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Abstract

In this present work an attempt has been made to define two generalized fractional integral operators associated with products
of analogues to Dirichlet averages and special functions. Discussions on the different aspects of the obtained results have been
followed by utilization in finding out the images of multivariate function involving multivariate G-function. We make their
applications in statistics also.
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1. Introduction

The generalized fractional integral operators have introduced in the form (Saigo and Maeda, 1996):

a,a' e - x et —a' - ' ] t
(10: ’b’b’f)(x):rx(c)jo (x—1) ¢ F3_a,a,b,b;c;l—;,l—%_f(t)dt (1.1)
and
(20" ) (x) = lic(c)J'j(t—x)c_lt‘lF3 _a,a',b,b';c;l—%,l—é_f(t)dt (1.2)

provided that a, a', b, b', ¢ are complex, x > 0, Re (c) > 0, F; [¢] is one of the Appell functions of two variables (Appell and Kampé
de Fériet,1926 and Erdélyi et al., 1953, p.224 eq. (8)), f(t) is integrable in the interval (0,00) and the Gamma function is defined by

F(/1+n)=(/1)nf(/1),n20,/1¢0.

Particularly, fora = o + 5, ¢ = 0, b = -v and @’ = 0 such that Re (o) > (0, the equations (1.1) and (1.2) yield Saigo
operators in the form (Saigo, 1978)
x 7

(I;+ﬂ,0,—v,b',af)(x) = (]a,ﬂ,Vf)(x) _ () J‘Ox(x—t)a_ ,F {—v,a+ﬂ;a;l—é}f(t)dt (1.3)

and
a+p,0,—v.,ba a,p.v 1 ® ot —-a—
(Ioi BO-v.b, f)(x)z(J B, f)(x)zmjx (t—x) t /’ZFI[—v,aJr,B;a;l—;}f(t)dt (1.4)

respectively, ,F; [ . ] is the Gaussian hypergeometric function (Rainville, 1971, and Erde'lyi et al., 1953, p.58 eq. (2) ))
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Again, for a + f=0,0r, f =0,and Re( (Z) > (0, the equations (1.3) and (1.4) are converted into following operators (Kilbas
et al., 2006, Samko et al., 1993, Kiryakova, 2006)

(]a’fa’vf)(x) = ﬁjox(x—t)a_lf(t)dt =R’ {f(t)}(x) (Riemann-Liouville operator) (1.5)
or
(]a’o’vf)(x) = I)ﬁ(“a‘/) on(x—t)ailtvf(t)dt =E"" {f(t)}(x) (Erde’lyi-Kober operator) (1.6)
and
. a-1
(T ) (x) = %a) [“(t=x)" F(@)ar=w7 {F(O}(x)  Weyloperaton
(1.7)
or
(Ja’o’vf)(x) = F)(C;() Lw(t —x)a_lfafvf(t)dt =K' {f(t)}(x) (Erde’lyi-Kober operator) (1.8)
respectively.
The Dirichlet average is defined by (Carlson, 1977, Gupta and Agrawal, 1990)
k
F(b;z)= IEg(u.z)dy,, (u),u.z= 2”;2;30 <u, <1,.,0<5u_, <lu =l-u—..—u,,
i=1
and g is measurable on the standard simplex E in R* ,k>2 andF (b;z) =g (z), when k=1 (1.9)
and
1 _ - =
du, (u) =muf’l L (1 —U —...— U, )b : du,...du, (1.10)
The function B (b) is given by
r(b)..I'(b,) . ,

B(b)=———"——"—=,b=(b,,...,b C",Re(b,)>0,Vi=12,...k .

(%) T(b+...+b) (o) €€ Re(h)> 0.1 =12, -

The standard (k-1)-simplex (or unit (k-1)-simplex) E is the subset of R* and is given by
k

E = {(ul,...,uk)e R* :z u, =landu, 2 0,Vie {1,2,...,k}}
i=1

Now, in our investigation we introduce an integral average for a function g measurable on E in Rk,k > 2, identical to Dirichlet
average defined in equations ((1.9)-(1.11)) (Carlson, 1997) defined by

F{g}(b:z,x)zJ'Eg(u1+...+uk)d,ub)z,x(u) (1.12)
b
and F{g}(b;z,x):z—bg(z),forkzl (1.13)
X
where, d p, _ (u) is given by
z5 ux U, X !
d =— kbt et -2 DL gy d 1.14
Hy 2 x (u) B(b)x,fk Uy ( - - j u...au_, (1.14)

in the region

z z,_ u u,x u, \x
0<u <L;x,>2>0,..,0<u,  <+*lix >z  >0-* - A1kl

] P e N

Xy X1 Zy Z Zr
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x, >z, >0,z=(z,....,z, Jandx = (x,,...,x, )€ R".

The second integral average for a function g measurable on E in Rk,k > 2, identical to Dirichlet average (Carlson, 1997) is
defined by

. _ -1 -1
Fx{gi(b:z,x)= ng (ul +.tu, )d,u *, . (u) (1.15)
b

b
andF*{g}(b:z,x):—bg(z),fork:1 (1.16)

z
where, dp *p , x(u) is given by

b1
—b -1 byl z Zy_
du=, . (u )— ! ( ——1—...—#] du,..du, | (1.17)
( ) U X, Up_1Xp
in the region
z z z z
L <u <owoyx, >z, >0,..,4L< <owojx, >z, ,>0—4—=1-—"1— ———1
X X1 Uy Xy ux, U1 Xpy
x, >z, >0,z=(z,,...,z;, )andx = (x,,....,x, )€ R".
Motivated by above work, in this paper for any general special function
O(eney)= Y, A, 0f..af (1.18)
Hpeensty =0

A _— is  multiparametric ~ coefficient real or complex and for o= (Otl,...,Otl) eC l,l >k and

c =(cl,...,ck)e Ck,(ai) #0,Vi=1,2,..., andRe (c;))>0,i=1,2,.... k and the multivariable function ‘P(,,) is

k
integrable in {(0,00)} , we define following generalized fractional integral operators involving products of analogous to

Dirichlet average defined in the equations (1.12)-(1.14) and any general special function given in equation (1.18):

H @b {g"}’(zl,...,zk)}(xp'“ k)_ -

F(c) F(c )
[ (= 2) ez ) ez F {g ) (bizax)

x O (0{121_1 (x,—z,)a,z; (x, -z, ),ak+1,...,al)‘l’ (zy,.. 2, )dz,..dz,

(1.19)
provided that all conditions given in the equations (1.12)-(1.14) are followed.

The second generalized fractional integral operators involving products of analogous to Dirichlet average defined in the equations
(1.15)-(1.17) and any general special function given in equation (1 18):

P et (oo

o I A CTEE R GRS b R PR TCIERD

x O (O{Ixf1 (z, - %), x; (2, — x, ),ak+1,...,a,)‘}’ (z)s.sz; )dz,..dz,

(1.20)
provided that all conditions given in the equations (1.15)-(1.17) are followed.

SO, D, @),
@), ntrnt

Particularly, settingk =1 and 1= 2, Arl "

=(a,,a,)
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1+c-b-a bal

z
such that &, =—1 and r, =1 —— and g(z) =z in equation (1.19) and then with the aid of equation (1.13), it becomes
X

Saigo and Maeda operator defined in equation (1.1) such that

Ha,b,c {Zl+cfb7axb7a'71’ 7] (Z)} (X) — (](z;,a',d,d',cqj)(x) (1.21)

_(a), (@), (@) (d4),

) (¢),., n'n! SR CHLED
"+ 7y 2

z ’
such that &, =—1 and @, =1—— and b =a' +1, g(z) = z"*™ in equation (1.19) and then with the aid of the equation (1.13), it

Orsettingk=1 and 1 =2, 4,

X
becomes Saigo and Maeda operator defined in equation (1.1) such that
H a,a'+l,c {Zcfa‘fa , \P (Z)} (x) — (]g;a‘,d,d',C\P )(x) (122)

(@), (a), (), (),
(c)’_lw2 rlr,! ’

-b-atx

Again, setting k=1 and 1=2, Ar1 "

=(a,,a,)

X ,
such that @, =—1 and @, =1——and g(z) = PARDY in equation (1.20) and then with the aid of equation (1.15), it becomes
z

Saigo and Maeda operator defined in equation (1.2) such that

pabe {Zb—a'xcfbfa,\y (z)}(x) _ ([(;z_,a',d»d!cx{; )(x) (1.23)
(a),(a), (), ("),
n = (c), nin! o= ()

X '
such that @, =—1 and &, =1——,b=-a+cand g(z)=z""" in equation (1.20) and then with the aid of the equation (1.15), it

Or settingk=1and 1=2, Arl

z
becomes Saigo and Maeda operator defined in equation (1.2) such that
pacac {Zc—a—a', ¥ (Z)} (.X') — (Ioa:‘l'sd,d"c\ll )(X) (1.24)

Here in our work, we derive the identities for above generalized fractional integral operators defined in the equations (1.19) and
Y
(1200wheng {z} =(1-2) ",

AeC,Re (ﬂ) >0 . Again, we make their applications to find out the images of a multivariable function consisting

generalized multivariable G-function. Finally, we discuss some of their deductions and applications in statistics.
The generalized multivariable G-function is the particular case of following multivariable H-function defined in the multiple
contour integrals (Srivastava and Panda, 1976a, 1976b; Srivastava, Gupta and Goyal, 1982):

it | (0t L)) (6)
el [(C) v (k)] [(d(l)):(5(1))};...;[(61(“):(5(’“))}
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= —1 . . /=1
(27za))k I_ww I_ww l_A[ F(aj _

40 4
H F( d, +5](.1)s1)...

Do)

H r(d,-ss,).

“)+1

~.
Il
—_

X

j=u® 41
(%)

vy

Hr(1—b +¢Ws 1) .

|4

X B<1)

[T v(p,-¢"s).

j:1 D Sk —
z)ztds . ds 0 = \J(—1)

j=V(1)+1 j:V(k)+1
(1.25)
The integral in equation (1.25) converges absolutely if
T
|arg(zi)|< EAI. (1.26)
where,
A 4 y () 3 4
_ 19 (i) _ (i) (i)
=202 0)+% 4" X 4"+ 25
Jj=1 j=A+1 j=1 ]=V(l)+1 j=1
) (1.27)
i) (i)
—~ S5 Z w)>0,ie{l,.. k}
j=uD+1

If in the equations (1.25)-(1.27) all o°, ¢S ,0',and 74 * are unity, then the integral in equation (1.25) becomes generalized
G-function for the prescribed conditions given in the equations (1.26) and (1.27).

2. Results
In this section, we obtain following identities for above generalized fractional integral operators defined in the equations (1.19)
-1
and (120)when g {z} =(1-2z)",2 e C,Re(1)>0.
Theorem 2.1:

For the given conditions and the definitions in the equations (1.6), (1.12)-(1.14), (1.18) and (1.19) and
-1
g {Z} = (1 — Z) 5 Ae C, Re (/1) > 0, there exists an identity
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H (1= 2) W (20502 (51500, z A (@), (),

.....

xa..ola ..o Z.O: (b( +)m]+_,_+;k)( )ml (b )mk Fetnb-atmonl
...t b,

my,...,m; =0

4
m\..m,!

my+..+my
cp+1 by —cp+my—r 1 ( ) ( )
LE WYi(z,..z, )i (X, X,

provided that Re(b, —¢,) > 0,(m, —1,) 2 0,(m, €{0,1,2,..} )and (r, €{0,1,2,...}),Vi=1,2,....k.

@.1)

k

Proof: Consider the operation of the function ‘I’(Z],...,Zk) € {(0,00)} due to the generalized fractional integral operator
-1

defined in equation (1.19) for & {Z} = (1 — Z) R

Ae C,Re(ﬂ) > 0 and then express dD(al,...,a,) defined by equation (1.18) and F{g}(b;z,x) due to equations

(1.12)-(1.14), and then in the inner integral set v, =——,Vi= 1,2,...,k and on solving it by well known Dirichlet integral
z

i

formula we get left hand side of equation (2.1) in the form:

i A al'...al i (ﬂ')mwufrmk (bl)'"1 '”(bk)’"k (xfl)bl+m171 (le)bkﬂnkil
ety 1T (b1+...+b ) mylm ! F(Cl) F(Ck)

Hoyees r=0 my...,m; =0 k my+..4+my

*k Cl+r1_l A=l biam—n—c -1 bp+my—r—c,—1
I J (x, - (x,—z,) z, Zy, Yz, 2, )dz,..dz,

(2.2)
Now, make an appeal to the equations (1.6) and (2.2) we immediately find right hand side of equation (2.1).

Theorem 2.2: For the given conditions and the definitions in equations (1.8), (1.15)-(1.17), (1.18) and (1.20) and there exists an
identity

P (= 2) W (22 ) (rex ) = (D73 A (), (e),

Bl =0

Xal ek al?:i azrl Z.O: (b(ﬂ;_)ml:_..;mk)(bl )ml nfb'k )r’r;; 'chlwrl,bl—cwml—rl”.
My reesm =0 1 & RERUTR

my+..4+my

Ccp+1 by —cp+my—r, ( )
K {‘P (Zl,...,Zk)} Xpsees X

Re(b,—¢,)>0,(m —1,)20,(m €{0,1,2,..} )and (r, €{0,1,2,..}),Vi=1,2,....k.

1

(2.3)

provided that
Proof:

k
Operate the function ¥ (Zl, ey Zk) € {(0,00)} due to the generalized fractional integral operator defined in equation (1.20)
Y3
for & {Z} = (1 - Z) ,Ae€C,Re (/'L) > 0, and then express db(al,...,al) defined by the equation (1.18) and

z.
F = {g} (b;Z,x) due to equations (1.15)-(1.17), and then in the inner integral set v, =——,Vi=1,2,...,k and on solving it
ux,

by well known Dirichlet integral formula we get left hand side of the equation (2.3) in the form:
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(_l)ki1 i A}'i’ ,r/alrl...alr/ i (ﬂ()mﬁ iy (bl )ml (bk )mk (xl )bﬁmlir]iq .._(xk )bﬁmkirkick
_____ 70 S o(b . +b )ml+._.+mk ml.m! T(c) I'(c,)
j I clmfl...(zk —X, )CWF1 "ML TN (2, 2, ) dEy

(2.4)
Now, make an appeal to the equation (1.8) and (2.4) we immediately find right hand side of the (2.3).

Theorem 2.3:
For the given conditions and the definitions given in the Theorem A and Theorem B, the images of the unity due to operators
given in the equations (1.19) and (1.20) consist of the following identical relation

H (1= 2) " 1 (5 ) = (1) 7 P (1= 2) 1 (3,
L(b-c).I(b,—c)T(c,+...4¢, — =
= A,
B(b)r(b1 +...+b A)F(cl +. -I-Ck) rp;_ )rl (Ck )rk
) (¢, +...+¢ —ﬂ,)rﬁmw (—l)r1 ...(—l)rk
(1—b1 + ¢, )r1 ...(l—bk +c, )rk (cl +...+¢, )rl+...+rk

al. ak al?:i alrl

(2.5)
provided that Re (b) > 0,7 =1,2, ..., kandRe(1) <Re(b, +...+5,)
and Re (b, —¢,)>0,(m, —r,) 2 0,(m, €{0,1,2,..})and (1, €{0,1,2,..}),Vi=1,2,...k.

Proof: In the equations (2.1) and (2.3) set ¥ (Z1 seees 2y ) then on solving these we find the relation given in the equation (2.5).

3. Applications

In this section, we make an application of the operators given in the equation (1.19) and (1.20), for

-2
g {Z } = (1 -z ) 5 AeC ,Re (Z ) > 0, and then evaluate the images of the general class of multivariable polynomials

(Srivastava and Garg, 1987) with products of the exponential functions.
The general class of multivariable polynomials is defined by (Srivastava and Garg, 1987)

hysy+..+h,s, <L xsl xsm
hy,..., _ _ . 1 m
S, (xl, X, ) = E ( L)hlsﬁﬁhmsm A[L,Sl,...,sm]—s R (3.1)
81 5o, =0 1 m *

where, hy,...,h, are arbitrary positive integers and the coefficients A[L;Sl,...,sm],(L,Sj eN,= {0, 1, 2,...},]' = 1,...,m)

are arbitrary constants real or complex.
For m = 1, of the polynomials defined by the equation (3.1) would correspond to polynomials (Srivastava, 1972 )

il :

s=0

3.2)

7
ik
N

I
M
0

h
—
N

- | =

where, h is arbitrary positive integer and the coefficients, A, . (L, seN, = {0, 1, 2,...}) are arbitrary constants real or complex .

Theorem 3.1:
For the conditions and the definitions given in the Theorem A, the image of the distribution
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Y (z),.2;,) = exp[—ﬂlzfl (x, - Zl)]...exp[—ﬁkz,;l (x, —z, )]
xS ool (;/lzl‘l (x,—2)se 02 (X, —zk),ykﬂ,...,)/m),‘v’zl. e(0,x,),x,>0,ie{l,...k},
and¥ (zl,...,zk ) =0, otherwise

(3.3)
exists and there holds the formula
H“he {(1 z exp[ ﬂlzl X -z )]...exp[—ﬂkz,;1 (xk—zk)]
xS ol (7121’1 (X, =2) s 7425 (X =20 )s Visrseeos Vo )}(xl,...,xk)
1 s +..+h,s, <L 7/51 y .
= —L AlL;s,,..,s, |72
(b) (b +..+h ﬂ”)r(cl) ( ) slvg":o ( )h‘w FhnS [ e ]S1! s, !
§ i 4 an a;,lG 1:(2,1);5..5(2, 1)[[1+/1 Q=1 =8 = =1 =5, L]
Ml S [1, ] [1 2] [l—cl— =S8 —..—C, — T, =5, :1,...,1]
:[l—c1 =5, 1]5s[l—¢, - —skzl]; j
Prses B
:[0:1],[b1—cl—7f1—sl.1],...,[0.1],[ R A | 1 ¢
(3.4)

provided that

‘arg(ﬁ[)‘ < 3%T,Re(ci) < Re(bi),Re(ci) >0,Vi= 1,2,...,k,Re(l) < Re(c1 +...+ck)

and all conditions of theorem 2.1 and of equation (3.1) are followed.

Proof: In the left hand side of equation (3.4), we proceed the actions taken in the theorem 2.1, so that we express the distribution

Y (Z1 seees 2y ) with the help of equation (3.3) in the equation (2.2), then define the general class of multivariable polynomials due

to equation (3.1) and then in it apply the contour integral formula of exponential functions (Mathai and Saxena, 1973) such that

1 o

e’ :% _mr(—f)(xf <00, = (—1) (3.9
Then after changing the order of integration and the summation and then on solving it we find that
1 s +..+h,s, <L 7/51 }/sm
-L AlL;s,,... L
F(bl ).F(bk )r(cl )...F(Ck) Sl”%ﬂ) ( )11|sl+.4.+hmsm [ 7517 7Sm] Sl ' Sm !
- ” ” 1 (028 W0
X Z 4, ol kjl J: l“(—fl)...1"(—5,()1“(c1—i—r1 +sl+§1)r(bl—c]—lq—sl—§])
B 5ty =0 (27[&)) @ @
e+ 45, +E)T(b —co—r—s, = &) B B
= (’1)”11+..4+mk (b—c - 981) N

mdE . dE,

m!..m, !

Xml,é_o (b +...+bk)

my+...+my,

(3.6)
Now, in the inner series in equation (3.6), using the formula ( Lauricella, 1893, p.150) (See also, Appell and Kampe’ de
Fe’riet, 1926, p.117 and Srivastava and Manocha , 1984, eq.(8) ) such that



157 Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 5, 2010, pp. 149-161

(@), i, (B),, (B),,

a | |
my y...,my, =0 (c)m1+...+mk ml ....mk !

3.7
I'(c)I'(c—a—-b—...—b
= ( ) ( ! "),c7&O,—l,—2,...,andRe(c—a—bl—...—bk)>0,
I'(c—a)l(c—b—..—b)
and then defining the multivariable G-function as making an application of the equations (1.25)-(1.27), we evaluate right hand side
of equation (3.4).
In the same manner, we state and prove following theorem:

Theorem 3.2:

For the conditions and the definitions given in the Theorem B, the image of the distribution

¥ (z,,..2,)=exp[ -B,(z,—x,) |...exp[ =B, (2, - x,) |

Sl (71 (20 =2 )sees 74 (2 =X )5 Virtoooos Vo ),Vzi e(x,),x,>0,ie{l,... .k},
and¥ (zl,...,zk) =0, otherwise

(3.8)
exists and there holds the formula
p“’b"’{(l z exp[ B (z,—x)]...exp[ =B, (z, - x,) |
xSl (7/1 (z0=%)se0s 74 (zk =X ) Vistoeees Vm )}(xl,...,xk)
_ (—l)k_] Iysy+.. +hmsmSL(_L) A[L S ](71x1 )51 (7kxk )Sk ?/ky,rll 7/_;:,
B(b)T (b +...+b, = 2)T(¢)..T(¢,) .5 L Y R IR Y
y i 4 mraf'...a;’GOI (2,1)5.5(2.1)([1+ A=, =1 =8, —cmc, =1, =5, 1 1,0
Sty 1L1:1,2];..5[1.2] [l—cl—rl—sl—...—ck—rk—sk:1,...,1]
1=, —r—s :1];..5[1=¢, =1, =5, :1];
[0: 1B =~ 5,15 [0: 1], [, e, =1 s, :1]; 77 P
(3.9)

provided that
‘arg(ﬂ[)‘<3§,Re(ci)<Re(bl.),Re(cl.) >0,¥i=1,2,...k.Re(A) <Re(c, +..+¢,)

and all conditions of theorem 2.2 and of equation (3.1) are followed.

With the help of the identities derived in the equations (2.1) and (3.4), we may evaluate the images of the general class of
multivariable polynomials with products of the exponential functions in terms of the multiple series consisting general coefficients
and the multivariable G-function. In the similar manner, from the identities derived in the equations (2.3) and (3.9), we may again
evaluate other images of the general class of multivariable polynomials with products of the exponential functions in terms of the
multiple series consisting general coefficients and the multivariable G-function.

4, Deductions

The Dirichlet average for x" has been defined in the form (Carlson, 1977, p.91)

(b+b j[xu—i—y 1- u) nu"’l(l—u)b'_l du (4.1)

R, (b,b';x,y):W
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Corollary 4.1
For the generalized fractional integral operator given in equation (1.19) and the Dirichet average defined in equation (4.1) and for

g {Z} = (l — Z)% ,Z € C,RC(/I) >0, andforl=k=2, following relation exists

e 12y e o) S S o sy

><(z)b7671 (z ')bv*cv*l R, (b,b'; z(x)f1 , z'(x')f1 )CI) (a (z)f (x—z),a'(z ')71 (x'- z'))‘l’ (z,z')dzdz'

Corollary 4.2
For the generalized fractional integral operator given in the equation (1.20) and the Dirichet average defined in equation (4.1) and

(4.2)

for & {Z} = (1 — Z)_}L ,/l € C,Re(/l) > 0, and forl=k=2, following relation exists

a,a'\b,b'c.c' —4 ' (x)b L(x )b - OO n -1 I ne'-1
R {(l—z) ,‘P(z,z)}(x x) F(C)F(c') n:O n' I I z— x (z—x)
<(2)" ()" R, (B.05x(2) o x () @ @ (x) (2= %), (x) (2= 2)) W (52" ddz!
(4.3)
Further making an appeal to the equations (2.1) and (4.2) for & {Z} = (1 - Z)_/1 ,Ae C,Re (ﬁ) > 0, and forl =k =2,

following relation exists

)N S (A e et e

F(C)F(c') ; n! J‘O -[0 (x Z) (x Z)

x(2) (=) TR (Bl (x) 2 () )@ @(2) (x-2) @ (2) (0= 2) ) W (2,27 dedz

_ i Am'(c)r (Cy)r'(a)r (a.)r' i (//L)m-l—m' (b)m (b') m' ppetrboctm=r- lE”' b'—c'+m'—r! l{‘l’(z,z')}(x,x')

wao (b+Db")  mlm'*

m+m

(4.4)
provided that Re(b—c) > O,Re(b'—c') > 0,(m—r) > O,(m'—r') > 0,(m,m'e {0,1,2,...}),

(r,r'e{0,1,2,...}).

)
Again making an appeal to equations (2.3) and (4.3) for & {Z} = (1 - Z) ,Ae C,Re (ﬁ) >0,and for 1=k=2
we find another 1dent1ty

();)(c)m n'n [ () (2

x(z)fb (z' ) n(b,b';x(z) "(z') 1)(13(
:(_l)kfl rioArf'(c)r( , i (( mtm' ) ( )m LR Ctrbeetme rKc+rh—(,+m —r {‘I’(z,z')}(x,x')

wato (b+D")  mim' T

m+m'

,a '(x')f1 (z'—x'))‘l’ (z,z') dzdz'

(4.5)
provided that Re(b—c) > O,Re(b'—c') > 0,(m—r) > 0,(m'—r') > 0,(m,m'e {0,1,2,...}),

(r,r'e{0,1,2,...}).

If we express the function ‘¥ (Z ,Z ') , in according to the section 3 in equations (4.4) and (4.5) we may find its images in form of

the series involving two variables G-function. Again these results having general coefficients so that on specializing them we may
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obtain the images of several hypergeometric functions and the polynomials scattered in the literature with products of
exponential functions in form of the series consisting two variables G-function.

5. Application in Statistics

Theorem 5.1 suppose that (”1 yerns uk) is a k-dimensional random variable independent to the variable (Zl yeres Zk) with density

S (5., ) givenby

b1
by by bl byl A
f(u " )_ Z N U U 1WA U X
l’.ll’ k - . see
B(D)K (%00 %,32)500, 2 ) z, Z,
(5.1)
z z u,x u,x u, X
1. k=1 . k7 k 1771 k=1"k-1 .
0<u, <2ix >z 50,.,0<u, < 2x >z 5005 0N et
X Xio1 Zy Z Zra

X, >z, > 0,(21,...,Zk)€ R* | the constants (xl,...,xk)e R* and the parameters (bl,...,bk)e C* such that

Re (bi ) >0,Vi=1,2,....k and f=0 elsewhere.
The function B (b) is given in equation (1.11) and

K(xl,...,xk;z],...,zk) = (zl)c]’l)hl ...(zkx,zl )bk (5.2)
The distribution of (Z1 seees 2 ) has the density
1

- i . o +n-1 ¢+ —1

f(Zl""’Zk): D (x x )Zlm1 g (xl_zl)l 1 "'(xk_zk)lc A (53)
B seenslye 12>k

in the region 0<z <x,..,0<z, <x,,(m,r€{0,1,,2,..}),(m, -7r)>0,0<c,<L,Vi=l...,k and F =0

elsewhere. The sequence of function D;l"‘ """ i ()C1 yens xk) is

(e +7)T(1+m—r—¢)..T(c, +r)C(1+m -1, —¢,)
I(m, +1)..T(m, +1)

my

m
X e Xy

(5.4)
Then, for a)=,/(—l) there exists an expectation formula of an arbitrary function z, l...Z,:l‘I’(Zl,...,Zk) with product
xfbl ...x;bk Zlb‘ ...Z,l:" @ (—a),..., —a)) in the form

(2B ) )

I (m, +1)..I(m, + l)()cfl)m]+1 ...(x,;l)mﬁl
C(1+m —c).L(1+m, —c,)O0(csscis0,—my,sc, —msay,.o))

x | #bem {ez,‘P (zl,...,zk )}(xl,...,xk)

(5.5)
Here H*"™" {ez,‘P(Zl,...,Zk )}is defined due to the equation (1.19) , @ = (0{1,...,051) eC',l> k,(a[) #0,Vi=1,..,1,

c—m:(c1 —my,...,C, —mk),and O<c <],
Vi=1,2,...k and b=(b,...,b, ) € C* such that Re(b,)>0,Vi=12,...k.

¢(Z‘1,...,Z‘ k) is the characteristic function for the density f (ul,...,uk) and lI’(Zl,...,zk) is an arbitrary function and the

multiple series
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o0
O(Cpreeer €3 € = My O =M O ) = D C 4, () ()

(5.6)
Proof : For @ =, /(—1) , the characteristic function to the variable (”1 yeens uk) be
(Exton, 1976, p.232 ; 1978, p.130)

¢ (1t )= _[_z.(k).'[_i explo (tu, +...+tau, )] f(uy,nu, )du,.. du, (5.7)

where f (ul, ...,uk) is the density function.
Now, make an appeal to the equations (5.1) and (5 2) in equation (5.7), we find

Z kX,
X x k¢( ~w)= ;(l/; I Iexpu+ o Ju)
- (5.8)
u,x u, X
x[l— T k‘lJ du,...du,
Z 2k
Thus, an expectation formula of an arbitrary function  z l...Z,Zl‘I’(Zl,...,Zk) with  product of
xl_b1 ...x]:b" Zlb1 ...z:k 7/ (—a), ey —a)) may be found by (Exton, 1976, p.220)
A x_bk 1
-b, _b— b1 _ k X Xk _ ¢+ -
<x1 o b ¢(—a),...,—a))‘P(zl,...,zk)>—B O o) L =)
A=l —r—¢, - my_| =1, —Cp_— m,—r,—c
x...(xk—zk)k” ZmTimaTl | gt gl G 1_[ Iexp u +.. +uk]ub‘ u!
b1
ux u, X
x[l—‘—l—...—MJ du,..du, ¥ (z,,....,z, ) dz,..dz,
Z Zg-1
(5.9)
Thus, in both sides of equation 5.9 multiply

XX,

D"t'_f:”,’mk (xl,...,xk) (al )r1 ---(0‘1 )r’ and then on defining by equation (5.4) sum ry,...,r, respectively from

0 to oo and again make an appeal to the formula given in equation (1.19) with the definitions given therein and the multiple
series given in equation (5.6), finally, we evaluate equation (5.5).

6. Conclusions

The operators

0 g (2.9 (2002 )} () a0 P70 g (2).% (210020 )} (0o, ) ety

(1.19) and (1.20) are the generalized fractional integral operators involving Dirichlet averages and any general special function.
They, particularly, give Saigo and Maeda operators (see,equations (1.21)-(1.24)). They are identical to series of successive
Erde’lyi-Kober operators of any arbitrary function (see, equations (2.1), (2.3) and (2.5)). An application of these operators give the
analytic images of the general class of multivariable polynomials due to Srivastava and Garg with product of exponential functions

b b
(see, section-3).The formula of any arbitrary function Zfl...lel‘P(Zl,...,Zk) with product of (lel_l) I ...(kalzl) * and the
characteristic ~ function of  Dirichlet density at the point (—a), cees —a)) equals the  operator

H*" {g (Z) R ‘I’(Zl s Zp )} (xl ,...,xk) when g(Z) = € (see, section-5). With the help of identities given in this paper, we

may evaluate other images of the general class of multivariable polynomials with products of the exponential functions in terms of
the multiple series consisting general coefficients and other multivariable special functions and polynomials.
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