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Abstract

Fault detection and isolation have become one efrtiost important aspects of automobile design. Uit fdetection (FD)
scheme is developed for automotive engines inghjer. The method uses an independent Radial Basition (RBF) Neural
Network model to model engine dynamics, and the efiong errors are used to form the basis for redidyeneration. A
dependent RBFNN model is a model which uses outptd of a plant as a target output then use itaio the neural network,
while, The independent RBFNN model is a higher eacy than the dependent model and the errors caseteeted by this
model, this is because this model does not depé¢mhetihe output of the plant and it will use itdmut as a target, so if any faults
in the plant will be not effect in the model andstfaults will be detected easily and clearly. Thethod is developed and the
performance assessed using the engine benchmarlkjeéan Value Engine Model (MVEM) with Matlab/Sirmii Five faults
have been simulated on the MVEM, including threesse faults, one component fault and one actuatoit.fThe three sensor
faults considered are 10-20% change superimposdideooutputs of manifold pressure, temperaturecaadkshaft speed sensors;
one component fault considered is air leakagetakanmanifold and Exhaust Gas Recycle (EGR); tiasar fault considered is
the malfunction of fuel injector. The simulatiorsutts showed that all the simulated faults canlbarly detected in the dynamic
condition throughout the operating range.

Keywords: Automotive engine, independent RBFNN model, RBEral network, fault detection.

1. Introduction

A fault is any type of malfunction of componentattimay happen in a system and this fault will dégrthe system performance.
Fault detection is the program which informs ug gwmething wrong in the system and needs to baregh Also, fault isolation
is way to determine which fault occurs among thesgile faults. Over the last few years, many d#ferfault detection and
isolation methods have been proposed. To detelts fae usually compare the outputs of the realesyswvhich is in this paper the
mean value engine model, and the outputs of a heetavork model of the engine. Because a neuravawt is capable of
approximating a nonlinear function to any desiredrée of accuracy, it is used as a model of a dimapstem. The modelling
error is then used as the residual for fault detediKimmich et al, 2005). Furthermore, a neural network can alstrdieed to
isolate different faults (Capriglioret al, 2004). Sorsat al (1991) investigated a number of possible neugavark architectures
for fault diagnoses. The multilayer perceptron rakwwvith a hyperbolic tangent as the nonlinear eetwas reported to be best
suited for the task. Yet al (1999) proposed RBF neural networks for procasd tdiagnosis. The use of the output prediction
error, between a neural network model and a naafilynamic process, as a residual for diagnositgator, component and
sensor faults was analysed. Jamsa-Jousield (2002) had described a fault diagnosis systemdisclissed some application
results from the Outokumpu Harjavalta smelter. Digimleet al (2009) investigated fault diagnosis of pneumatistems with
artificial neural network algorithms. A pneumati@anufacturing system was simulated with modular petidn system (MPS)
and automated monitoring of the system was corsitldfDI for automotive engines has been investihéde more than two
decades. Isermann (2005) has proposed model-baskdiétection and diagnosis methods for some teahprocesses. The goal
was to generate several symptoms indicating tHerdifice between nominal and faulty status. Basediferent symptoms fault
diagnosis procedures follow, determining the féyltapplying classification or inference methodss Eontribution gave a short
introduction into the field and showed some appiices for an actuator, a passenger car and a cdimbusngine. For fault
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diagnosis of Diesel engines three detection modadegproposed to generate symptoms based on npaidyaction- type sensors.
The symptoms are generated with nonlinear outmatr end input error parity equations for specialdelebased characteristic
guantities like volumetric efficiency, oscillation$ pressure, flow and (not shown here) for angst@ed and oxygen content. In
many critical applications like nuclear plants, cedfts, space vehicles and chemical processes,uskeof fault tolerant
measurement systems is strongly required. Thus, hdrelware and/or software instrument fault detectisolation and
accommodation (IFDIA) schemes are more and morespickad in many contexts. Automotive is one of, thilsce in the last
decade, private and public transportation vehiblege begin equipped with a lot of a sensor-basectrehic systems devoted to
grant the passenger safety and comfort (Anti-lodking system, Anti-spin regulation, Electronicksliay program, Airbag, air
conditioning, and so on) as well as to control fngction and ignition and the pollution emissiafghe engines. On-line Sensor
fault Detection, isolation, and accommodation itoawtive engines had studied by Capriglia@teal (2004). Their paper was
described the hybrid solution, based on artifioliral networks (ANNs), and the production rulefdd in the realization of an
instrument fault detection, isolation, and accomatmsh scheme for automotive applications. The faotommodation has shown
a good performance with maximum error of 5%. Fdetection for modern Diesel engines using signad- process model-based
methods have been proposed by Kimnathl (2005). Their contribution showed a systematieettgoment of fault detection and
diagnosis methods for two system components ofdDiesgines, the intake system and the injectiotesygogether with the
combustion process. The residuals were generateappljed semiphysical dynamic process models, ffigation with special
neural networks, signal models and parity equatidie deflection of the residuals allowed the dibecand diagnosis of
different faults. Further residuals were developadthe exhaust system. The additional symptomseage the fault detection
coverage. Weet al (2009) in their paper had proposed an experesy$or fault diagnosis system in internal combusgngines
using wavelet packet transform (WPT) and ANNSs tépies. To verify the effect of the proposed gernieedl regression neural
network (GRNN) in fault diagnosis, a conventionatk-propagation network (BPN) was compared withRINGE network. The
experimental results showed the proposed systenmewsxh an average classification accuracy of ové 96r various engine
working conditions.

2. Spark ignition (SI) engine modelling using RBF neural networks

The first step in the engine modelling by using RBFis the generation of a suitable training data As the training data will
influence the accuracy of the neural network maaiglperformance, the objective of experiment degigntraining data is to
make the measured data become maximally informasivbject to constraints that may be at hand. Aoseandom amplitude
signals (RAS) were designed for the throttle apgisition and the fuel mass flow to obtain a repmeséve set of input data. The
ranges of these excitation signals were boundeddsst 20 and 60 degrees for the throttle angleipasiind between 0.0005 and
0.003 kg/s for the fuel mass flow. Before trainorgvalidating the neural network using RAS, allutgpand outputs data obtained
from MVEM by simulation will be scaled to the rangé [0, 1] in order to increase the accuracy of teral network and
decrease the error. The linear scale is used bgtiegs 1 and 2 (Zhait al, 2007)

ug(K) = u(k) = umin. (1)
Umax ~ Umin
k)-vy .
(k) = 2 Yo )2

ymax - ymin

Whereup, andyy,, are the minimum inputs and outputs, alsg., andymax are the maximum inputs and outputs among the data
set, whileus andys are the scaled input and output respectively. firlse 300 samples of excitation signals for theottie angle
position and fuel injection, which are engine madeuts are shown in Figures 1 and 2. At the baegmthe RBF neural network
will be trained and tested, so, it will receivegefiinputs signals, which are manifold pressure penature, crankshaft speed, the
throttle angle and the fuel mass flow and hasetlmgtputs, manifold pressure, temperature, crafikshaed. By using K-means
algorithm andp — Nearest Neighbours method the width in hiddgeraodes of the RBF neural netwarland the centres are
calculated. For train the weightsof the RBF neural networks, the recursive leagagg algorithm was applied and the following
data are useqi=0.98,w(0) =1.0x10°xU (nhxg),P(O):l.OX1(§><I on.Wherep is called the forgetting factor ranging from 0 tol 1s
an identity matrix andJ is an ones matrix. To make this neural network fetes an independent model, the neural network
model will use only the first three rows of the MMEoutput matrix which are contain values of mardf@ressure, manifold
temperature and crankshaft speed, after that ttpupaf the neural network will be used as a targatrix to train and test this
neural network. The excitation signal to generading data covers the whole possible operatirigtp@nd then the training data
was collected therefore the train model will beidvdbr all the operating point. The engine data wasded into two parts, the
first 4000 data samples is used for training neoefivork and the 2000 data samples is used folahaatwork model validation,
This procedure in order to confirm validity of theural network model. The Figure 3, a,b and ¢ shbesimulation result of the
engine model output (speed, pressure and temperagspectively) and the RBF neural networks outfomiing 100 samples for
training and 100 samples for the test. It candmnghat the perfect equivalent between the twputsitwith a very stingy error, in
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general, the modelling error of the training dahis often smaller than the test data set. Thenrabaolute error (MAE), which is

given by equation (3) was used evaluate the modgelli

_1_N _1¢N
MAE = 3R f (k) = y()] = TR qfelK)

3)

The MAE is an average of the absolute erm(k) = f (k) —y (K) (Zhai et al, 2007). For modelling performande(k) is the
prediction by neural network model agd(k) the output of Sl engine. For this model the MA&Bues of crankshaft speed,
manifold pressure and temperature are 0.0069, B.ah8 0.0059 respectively. Figure 4, a, b and evshbe 200 samples of the
error signals between the engine model and the RRifal networks for the three outputs, which asmkshaft speed, manifold

pressure and temperature respectively.
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Figure 1. Random Amplitude Signal
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Figure3, a, b and c. The simulation result of
the speed, pressure and temperature engine
model output and the RBF neural networks
output respectively.

W
=
B 166 150 260 250 500
samples
The Error Value Between Speed Engine Model Output and RBF Neural Network Output
oz g
o.15 R
o1l R
o o.05 g
= oA e — AN ]
—
L 0.05 - g
—o.1f g
3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100
Samnles
The Error Value Between Pressure Engine Model Output and REF Neural Network Output
o.sf E
o.6 B
—_
=
=
*l (0] 1
3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100
The Error vValue Between Temperature Engine moaer Output and RBF Neural Network Output
o.ef g
o.sl R
o.al g
o.3
—
o o.2
=
— 0.1
o
—0.1
0.2 g
o.a| i
3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100

Figure4, a, b and c. 1 ne error signals betweer
speed, pressure and temperature engine model
output respectively and the RBF neural networks.



4 Hamad et al. / International Journal of Engineerjr&cience and Technology, Vol. 2, No. 10, 20101 .

3.1 Air leakage faultTo collect the engine data subjected to the akdge fault, the equation (4) (Hendrigksal, 2000) of the

manifold pressure is modified to equation (5):

TR
P = \I/_(_map + My + Megp) (4)
i
TR
P = #(_map + 1y + Megg —Al) ©)

Where py; is absolute manifold pressure (bat),, is air mass flow past throttle plate (kg/seq:m,le is air mass flow into intake

port (kg/sec),m.gr is EGR mass flow (kg/sechl is used to simulate the leakage from the air méhifwhich is subtracted to

increase the air outflow from the intake manifald.= O will represent no air leakage in the intake ifvdth. The air leakage
levels are simulated as 20% of total air intakéhim intake manifold. This fault occurs from sampiember 5401 to 5700, which
means from second 108.02 to second 114, see Fgure

A

Speed Pressure Temperature Fuel mass flow Air leak
faults faults faults faults faults

Amplitude

3001 3300 3601 3900 4201 4500 4801 5100 5401 5700
Samples
Figure5. The simulated faults.

3.2 Injected fuel mass fauleor S| engines, in term of control engineering, tdrget is to achieve an air—fuel mixture with dora
of 14.7 kg air to 1 kg fuel. This means the norwadle of air fuel ratio is 14.7. This value will bbanged if there are faults on the
fuel injector and the amount of fuel. The valudusl is regulated as 20% of the total fuel masw fllom sample number 4801 to

5100, see Figure 5.

3.3 Speed, temperature and pressure sensor fagjised, pressure and temperature sensor faultsdeoediare 10-20% change
superimposed on the outputs of crankshaft speedifoigh pressure and temperature sensors. Thests fatéd simulated from
sample number 3001 to 3300, from sample number 83800 and from sample number 4201 to 4500 réispdc The faulty
data for the sensors is generated using multiplfantprs (MFs) of 1.1 and 1.2 for the above oveaeing respectively, see Figure

(o} [¢]
5. Faulty data are generated by the Modified MVEMhvthrottle angle at different values between &@d 60 for all the fault
conditions. The 5 states with their MFs are giveifable 1. The engine data for the simulated faurit no fault condition covers
almost all transient states of the engine dynamics.

Table 1. The faults states and multiplying factors.

Fault Name MFs
Air Leak 20%
Injected fuel mass flow 20%
Speed sensor 10% over reading 1.1
Pressure sensor 20% over readil 1 1.2
Temp. sensor 10% over reading 1.1

z
abwNEg

4. Fault detection

The Figure 6 shows the flow chart of fault detattibhe RBF neural network receives five inputs alignthe first three inputs
signals are manifold pressure, temperature amukshaft speed which containing fault informationdahe second two inputs
signals are the throttle angle and the fuel mlsg &nd has three outputs with each indicating oihthe investigated states in
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Table 1. This neural network will use at the begignonly the first three rows of the MVEM output tma which consists of
signals values of manifold pressure, manifold terapge and crankshaft speed, all these three imqmttain sensor, component
and actuator faults, after that the output of tharal network will be used as a target matrix, theains this neural network is an
independent model. The information flow for thelfaletection is illustrated in Figure 7. The hiddemdes which are chosen by
k-means method are 12, this is because the tadt ievery good and the size of neural network v small, consequently the
train and test time will be small. Width and wemlatre trained using -nearest neighbours algorithms and the same dgia o
w(0), P(0) which were used to train neural network engine @h@de used here. The trained network is thendesteall faults
occurring. Figure 8 shows the test results fortfdatection for all faults (sensor, component aciigtor) before filtering, it can
be seen the errors are big. After the filteringrafien the results were very good and the errocsedesed, see Figure 9. The
detection thresholds are chosen as 0.2, +0.1 dnfbOcrankshaft speed, manifold pressure and mlaniémperature error signals
respectively. High thresholds may lead to missadai®ns whilst low thresholds will cause falseralaThresholds are chosen as
0.2, £0.1 and 0.1 by utilising experience in mirding false alarm rate.

Step 1

Random input data (throttle angle position and fuel injection)

Actuator fault (injected fuel) Component fault (Air leakage)

Step 3

Step 4 | |

> Mean Value Engine Model <

Step 5 vy

Output of the MVEM (Speed, Press. & Temp.) Contain Comp. & Act. fault |«

Y1 (output of MVEN)=[X]3x3

Y2(output of RBF)=[X]se97x3

Step 7
NO
Step 8
Unfiltered Output (See figure. 8)
Step 9
Step 10

Filtered Output (See figure. 9)

Figure 6. Flow chart of fault detection.
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Figure 10 shows the residual errog)(which is generated by the equation (6)

re=zl ot (6)
“\en "ep et

Wheree,, e, ande, are the error vectors of the speed, pressureamngerature respectively between the engine moaktran
RBF neural network. Thresholds are chosen as @.1& residual greater than threshold that mekheadault occurs.

Residual error
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Figure 10. The residual error of the fault detection aftéefing with 12 hidden nodes.

5. Simulation results

We can summarize the results in the following moint
5.1 Train and Test the Neural Networkhe simulation results of train and test by usi@ghidden nodes were very good and the
good match between the engine model output ané&kBfe neural network output was done, (see Figurasd34 ) and the mean

absolute errors between them are shown it Table 2 .

Table 2. The Mean Absolute Error (MAE) between the EnginedeldOutput and the RBF Neural Network Output

Outputs MAE
Crankshaft speed 0.0016
Pressure 0.013
Temperature 0.0047

5.2 Detect the sensor, components and actuatotsfalihe test results for fault detection for all kimafsfaults were before and
after filtering operation were done with 12 hiddedes, and all the faults were detected afterifigewere very clear (see Figure
8) than faults before filtering (see Figure 9) éimel detection thresholds were chosen as 0.2 fokshaft speed, £0.1 for manifold
pressure and 0.1 for manifold temperature.

6. Conclusions

The MVEM developed by Hendricks and et al (2000)ded for simulations during the research periter @mall modification.
Expansion work has been done to the existing MVHERUfation by including air fuel ratio sensor timelay, temperature sensor
dynamics etc. Three sensor faults (intake manifm&bsure, temperature and speed), one compondntléakage in the intake
manifold) and one actuator fault (injected fuel mdl®w) have been simulated when the simulation ehas subjected to
disturbances and noise. An independent RBF newblark model was used to model engine dynamics taedtraining
algorithms are reviewed and derived. By using Nearest Neighbours method and K-means algotiti@width in hidden layer
nodes of the RBF neural netwaskand the centres c are calculated for RBFNN. Tharséve least square algorithm was applied
for training the weights w of the RBFNN. Fault deten for engine studied in this paper is usingrakmetwork modelling
method, this method can detect dynamic faults,thisdis because the modelling is for dynamic systsocan detect the faults in
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dynamic condition and for other simulated threeetypf fault (sensor, actuator and component). FFbm simulation results it
can be seen that the independent RBF neural neswagke able to detect sensor, actuator and comptméts clearly.
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