered one dimensional semi-infinite domain. The solute dispersion parameter is 
considered temporally dependent with uniform velocity. First order decay term is also considered. Analytical solutions are 
obtained for uniform and increasing input source. At the origin of the domain the source concentration is uniform. For uniform 
input, concentrations values are increasing for different time at same position. The solution of the problem may help to determine 
the position and time to reach the minimum / maximum or harmless concentration. It may be used as the preliminary predictive 
tools in groundwater management. 
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