
 

 
MultiCraft 

 
International Journal of Engineering, Science and Technology  

Vol. 2, No. 10, 2010, pp. 56-66 

INTERNATIONAL 
JOURNAL OF 

ENGINEERING, 
SCIENCE AND 
TECHNOLOGY 

  www.ijest-ng.com 
                                                                            2010 Multicraft Limited. All rights reserved 

 
Polymer electrolyte membrane fuel cell control with feed-forward and 

feedback strategy 
 

Omar Rgab, D. L. Yu and J. B. Gomm 
 

Control Systems Research Group, School of Engineering,Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK 
 Email: om.khazali_yo@yahoo.com 
 
___________________________________________________________________________________________________________________________________ 
 
Abstract  
 
   Feed-forward and feedback control is developed in this work for Polymer electrolyte membrane (PEM) fuel cell stacks. The 
feed-forward control is achieved using different methods, including look-up table, fuzzy logic and neural network, to improve the 
fuel cell stack breathing control and prevent the problem of oxygen starvation. Firstly, the feed-forward controller is used to 
generate directly an input voltage of the compressor according to the current demand. Then, a PID controller is used in the 
feedback to adjust the difference between the requested and the actual oxygen ratio by compensating the feed-forward controller 
output. The designed system is evaluated using a nonlinear simulation of a fuel cell model documented in the literature. The 
proposed feed-forward with PID controller have achieved a good control performance. The simulation showed effectiveness of the 
control strategy.  
 
Keywords: Fuel cell; fuel cell stack; breathing control; starvation;  feed-forward; fuzzy logic; neural network.  

 
1. Introduction 
 

There are many environmental problems in the world today associated with current natural sources such as fossil fuels. Burning 
fossil fuels emits CO2 and destructs the ozone layer which leads to climatic change and what is known as the greenhouse effect. 
From this point, the world has been looking for energy sources that are clean and safe on the environment. Fuel cells are a kind of 
clean and safety energy source on the environment. Polymer electrolyte membrane (PEM) fuel cells emerge as one of the most 
clean and promising alternatives to reduce fossil fuel dependency (Pukrushpan et al., 2004a). In this paper some advanced control 
methods are implemented to achieve better control for the fuel cell breathing. 

 
1.1 Fuel cell working principles: Fuel cells convert chemical energy of a hydrogen fuel (on the anode side) into electric energy 
with water and some heat through a chemical reaction with oxygen (on the cathode side) (Pukrushpan et al., 2004b), to satisfy 
different power requirements (figure 1). Generally, the reactants flow in and reaction products flow out while the electrolyte 
remains in the cell. Fuel cells can operate continuously as long as the necessary flows are maintained. Fuel cells differ from 
batteries in that they do not need recharging, they operate quietly and efficiently, and when hydrogen is used as fuel they generate 
only electric power and drinking water. So, they are called zero emission engines. William Grove has discovered the basic 
operating principle of fuel cells by reversing water in 1839 (Hoogers, 2003).  In particular, proton exchange membrane FCs (PEM-
FCs), also known as polymer electrolyte membrane FCs, is considered to be more developed than other FC technologies, because 
they have high power density, solid electrolyte, operate at low temp, long cell and stack life and low corrosion (Hoogers, 2003). 
The PEM-FC takes its name from the special plastic membrane used as the electrolyte. This membrane electrode assembly (MEA), 
not thicker than a few hundred microns, is the heart of a PEM-FC and, when supplied with fuel and air, generates electric power at 
cell voltages around 0.7 V and power densities of up to about 1 W/cm electrode area (Spiegel, 2008). 
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Figure1. PME- FC reaction and structure 

 
Figure 2 shows a schematic of an MEA. The MEA is typically located between a pair of current collector plates (platinum-

impregnated porous electrodes) with machined flow fields for distributing fuel and oxidant to the anode and cathode, respectively. 
A water jacket for cooling is often placed at the back of each reactant flow field followed by a metallic current collector plate. The 
cell can also contain a humidification section for the reactant gases, which are kept close to their saturation level in order to 
prevent dehydration of the membrane electrolyte. Many FCs are connected electrically in series to form an FC stack (FCS).  
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Figure 2. PEM fuel cell structure 
 

 
1.2  Fuel stack model: The fuel cell stack (FCS) model simulated in this paper consists of four interacting sub-models which are 
the stack voltage, the anode flow, the cathode flow, and the membrane hydration models (Pukrushpan et al., 2005). The voltage 
model contains an equation to calculate stack voltage that based on fuel cell temperature, pressure, reactant gas partial pressures 
and membrane humidity. In summary, the fuel cell voltage E is given by   
 

)](
2

1
)[ln(5103085.4)15.298(31085.0229.1
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ppfcTfcTE +−×+−−×−=          (1) 

 
Figure 3. Simulink model of integrated PEM fuel cell 
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where, Tfc the fuel cell temperature in Kelvin, pH2  and pO2 are the partial pressures of hydrogen and oxygen respectively, details 
in Pukrushpan et al. (2005, 2004c). In this model the stack temperature is assumed to be constant at 80oC. The model which is used 
in our investigation is given in (Pukrushpan et al., 2005). The FCS Simulink model is created in Matlab 6.5. 

 
1.3  Literature survey: The main three parameters of fuel cell stack are stack current Іst, stack voltage vst and the oxygen ratio λo2. A 
fuel cell (FC) stack has to be operated properly to get good power efficiency, reliability and smooth operation. The main 
disadvantage of the fuel cells stack system is the oxygen starvation. Since current is instantaneously drawn from the load source 
connected to the FC, the FC control system is required to maintain optimal temperature, membrane hydration, and partial pressure 
of the reactants across the membrane to avoid detrimental degradation of the FC voltage, which can reduce efficiency. Fuel cell 
parameters need to be controlled to avoid the oxygen starvation phenomena when the current is drawn from the fuel cell.  Some 
researchers have presented some methods to control the breathing of fuel cell stack in order to prevent the problem of oxygen 
starvation, and some other problems, which are now reviewed. 
   Friede and Davat. (2004) proposed the governing equations of the transient behavior of a PEM fuel cell to show the influence of 
the operating conditions (such as temperature, pressure and gas flows have an effected on the humidity condition of the fuel cell 
and their choice is the greatest challenge in fuel cell operation) and the current density on internal parameters, especially the ohmic 
resistance to improve the control of fuel cell. The models were suitable for description of highly nonlinear behavior of the fuel 
cells. Vahidi et al. (2006) have used a bank of ultra capacitors supplements the fuel cell during fast current transient in order to 
prevent fuel cell oxygen starvation, air compressor surge and choke, and simultaneously match an arbitrary level of current 
demand during rapid load demands. A model-predictive controller has been designed for optimal distribution of current demand 
between the fuel cell and the bank of ultra capacitors, which is handled multiple constrains of the hybrid system. Pukrushpan et al. 
(2002) implemented a nonlinear fuel cell dynamic model for control study of fuel cell. The model has captured the transient 
phenomena which include the flow characteristics and inertia dynamics of the compressor, the manifold filling dynamics and 
consequently, the reactant partial pressures. They attempted to design an observer based feedback and feed-forward controller that 
manages the tradeoff between reduction of parasitic losses and fast fuel cell net power response during rapid current (load) 
demands. An air flow controller (Pukrushpan et al., 2004b) to protect the FC stack from oxygen starvation during step changes of 
current demand have been designed, the steady-state regulation of the oxygen excess ratio in the FCS cathode have been achieved 
by assigning an integrator to the compressor flow. Linear observablility techniques were employed to demonstrate improvements 
in transient oxygen regulation when the FCS voltage is included as a measurement for the feedback controller. A linear optimal 
control design had been used to identify the frequencies (the FCS voltage signal contains high frequency information about the FC 
oxygen utilization, and thus, is a natural and valuable output for feedback) at which there was a severe tradeoff between the 
transient system net power performance and the stack starvation control. The limitation arises when the FCS system architecture 
dictates that all auxiliary equipment is powered directly from the FC with no secondary power sources. An observer was designed 
by Arcak et al. (2004) to estimate anode hydrogen pressure with an output injection term based on stack voltage.  The paper by 
Kunusch et al. (2009) tackles the breathing problem of subsystem of a PEM fuel cell stacks by using a second order sliding mode 
strategy. The proposed control strategy is based on a super twisting algorithm that robustly solves the stabilization problem 
avoiding chattering effects. The resulting approach exhibits good dynamic characteristics, being robust to uncertainties and 
disturbances, and the results were provided showed the feasibility of the approach. A method for controlling a nonlinear under-
actuated system (DiFiore., 2009) using augmented sliding mode control (SMC) have been investigated, where the proposed control 
approach involves introducing a transformation matrix mapping the systems input influence matrix to a transformed system that is 
square and thus invertible. The proposed approach is shown to control selectable states with proper choice of the transformation 
matrix yielding good control performance. From other hand, the methodology is applied to an under actuated nonlinear fuel cell 
system to show its viability in a real world application, then a sliding mode controller is derived for the full nonlinear system with 
a switching gain accounting for modeling errors and uncertainties. Simulation results indicate the viability of the proposed control 
law and demonstrate the robust nature of the control law in the presence of significant modeling errors while maintaining tracking 
stability. Finally, the augmented SMC is compared to a traditional linear control architecture illustrating the electiveness and 
advantages in tracking performance and control effort over traditional methods. 
 
2.  Fuel cell control techniques  

 
The FC air flow needs to be controlled rapidly and capably. In order to avoid oxygen starvation and extend the life of the FC 

stack (Yang et al.,1998) Oxygen starvation is a complicated phenomenon that occurs when the partial pressure of oxygen falls 
below a critical level at any location within the meander of the air stream in the cathode (Springer et al., 2001). This phenomenon 
entails a rapid decrease in cell voltage, which in severe cases can causes a hot spot, or even burn-through on the surface of a 
membrane. Although the oxygen starvation is spatially varying, this phenomenon can be avoided by regulating the cathode excess 
oxygen ratio 2Oλ . We thus regulate air ratio in the FCS cathode by controlling compressor motor voltage Vcm during step changes 

in current drawn Ist from the FCS.   
 

2.1 Feed-Forward and Feedback control methods: The fuel cell model documented in (Pukrushpan et al., 2005) will be applied to 
the augmented feed-back (FB) and feed-forward (FF) controllers with different design methods for the FF controller. Firstly the 
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feed-forward FF controller is used to generate directly an input voltage of the compressor according to the current demand. Then, a 
PID controller is used in the feedback to adjust the difference between the requested and the actual oxygen ratio by compensating 
the feed-forward controller output. The nonlinear state equations are ),,( duxfx NLNL =& , u=Vcm (Control signal), d=Ist  

(Disturbance inputs), where the control input u is the compressor motor voltage vcm , and the disturbance input d is the current Ist 
drawn from the FCS. The performance variables are excess oxygen ratio y=λO2  in the fuel cell cathode. 

 
2.2  System configuration: System configuration includes four different control schemes for the FC stack system with FF and FB 
controllers as shown in figure 4, the FF neural network method will be discussed later. The disturbance (stack current Ist) can be 
measured; FF controller that correlates the steady state value between the control input vcm and the disturbance Ist will be used in 
the FF path. The FF controller will implement by different methods such as a look-up table, fuzzy logic controller (5 and 9 
membership function MF) and neural network. Analytical modeling or experimental testing can be used to construct the inverse of 
compressor and compressor motor maps to find )( stcmcm Ifv =&  at desired oxygen flowcpw& . FF controller and FB controller can 

be designed to achieve better transient response. In fact, a FF controller that cancels the effect of d to y over a wide range of 
frequencies is designed first. A feedback controller (PID) is designed to reduce the error in the output of oxygen ratio λO2.  

 
2.3  Setting of PID controller parameters:  PID controller equation given in (Ogata, 1997) has the following form: 

 

sdK
s
iK

pKsWc ++=)(          (2) 

 
  

 

 

 
 Figure 4. Fuel cell control Construction. (a) Look-up table FF controller and PID controller  (b) Fuzzy logic FF (5&9 MF.) and 

PID controller. (c) Neural Network controller  FF and PID controller. 
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where, Kp , Ki and Kd  are proportional, integral and differential gains respectively. The PID is initially tuned by the Zigler and 
Nichols for the open loop method. The measured oxygen ratio is the Feedback signal of the system. After fine tuning, the PID 
controller that is used here with Feed-forward controllers for oxygen ratio regulation is  

 

)05.0
6153.0

1
1(200)( s

s
scW ++=        (3) 

 
Also, the best control results and corresponding fuel cell compressor voltages are shown in figures 9~12. 

 
2.4  Feed-forward controller design 
 
2.4.1  Look-up table feed-forward controller: The FF controller here is implemented with a lookup table configuration, see figure 
4(a). The values of this table are obtained from the model by giving current values into the FCS model, and then we have used the 
compressor motor voltage Vcm to regulate the oxygen excess ratio 2Oλ =2. Compressor voltage for each current value is illustrated 

in the table 1.  
 

Table 1. Compressor voltage (vcm ) and FCS current (Ist ) values 
Current(Ist) Compressor voltage (vcm)  K= voltage /current 

100 100 1 
110 105.96 0.9633 
120 112 0.9333 
130 120.42 0.9263 
140 127 0.9071 
150 134.9 0.8993 
160 142 0.8875 
170 149 0.8764 
180 156 0.9166 
190 163 0.8579 
200 170 0.8500 
210 176.5 0.8404 
220 183.2 0.8327 
230 189.595 0.8240 
240 195.88 0.8162 
250 202 0.8080 
260 208 0.8000 
270 214.2 0.7933 
280 220.49 0.7875 
290 227 0.7828 
300 233.57 0.7786 

 
 

2.4.2  Feed-forward  fuzzy logic controller:  The fuzzy logic control technique can be applied to control of the fuel cell, since the 
fuzzy logic is relatively simple and is based on definitions of formal facts and the relationships among them. In figure 4(b), the 
fuzzy controller consists of the following main elements (Tsoukalas and Uhrig, 2000; Popovic and Bhatkar, 1997): 
 

•  A set of control rules: IF (condition) Then (control actions), where "condition" defines the state of the process, for which 
the control adjustment specified in the control action should be executed. These rules are derived from the knowledge of 
experts with substantial experience in the system.  

• Membership functions MF: which are a simple yet versatile mathematical tool for indicating flexible memberships to a 
set, see figures (5a&5b). Fuzzy numbers are fuzzy subsets of the real line. They have a peak or plateau with membership 
grade 1, over which the members of the universe are completely in the set. The membership function is increasing 
towards the peak and decreasing away from it. Fuzzy membership functions are used in fuzzy control applications. A 
typical case is the triangular fuzzy membership function and is used in this studies (fig.5a &5b).  

• Fuzzification interface (the input of fuzzy controller) is used to transform a crisp set into a fuzzy set or which transforms 
the control variables into fuzzy sets manipulated by a collection of fuzzy rules, assembled in what is known as the fuzzy 
inference engine (Tsoukalas  and Uhrig, 2000). The fuzzy control has the following characteristics. 
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Figure 5(a). Input variable “stack current” membership’s function 

 

 
Figure 5(b). Output variable “voltage” membership's function. 

 
 

2.4.2.1 Five membership fuzzy logic controller: Fuzzy controller is designed as case of process, where the inputs of fuzzy 
controller is the fuel cell stack current "100~ 300A" (the current demand), and its output ∆output (the change of compressor 
voltage 100~235 volt, see table 1). The membership function for the input and output fuzzy logic controller is divided to low, med 
low, normal, med high, high. From the table 1, we can write the rules, which should be applied for the mentioned above 
membership functions as the following way in table 2: 
 

Table 2. Fuzzy logic controller rules 
R1- 
R2- 
R3- 
R4- 
R5- 

If current is low 
If current is med low 
If current is normal 
If current is med high 
If current is high 

then ∆voltage is low 
then ∆voltage is med low 
then ∆voltage is normal 
then ∆voltage is med high 
then  ∆voltage is high 

Else 
Else 
Else 
Else 
Else 

 
2.4.2.2  Nine membership fuzzy logic controller: In the same above principle in item 2.4.2.1, the fuzzy logic controller with 9 MF is 
designed but the number MF and fuzzy logic will be different (9 MF and 9 rules). From figure 10, we can see clearly that there is a 
small over shoot at the first step when we used 5 MF fuzzy logic controller with delay time at the sixth. However 9 MF fuzzy logic 
controller recovered this problem as shown in figure 11. 
  
2.4.3  Neural network feed-forward controller:  Neural network technique can be applied in the controlling of the fuel cell stack 
system, see figure 4(c), since the control process is a multi-variable with non-linear behavior. The neural network here will be used 
to design the FF controller because the neural net work can estimate the compressor voltage value which corresponding for any 
current demand value. The details of neural network structure are in (Tsoukalas  and Uhrig, 2000; Haykin, 1999). The data, which 
is given in table 1, will be used to train the neural network. The neural network structure is illustrated in figure 6. The values of the 
fuel cell current (Ist) will be as an input to neural network model. In this case the input layer of neural network is one, see figure 6, 
and other parameters (voltage and k value) as an output signals. In this case the output layer has two outputs y1, y2. The number of 
hidden layer nodes is chosen to be 9 bases on the test performed in this work. According to the test the network with 9 hidden layer 
nodes is a more appropriate one and gives very small absolute error between desired and calculated output (about 1.463×10-9). The 
input and hidden layers is connecting by weights w1i and its number is 9 as matrix (9×1). The hidden layer and outputs layer are 
connected by weights w2ij its number is 18 (a matrix 2×9). Bias layers

 
b1j has value equal to 1 (Tsoukalas  and Uhrig, 2000) are 

connected with the hidden layers by weights wb1j  
as matrix 9×1. Also bias layers b2i 

should be introduced, its value is equal to 1 
and connected to the output layers by weights

 
wb1i 

as matrix 2×1. In order to demonstrate supervised learning, the neural network 
includes the desired output vector O with the components O1,O2 the computed output vector Y with the component y1,y2, 
comparator, and weight-adjusting algorithm, this arrangement is shown in figure 6.   In order to start the process, all weights in the 
neural network (figure 6) are randomly adjusted to small random value (-1~1) (Haykin., 1999). When the current values Ist is 
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applied to the neural net work, it produces an output vector Y, which is compared with the vector O  by the comparator to produce 
the error vector e calculated by equation (4). The error is applied to weight-adjusting algorithm to adjust the weights. 

YOe −=           (4) 

The last process is repeated over and over until the error is reduced to some specified value or an irreducible small quantity. At 
that point the output vector Y and the desired output vector O  are substantially equivalent, and the neural network is said to have 
been trained to map input vector Ist  into the desired output vector O The training procedure for the mentioned neural network 
(figure. 6) with the data of the fuel cell (table 1) as follows: the calculation is done by Matlap version 2009a according to the 
following equation: 

 At first, the random values between (-1, 1) for the weights (w1j, wb1j, w2ij, wb2i) to calculate the output Yj of neural net work 
(figure 6) are introduced. 

 

9,......,111 ,1 =×+⋅= i
iistii wbbIwV
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where Vi is the summation part and uj is the activation part of hidden layers (Tsoukalas  and Uhrig, 2000), where, w1j, the weights 
which connect between the input layers and the hidden layers. Its numbers are 9 as matrix (9×1), b1j bias layers. Its number is 9 
and has values equal to 1, wbj, the weights which connect between the bias layers and hidden layers their numbers are 9 as matrix 
(9×1). The output yi is calculated from the following equation (Tsoukalas  and Uhrig, 2000). 
 

∑
=

×+×=
9

)(
1

22
i

w
i

u
iiijj bbwy                    (7)  

 
where; wji is the weights which connect between the hidden layer and the output layer (Figure 6), and their numbers are 18 as 
matrix (2×9), b2i Output bias layers, their numbers are 2 and have values equal to 1, wb2i, the weights, which connect between the 
output bias layers b2i  and the output layers  yj (figure 6) their numbers are 2 as matrix (2×1). The error ” e “   is calculated from 
the following equation:  

   jjj yOe   -=        (8) 
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Figure 6. Neural network Model with Supervised Learning. 
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where Oj, the output given in operational data or desired output, Yj , the output computed by the neural network,  j = (1~ 2). The 
weights of the network are adjusted by applying back-propagation function to minimize the error. ∆ wij  (The change in the weights 
wij ) is calculated from liner back-propagation function given in (Tsoukalas  and Uhrig, 2000). The steps mentioned above are done 
for each current value (about 21 values), and repeated with changing the number of hidden layers and the type of activation 
function until we obtain the beast case (errors go to zero). The weights values which are corresponding to the zero error are 
recorded, and then the training for the neural network of figure 6 is completed and the output of NN can be calculated from 
equation (8), the Matlap version 2009a is used in our calculation. 
 

22 wbbuwy ×+×=        (9) 
   

 
where, w is a matrix (2×9), u is (9×1) and b2×wb2 is matrix(2×1)  

 
 

2.5  Simulations and Evaluation: Quality of controlling is defined by building up the output response of the fuel cell stack, and 
determines the values of Mean Absolute Error (MAE), where     
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The current demand changing depends on the type of the external electrical load. Usually the current in low demand is 100 

Ampere. The maximum current demand is about 300 Ampere. In our simulations, as shown in figure 7, a current demand changing 
gradually from 100 to 300 each 4 second. This almost covers the whole fuel cell stack operating condition. 

 

 
Figure 7. Current demand changing during control. 

 
 

The compressor voltage is to be controlled between the 100 and 235 voltage and the oxygen ratio is to be controlled between the 
-0.8% and +0.2% bounds of ideal value 2Oλ =2, i.e. 99.2%×2≤  O2 ≤  100.2%×2. The output response of the FCS by using the 

suggested control methods is compared with the output response of the traditional Proportional Feed-forward controller (PFF with 
k=164/191) as shown in figures 8, 9, 10, 11 and 12.   

 

 
Figure 8. Output Response of FCS with proportional and PID controllers at different stack current 
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Figure 9.  Output response of fuel cell control loop by using lookup table Feed-Forward Controller 

 
          Figure 10.  Output response of fuel cell control loop by using 5 MF. FL Feed-Forward controller 

 
Figure 11. Output response fuel cell stack automatic control loop by using 9 MF.   Fuzzy Logic controller 

 
Figure 12. Output Response of FCS with neural network and PID controllers at different stack current 

 
 

So, from the figures we can see clearly that the Feed-forward neural network (FF-NN) has better performance than other 
controllers. The second performance is that using look-up table. Then, fuzzy logic with 9 MF followed by 5 MF and the last one is 
the PFF.  However, the figure 8 shows a delay time at the first step about 4 sec in the output response of oxygen ratio when the 
Proportional Feed-forward Controller is used, in the second step there is about 2.5% overshoot as the same as 5th step. In the same 
time the FF-NN, look-up table, 9 &5 MF controllers reduced this delay time and the overshoot as shown in figures 9, 10,11 and 12. 
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Table 3, Evaluated Results 

Controller's type Mean Absolute Error(MAE) 

PID FB Controller P+   FF Controller 1.9468×10-4 

PIDFB Controller+ Lookup table FF 4.8659×10-5 

PIDFB Controller+ 5 MF. FL controller 1.1893×10-4 

PIDFB Controller +9MF. FL Controller 6.430×10-5 

PIDFB Controller +NNFF Controller 6.2163×10-6 

 
The results of simulation and evaluation by MAE are summarized in Table 3. 

 
3. Conclusion 

 
Based on the results summarized in Table 3, it is found that: 

 
•  Neural Network FF controller + FB controller, they give better performance than other methods of control.  

• The difference between five and nine memberships function is about 0.00005463 of MAE and 9 MF is better than 5 MF, 
but of them are better than proportional Feed-forward controller.  

• The mean absolute error of Look-up table FF controller + FB controller is 4.8659×10-5. So, we can say Lookup table is 
better performed than Proportional Feed-forward controller.  

• The neural network FF controller has better performance than other controllers because the neural network can estimate 
the corresponding compressor voltage for each current demand, it’s mean absolute error is =6.2163×10-6. 

 
Abbreviations 
 
PEM 
MEA 
FF  
PID 
FB 
FC 
PEMFC 
FCS 
MF 
NN 
MF FL 
FF-NN 
PFF 

Polymer electrolyte membrane 
membrane electrode assembly  
Feed-forward 
Proportional integral differential controller 
Feed Back 
Fuel cell 
Polymer electrolyte membrane fuel cell  
Fuel cell stack 
Member ship function 
Neural net work 
Member ship fuzzy logic controller  
Feed forward neural net work 
Proportional feed forward  
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