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Abstract 
 
   Unsteady hydromagnetic convective flow of a viscous incompressible electrically conducting heat generating/absorbing fluid 
within a parallel plate rotating channel in a uniform porous medium under slip boundary conditions is investigated. Exact 
solution of the governing equations for fully developed flow is obtained in closed form. Expressions for skin friction due to 
primary and secondary flows and Nusselt number at the plate 1η = are also derived. Asymptotic behavior of the solution for the 
fluid velocity is analyzed for large values of frequency parameter ω  to gain some physical insight into the flow pattern. The 
numerical values of the primary and secondary velocities and fluid temperature are displayed graphically versus channel width 
variable η  for various values of pertinent flow parameters whereas numerical values of skin frictions due to primary and 
secondary flows and Nusselt number at the plate 1η = are presented in tabular form for different values of pertinent flow 
parameters.  
 
Keywords: Thermal source/sink, slip boundary conditions, periodic pressure gradient, convective flow, magnetic field, rotation, 
porous medium. 
 
1. Introduction 
 
   Flow of a viscous fluid in a rotating medium is of considerable importance due to the occurrence of various natural phenomena 
and for its application in various technological situations which are governed by the action of Coriolis force. The broad subjects of 
oceanography, meteorology, atmospheric science and limnology all contain some important and essential features of rotating 
fluids. The viscous fluid flow problems in rotating medium under different conditions and configurations are investigated by many 
researchers in the past to analyze various aspects of the problem. Mention may be made of the research studies of Greenspan and 
Howard (1963), Holton (1965), Walin (1969), Siegman (1971), Puri (1974), Puri and Kulshrestha (1974), Mazumder (1991), 
Ganapathy (1994), Hayat et al (2001), Hayat and Hutter (2004) and Das et al. (2008). The study of simultaneous effects of rotation 
and magnetic field on the fluid flow problems of a viscous incompressible electrically conducting fluid may find applications in 
the areas of geophysics, astrophysics and fluid engineering. An order of magnitude analysis shows that, in the basic field 
equations, the effects of Coriolis force are more significant as compared to that of inertial and viscous forces. Furthermore, it may 
be noted that Coriolis and magnetohydrodynamic forces are comparable in magnitude and Coriolis force induces secondary flow 
in the flow-field. Taking into consideration these facts Vidyanidhi (1969), Nanda and Mohanty (1971), Mazumder (1977), Jana et 
al (1977), Jana and Datta (1980), Prasad Rao et al (1982), Seth and Maiti (1982), Mandal et al (1982), Mandal and Mandal (1983), 
Raman Rao and Linga Raju (1990), Nagy and Demendy (1993, 1995), Ghosh and Bhattarchjee (2000), Seth and Singh (2008), 
Seth and Ansari (2009), Seth et al (2009) and Ghosh et al (2009) studied steady MHD flow of a viscous incompressible 
electrically conducting fluid in a rotating channel under different conditions considering various aspects of the problem. 
Investigation of oscillatory flow in a rotating channel is important from practical point of view because fluid oscillations may be 
expected in many MHD devices and natural phenomena where fluid flow is generated due to oscillating pressure gradient or due to 
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vibrating walls. Keeping in view this fact Mukherjee and Debnath (1977), Seth and Jana (1980), Singh (2000), Ghosh (1993), 
Ghosh and Pop (2003), Hayat et al (2004) and Guria et al (2009) investigated oscillatory flow of a viscous incompressible 
electrically conducting fluid in a rotating channel under different conditions to analyze various aspects of the problem. Rahman 
and Sattar (1999) studied MHD free convection and mass transfer flow with oscillating plate velocity and constant heat source in a 
rotating frame of reference. In all these investigations “no-slip” boundary condition is considered for the velocity field. However, 
in some application e.g. in microfluidic and nanofluidic devices where the surface to volume ratio is large, the slip behavior is 
more typical and slip boundary condition is usually used for the velocity field (Darhuber and Troian, 2005) which was first 
proposed by Navier in the year 1823. There exist many physical reasons for the slip over hydrophobic surfaces among which are: 
molecular slip (Blake, 1990) and small dipole-moment of polar liquids (Melin et al, 2004). Also wall slip can occur in the working 
fluid which contains concentrated suspensions (Soltani and Tilmazer, 1998). Keeping in view these facts the effects of fluid 
slippage at the wall for Couette flow under steady state condition for gases are studied by Marques et al (2000) whereas Khaled 
and Vafai (2004) investigated Stokes and Couette flows produced by an oscillatory motion of a wall under slip boundary 
conditions. Soundalgekar (1970) considered hydromagnetic fluctuating flow past an infinite porous plate in slip flow regime while 
Sastry and Bhadram (1976) studied magnetogasdynamic flow past an infinite porous plate in slip flow regime. Makinde and 
Osalusi (2006) investigated MHD steady flow in a channel with permeable boundaries under slip boundary conditions. Linga Raju 
(2007) considered steady hydromagnetic flow in a rotating channel with non conducting walls in slip flow regime. Smolentsev 
(2009) investigated three types of MHD flow problems assuming hydrodynamic slip condition at the interface between the 
electrically conducting fluid and insulating walls which are: (i) Hartmann flow; (ii) fully developed flow in a rectangular duct and 
(iii) quasi two dimensional turbulent flow. Abelman et al. (2009a) considered steady MHD flow of a third grade fluid past a rigid 
plate with slip boundary condition in a rotating frame whereas Abelman et al. (2009b) studied steady MHD Couette flow of 
thermodynamic compatible third grade fluid filling the porous space in a rotating frame taking partial slip into account. 
   Unsteady convective flow of a viscous incompressible heat generating/absorbing fluid is of considerable importance due to 
appreciable temperature difference between the surface and ambient fluid in so many fluid flow problems of physical interest. 
Internal heat generation/absorption plays significant role in various physical phenomena such as fluids undergoing exothermic or 
endothermic chemical reactions ( Vajravelu and Nayfeh, 1992), convection in Earth’s mantle (McKenzie et al, 1974), application 
in the field of nuclear energy (Crepeau and Clarksean, 1997), post accident heat removal (Baker et al, 1976), fire and combustion 
modeling (Delichatsios, 1988) and the development of metal waste from spent nuclear fuel (Westphal, 1994). Although exact 
modeling of internal heat generation or absorption is quite difficult, some simple mathematical models yet idealized can express its 
average behavior for most physical situations. Sparrow and Cess (1961) considered temperature-dependent heat absorption in their 
investigation of steady stagnation point flow and heat transfer. Moalem (1976) studied steady state heat transfer in a porous 
medium with temperature-dependent heat generation. Jha and Ajibade (2009) considered free convection flow of heat 
generating/absorbing fluid between vertical porous channel due to periodic heating of the walls of the channel and temperature-
dependent heat generation/absorption. Kamel (2001) investigated unsteady MHD convection flow through a porous medium 
bounded by an infinite vertical porous plate with temperature-dependent thermal source/sink. Chamkha (2004) considered 
unsteady two dimensional convective heat and mass transfer boundary layer flow of a viscous, incompressible, electrically 
conducting and heat absorbing fluid past a semi-infinite vertical permeable plate with temperature-dependent heat absorption. 
   The aim of the present paper is to study unsteady hydromagnetic convective flow of a viscous, incompressible, electrically 
conducting and heat generating/absorbing fluid within a parallel plate vertical channel in a uniform porous medium under 
hydrodynamic slip boundary conditions with temperature dependent thermal source/sink when both the fluid and channel are in a 
state of rigid body rotation with uniform angular velocity about an axis perpendicular to the planes of the plates. Fluid within the 
channel is permeated by a uniform transverse magnetic field applied in a direction which is parallel to the axis of rotation. 
 
2.  Formulation of the Problem and its Solution 
 
   Consider flow of a viscous, incompressible, electrically conducting and heat generating/absorbing fluid within a parallel plate 
vertical channel (i.e. 0z =  to z L= ) in a uniform porous medium in the presence of a uniform transverse magnetic field 0B  
applied in a direction which is parallel to z -axis about which both the fluid and channel are in a state of rigid body rotation with 
uniform angular velocity Ω . Plate 0z =  of the channel is kept at uniform temperature 0T  whereas plate z L=  of the channel is 
maintained at an oscillating temperature 0 0( ) coswT T T tω′ ′+ − . ω′ , wT  and t′  are, respectively, frequency of oscillations, 
temperature of the plate z L=  in steady state (i.e. when 0ω′ = ) and time. Flow within the channel is induced by a periodic 
pressure gradient 2 cosp x R tω′ ′∂ ∂ =  applied in x -direction, R  being a constant. Physical model of the problem is presented in 
figure 1. 

The equations of motion for a viscous, incompressible, electrically conducting and heat generating/absorbing fluid in a rotating 
medium are 

( )2
0

1 1ˆ ˆ( . ) 2 ( )q q q k q p q q J B g T T i
t K

υυ β
ρ ρ

∂ ′ ′ ′+ ∇ + Ω × = − ∇ + ∇ − + × + −
′ ′∂

r r rr r r r r ,    (1)  
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. 0q∇ =
r ,          (2) 

BE
t
∂

∇× = −
′∂

r
r

,         (3) 

eB Jμ∇× =
r r

,         (4) 

. 0B∇ =
r

,         (5) 
Ohm’s law for a moving conductor is 

( )J E q Bσ= + ×
r r rr ,        (6) 

and energy equation for the problem is  
2 0

0( . ) ( )
p p

QT kq T T T T
t C Cρ ρ
′∂ ′ ′ ′+ ∇ = ∇ − −
′∂

r ,       (7) 

where qr , B
r

, J
r

, E
r

, T ′ , ρ , υ , K ′ , g , β ′ , σ , eμ , k , pC , î , k̂ , t′ , p′  and 0Q  are, respectively, fluid velocity, magnetic 
field, current density, electric field, fluid temperature, fluid density, kinematic coefficient of viscosity, permeability of porous 
medium, acceleration due to gravity, volumetric coefficient of thermal expansion, electrical conductivity, magnetic permeability, 
thermal conductivity, specific heat at constant pressure, unit vector along x-axis, unit vector along z-axis, time, pressure including 
centrifugal force and dimensional heat generation/absorption coefficient. It may be noted that 0 0Q <  for heat generation and 

0 0Q >  for heat absorption. 
    

                                   
Figure 1. Physical model of the problem 

 
   Since plates of the channel are of infinite extent in x and y directions and electrically non-conducting and flow is fully developed 
so all physical quantities, except pressure p′ , depend on z and t′  only i.e pressure p′  is function of  x, y, z and t′  whereas fluid 
velocity qr , fluid temperature T ′ , skin friction and Nusselt number are functions of  z and t′  only. 

Taking into consideration assumptions made above fluid velocity qr , magnetic field B
r

, current density J
r

and electric field E
r

 are 
given by  
   ( , ,0)q u v′ ′≡

r , 0( , , )x yB B B B≡
r

, ( , ,0)x yJ J J≡
r

, ,( , )x y zE E E E≡
r

,    (8)  
which are in agreement with the fundamental equations of Magnetohydrodynamics i.e. equations (1) to (6).  
   It is assumed that the induced magnetic field produced by motion of fluid is negligible in comparison to the applied one so that 

0(0,0, )B B≡
r

. This assumption is valid because magnetic Reynolds number is very small for metallic liquids and partially ionized 
fluids (Cramer and Pai, 1973). Also no external electric field is applied so the effect of polarization of fluid is neglected (Meyer, 
1958) i.e (0,0,0)E ≡

r
.  

       
Under the above assumptions, equation (1) with the help of (6) and equation (7) reduce to  
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 ( )
22

0
02

12 ,
Bu p uv u u g T T

t x Kz
συυ β

ρ ρ
′ ′ ′∂ ∂ ∂′ ′ ′ ′ ′− Ω = − + − − + −
′ ′∂ ∂ ∂

   (9) 

 
22

0
22 ,

Bv vu v v
t Kz

συυ
ρ

′ ′∂ ∂′ ′ ′+ Ω = − −
′ ′∂ ∂

   (10) 

                                                  10 p
zρ
′∂

= −
∂

,                                                                                                                            (11) 

                                                 ( )
2

0
02 ,

p p

QT k T T T
t c czρ ρ
′ ′∂ ∂ ′= − −
′∂ ∂

   (12) 

We have considered oscillatory Hartmann convective flow so pressure p′  is assumed in the following form 
 2 cos( ) ( ) ( )p Rx t F y G zω′ ′ ′= + + .   (13) 

It is noticed from equations (9), (10), (11) and (13) that pressure p′  is constant along the axis of rotation i.e. ( ) 0p G z
z
′∂ ′= =

∂
. The 

absence of pressure gradient term ( )p F y
y
′∂ ′=

∂
 in equation (10) implies that there is a net cross flow in y-direction (Prasad Rao et 

al, 1982). Buoyancy term 0( )g T Tβ ′ −  is considered in equation (1) only because free-convection in this problem takes place 
under gravitational force (Singh, 1983; Tokis, 1986, 1988; Kythe and Puri, 1988 a, b; Nanousis, 1992 and Jha and Ajibade, 2009).   
Boundary conditions for the fluid velocity are hydrodynamic slip boundary conditions which are given by 

 
 and    at 0,

 and    at .

u vu v z
z z
u vu v z L
z z

μ β μ β

μ β μ β

′ ′∂ ∂ ⎫′ ′= − = − = ⎪⎪∂ ∂
⎬′ ′∂ ∂ ⎪′ ′= = =
⎪∂ ∂ ⎭

   (14) 

Boundary conditions (14) for the fluid velocity are well known hydrodynamic slip boundary conditions derived by Beavers and 
Joseph (1967). Here μ  and β  are, respectively, coefficient of dynamic viscosity and coefficient of sliding friction. 
Boundary conditions for the fluid temperature are 

 
( )

0

0 0

 at 0,
cos   at ,w

T T z
T T T T t z Lω

′ = = ⎫⎪
⎬′ ′ ′= + − = ⎪⎭

   (15) 

where 0 .wT T T′< <  
Equations (9), (10) and (12), in non-dimensional form, become 

 
2

2 2
2

1

12 ,r
u p uK v u M u G T
t Kζ η

∂ ∂ ∂
− = − + − − +

∂ ∂ ∂
   (16) 

 
2

2 2
2

1

12 ,v vK u v M v
t Kη
∂ ∂

+ = − −
∂ ∂

   (17) 

 
2

2

1 ,
r

T T T
t P

φ
η

∂ ∂
= −

∂ ∂
   (18) 

where 
( ) ( )

( ) ( )

2 2 2
0 0

2 2 2 2 2 2 3 2 2
1 0 0 0

 ,  ,  ,  ,  ,   ,  ,  

,  ,  / ,  ,   .
w

r p r w p

x L z L u u L v v L t t L p L p T T T T T

K L K K L M B L P c k G g T T L and Q L c

ζ η υ υ υ ρυ

υ σ ρυ υρ β υ φ υρ

′ ′ ′ ′ ′= = = = = = = − −

′ ′= Ω = = = = − =
2 2

1,  ,  ,  ,    and r rK M G P K φ  are rotation parameter which is reciprocal of Ekman number, magnetic parameter which is square of 
Hartmann number, Grashof number, Prandtl number, permeability parameter and heat generation/absorption coefficient 
respectively. 
Boundary conditions (14) and (15), in dimensionless form, are 

 
 and  at 0,

 and  at 1,

u vu v

u vu v

α α η
η η

α α η
η η

∂ ∂ ⎫= − = − = ⎪∂ ∂ ⎪
⎬∂ ∂ ⎪= = =
⎪∂ ∂ ⎭

   (19) 

 0 at 0 and cos  at 1,T T tη ω η= = = =    (20) 
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where / Lα μ β=  is slip parameter and 2Lω ω υ′=  is frequency parameter. 
Equations (16) and (17), in compact form, become  

 
2

2 2
2

1

12 ,r
F p FiK F F M F G T
t Kζ η

∂ ∂ ∂
+ = − + − − +

∂ ∂ ∂
   (21) 

where .F u iv= +  
Boundary conditions (19), in compact form, are 

 0 at 0 and 0 at 1.F FF Fα η α η
η η
∂ ∂

+ = = − = =
∂ ∂

   (22)  

It may be noted that the fluid flow past a plate may be induced due to either by motion of the plate or free stream or by heating of 
the fluid or by both (Singh, 1983; Tokis, 1986, 1988; Kythe and Puri, 1988 a, b; Kim, 2000; Chamkha, 2004 and Mbeledogu and 
Ogulu, 2007). Convective fluid flow within the channel may be induced due to either by heating of the fluid (Jha and Ajibade, 
2009) or by the movement of one of the plates of the channel and heating of the fluid (Singh and Kumar, 2009) or by applied 
pressure gradient and heating of the fluid (Prasad Rao et al, 1982; Ghosh and Bhattacharjee, 2000; Seth and Singh, 2008 and Seth 
and Ansari, 2009). We have considered oscillatory Hartmann convective flow so fluid flow, in our case, is induced due to applied 
oscillatory pressure gradient and by heating of the fluid because of temperature difference between lower and upper plates. 

Therefore, pressure gradient p
ς
∂
∂

, fluid velocity ( , )F tη  and fluid temperature ( , )T tη  are assumed, in non-dimensional form, as 

 ( )i t i tp R e eω ω

ς
−∂

= +
∂

,   (23) 

 1 2( , ) ( ) ( )i t i tF t F e F eω ωη η η −= + ,                (24a) 

 1 2( , ) ( ) ( )i t i tT t T e T eω ωη η η −= + ,               (24b) 
where R<0 for favourable pressure.  
Equations (18) and (21) with the use of (23) and (24) reduce to  

 ( )
2

1
12 0,r

d T
P i T

d
φ ω

η
− + =    (25) 

 ( )
2

2
22 0,r

d T
P i T

d
φ ω

η
− − =    (26) 

 ( )
2

2 21
1 12

1

1 2 ,r
d F

M i K F R G T
Kd

ω
η

⎧ ⎫
− + + + = −⎨ ⎬
⎩ ⎭

   (27) 

 ( )
2

2 22
2 22

1

1 2 .r
d F

M i K F R G T
Kd

ω
η

⎧ ⎫
− + + − = −⎨ ⎬
⎩ ⎭

   (28) 

 
 

Boundary conditions (20) and (22) become 

 1 2

1 2

0 and 0 at 0,
1/ 2 and 1/ 2 at 1,

T T
T T

η
η

= = = ⎫
⎬= = = ⎭

   (29) 

 

1 2
1 2

1 2
1 2

0 and  0 at 0,  

0 and  0 at 1. 

dF dF
F F

d d
dF dF

F F
d d

α α η
η η

α α η
η η

⎫+ = + = = ⎪⎪
⎬
⎪− = − = =
⎪⎭

   (30)  

Equations (25) to (28) subject to boundary conditions (29) and (30) are solved and the solution for fluid temperature and fluid 
velocity is presented in the following form 

 ( ) 31

1 3

sinhsinh1, ,
2

i t i tmm
T t e e

sinhm sinhm
ω ωηη

η −⎡ ⎤
= +⎢ ⎥

⎣ ⎦
   (31) 

  

 ( ) ( )
1

1 2 2 2 2 2 2
2 1 2 1

sinh
, cosh sinh

2 sinh
i trG mRF t C m C m e

m m m m
ωη

η η η
⎧ ⎫⎪ ⎪= + − − +⎨ ⎬

−⎪ ⎪⎩ ⎭
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( )

3
3 4 4 4 2 2 2

4 3 4 3

sinh
cosh sinh ,

2 sinh
i trG mRC m C m e

m m m m
ωη

η η −
⎧ ⎫⎪ ⎪+ + − −⎨ ⎬

−⎪ ⎪⎩ ⎭
   (32) 

 
where  

( ) ( )
1/2

1/2 2 2
1 2

1

1,   2 ,rm P i m M i K
K

φ ω ω
⎡ ⎤

= + = + + +⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 

( ) ( )
1/2

1/2 2 2
3 4

1

1,  2 ,rm P i m M i K
K

φ ω ω
⎡ ⎤

= − = + + −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎣ ⎦

 

( ) 12 2
5 2 2 2 21 sinh 2 cosh ,m m m m mα α

−
⎡ ⎤= + −⎣ ⎦   

( ) 12 2
6 4 4 4 41 sinh 2 cosh ,m m m m mα α

−
⎡ ⎤= + −⎣ ⎦  

( ) ( )
2 1 2

1 5 2 2 1 22 2
2 2 1 21 2

sinh11 cosh sinh 1 cosh cosh ,
sinh2

rm G m mRC m m m m m
m m m mm m

α α
α

α

⎡ ⎤⎫⎧ ⎫ ⎧ ⎛ ⎞⎪⎢= − + − + − + − ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟
−⎢ ⎪⎥⎩ ⎭ ⎩ ⎝ ⎠⎭⎦⎣

 

( ) ( ) ( )1
2 5 1 2 2 2 2 2 222 2

1 21 2

1 cosh cosh sinh 1 cosh sinh ,
sinh2

rG m RC m m m m m m m m
m mm m

α
α α

⎡ ⎤⎧ ⎫
⎢= − + − + − +⎨ ⎬ ⎥

−⎢ ⎩ ⎭ ⎦⎣
 

( ) ( )
34 4

3 6 4 4 3 42 2
4 4 3 43 4

sinh11 cosh sinh 1 cosh cosh ,
sinh2

r mm G mRC m m m m m
m m m mm m

αα
α

α

⎡ ⎤⎫⎧⎧ ⎫ ⎛ ⎞⎪⎢= − + − + − + − ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟
−⎢ ⎪⎥⎩ ⎭ ⎝ ⎠⎩ ⎭⎦⎣

 

( ) ( ) ( )3
4 6 3 4 4 4 4 4 422 2

3 43 4

1 cosh cosh sinh 1 cosh sinh ,
sinh2

r mG RC m m m m m m m m
m mm m

α
α α

⎡ ⎧ ⎫ ⎤
⎢= − + − + − +⎨ ⎬ ⎥

−⎢ ⎦⎩ ⎭⎣
 

 
3. Asymptotic Solution 
 
   In order to gain further insight into the flow pattern, asymptotic behavior of the solution (32) will be analyzed for large values of 
frequency parameter ω . 
i.e.  when ω>>1, M2 ~ O(1) and K2~ O(1)  
   When ω  is large, boundary layer type flow is expected. For the boundary layer flow near the plate 1η = , introducing boundary 
layer coordinate 1ξ η= − , the asymptotic solution for the fluid velocity is obtained from (32) and is presented in the following 
form 

      ( ) ( ){ } ( ) ( )31 2
1 2 3

2sin sin 2 sin cos 2 ,r
Ru P e t e t e t tα ξα ξ α ξλ ω β ξ ω β ξ ω β ξ ω π
ω

−− −⎡ ⎤= − − + − + − + +⎣ ⎦        (33) 

      ( ) ( )1 2
1 2cos cos ,rv P e t e tα ξ α ξλ ω β ξ ω β ξ− −⎡ ⎤= − − −⎣ ⎦                                                   (34) 

where 

( )
 ,

2 1
r

r

G
P

λ
ω

=
−

    (35) 

 
2 22 2

1 1
1 1

1 1

1 1
1 ,   1 ,

2 2 2 2
K M K MK K

K K
ω ωα β

ω ω ω ω
⎧ ⎫ ⎧ ⎫+ +

= + + = + −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

   (36) 

 
2 22 2

1 1
2 2

1 1

1 1
1 , 1 ,

2 2 2 2
K M K MK K

K K
ω ωα β

ω ω ω ω
⎧ ⎫ ⎧ ⎫+ +

= − + = − −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

   (37) 

 3 31 ,   1 .
2 2 2 2

r rP Pω ωφ φα β
ω ω

⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (38) 

The expressions (33) to (38) demonstrate the existence of triple boundary layers of thicknesses 1
1( )O α− , 1

2( )O α−  and 
1

3( )O α− near the plate 1η = . Two of the boundary layers of thicknesses 1
1( )O α−  and 1

2( )O α−  may be identified as modified 
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Sokes-Ekman boundary layers and can be viewed as classical Stokes-Ekman boundary layers modified by magnetic field and 
porosity of medium. The third boundary layer of thickness 1

3( )O α−  may be recognized as modified Stokes boundary layer and can 
be viewed as classical Stokes boundary layer modified by source/sink effect. Similar types of boundary layers are formed near the 
plate 0η =  of the channel. Exponential terms in the expressions (33) and (34) damp out quickly as ξ  increases. When 1

2ξ α−>  
i.e. outside the boundary layer region, Eqs. (33) and (34) reduce to 

 2 cos( / 2),  0Ru t vω π
ω

≈ + ≈ .   (39) 

It is evident from (39) that, in the central core region, fluid flows in the primary flow direction only and oscillates with the same 
frequency ω  as applied pressure gradient but has a phase lead of / 2π  over it. 
 
4. Skin Friction and Nusselt Number 
 

The expressions for the skin friction τ  and Nusselt number Nu , which are measure of shear stress due to primary and 
secondary flows and rate of heat transfer at the plate 1η =  respectively, are presented in the following form. 

 ( ) ( )
1

1 2 2 2 2 2 12 2
1 2

sinh cosh coth
2

i tr
x y

G m
i C m m C m m m e

m m
ωτ τ τ

⎧ ⎫⎪ ⎪= + = + − +⎨ ⎬
−⎪ ⎪⎭⎩

 

 
( )

3
3 4 4 4 4 4 32 2

3 4

sinh cosh coth ,
2

i trG m
C m m C m m m e

m m
ω−

⎧ ⎫⎪ ⎪+ + −⎨ ⎬
−⎪ ⎪⎭⎩

   (40) 

and 

 1 1 3 3
1 coth coth .
2

i t i tNu m m e m m eω ω−⎡ ⎤= − +⎣ ⎦    (41) 

 
5. Results and Discussion 
 
   To study the effects of wall slip, magnetic field, rotation, thermal buoyancy force, porosity of medium, oscillations and thermal 
source/sink on the flow-field numerical values of both primary and secondary fluid velocities, computed from analytical solution 
reported in Section 2 by MATLAB software, are displayed graphically versus channel width variable η  for various values of slip 

parameter α , magnetic parameter 2M , rotation parameter 2K , Grashof number rG , permeability parameter 1K , frequency 
parameter ω , heat generation coefficient  ( 0)φ <  and heat absorption coefficient ( 0)φ >  in Figs. 2 to 15 taking 0.71rP = , 

/ 2tω π=  and 1R = − . It is evident from Figs. 2 to 5 that primary velocity u  and secondary velocity v  decrease on increasing 
either slip parameter α  or magnetic parameter 2M  for both heat generating and absorbing fluids which implies that wall slip and 
magnetic field have tendency to retard fluid flow in the primary and secondary flow directions for both heat generating and 
absorbing fluids. Figures 6 and 7 show that, for both heat generating and absorbing fluids, primary velocity u  decreases whereas 
secondary velocity v  increases with the increase in rotation parameter 2K  which implies that, for both heat generating and 
absorbing fluids, rotation tends to retard fluid flow in the primary flow direction whereas it has reverse effect on the fluid flow in 
secondary flow direction. Figures 8 to 13 reveal that, for both heat generating and absorbing fluids, u  and v  increase on 
increasing either rG  or 1K  or ω  which implies that, for both heat generating and absorbing fluids, thermal buoyancy force, 
porosity of medium and oscillations have tendency to accelerate fluid flow in both the primary and secondary flow directions. It is 
noticed from Figs. 14 and 15 that u  and v  increase on increasing φ  ( 0)<  and decrease on increasing  ( 0)φ >  which implies that 
thermal source accelerates fluid flow in both the primary and secondary flow directions whereas thermal sink has reverse effect on 
it. 
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Figure 2. Profiles of primary velocity when M2 = 4, K2 = 3, Gr = 2, K1=0.2 

and 3ω = . 
 

Figure 3. Profiles of secondary velocity when M2 = 4, K2 = 3, Gr = 2, 
K1=0.2 and 3ω = . 

 
Figure 4. Profiles of primary velocity when 0.05α = ,  K2 = 3, Gr =2, 

K1=0.2 and 3ω = . 

 
Figure 5. Profiles of secondary velocity when 0.05α = ,  K2 = 3, Gr=2, 

K1=0.2 and 3ω = .

 
Figure  6. Profiles of primary velocity when 0.05α = , M2 = 4, Gr=2, 

K1=0.2 and 3ω = . 
 

Figure 7. Profiles of secondary velocity when 0.05α = , M2 = 4, Gr=2, 
K1=0.2 and 3ω = .
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Figure 8. Profiles of primary velocity when 0.05α = , M2 = 4, K2 =3,  

K1=0.2 and 3ω = . 

 
Figure 9. Profiles of secondary velocity when 0.05α = , M2 = 4, K2=3,  

K1=0.2 and 3ω = .

 
Figure 10. Profiles of primary velocity when 0.05α = , M2 = 4, Gr =2, K2= 

3 and 3ω = . 
 

Figure 11. Profiles of secondary velocity when 0.05α = , M2 = 4, Gr= 2, 
K2=3 and 3ω =

 
Figure 12. Profiles of primary velocity when 0.05α = , M2 = 4, Gr=2, K2 =3 

and 1 0.2K = . 
 

Figure 13. Profiles of secondary velocity when 0.05α = , M2 = 4, Gr= 2, 
K2=3 and 1 0.2K = . 
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Figure 14. Profiles of primary velocity when 0.05α = , M2 = 4, Gr=2, K2=3, 

3ω =  and 1 0.2K = . 

 
Figure 15. Profiles of secondary velocity when 0.05α = , M2 =4, Gr=2, 

K2 = 3, 3ω =  and 1 0.2K = . 
 
The numerical values of fluid temperature, computed from analytical solution mentioned in Section 2 by MATLAB software, 

are depicted graphically in Figs. 16 to 18 for different values of heat generation coefficient  ( 0)φ < , heat absorption coefficient 
 ( 0)φ > , Prandtl number rP  and frequency parameter ω  taking / 2tω π= . Figure 16 reveals that fluid temperature T  increases 

on increasing  ( 0)φ <  and decreases on increasing ( 0)φ >  which imply that thermal source tends to increase fluid temperature 
whereas thermal sink has reverse effect on it. Figure 17 shows that, for both heat generating and absorbing fluids, fluid 
temperature T  increases on increasing Prandtl number rP . Since Prandtl number rP  is ratio of viscosity to thermal diffusivity. An 
increase in thermal diffusivity leads to a decrease in Prandtl number. Therefore, thermal diffusion has tendency to reduce fluid 
temperature for both heat generating/absorbing fluids. It is noticed from Fig. 18 that, for both heat generating/absorbing fluids, 
fluid temperature T  decreases in the lower half of the channel whereas it decreases, attains a minimum and then increases in 
magnitude in the upper half of the channel on increasing ω  which implies that there exists reverse flow of heat in the upper half of 
the channel due to oscillating temperature of plate 1η = . 
 

 
        Figure 16. Temperature profiles when Pr = 0.71 and 3ω = . 

 
Figure 17. Temperature profiles when 3ω = .
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Figure 18. Temperature profiles when Pr = 0.71. 
 
The numerical values of primary and secondary skin frictions at plate 1η = , computed from analytical expression reported in 

Section 4 by MATLAB software, are displayed in tabular form in Tables 1 to 8 for various values of 2M , rG , 2K , φ , ω , 1K  
and α  taking  0.71rP = , / 2tω π=  and 1R = − . It is evident from Tables 1 and 2 that, for both heat generating and absorbing 

fluids, primary skin friction xτ  and secondary skin friction yτ  decrease on increasing 2M  whereas these skin frictions increase on 

increasing rG  which implies that, for both heat generating and absorbing fluids, magnetic field tends to reduce both primary and 
secondary skin frictions whereas thermal buoyancy force has reverse effect on it. It is noticed from Tables 3 and 4 that, for both 
heat generating and absorbing fluids, xτ  decreases whereas yτ  increases on increasing 2K  which implies that, for both heat 
generating and absorbing fluids, rotation tends to reduce primary skin friction and it has reverse effect on secondary skin friction. 

xτ  and yτ  increase on increasing  ( 0)φ <  and decrease on increasing ( 0)φ >  which implies that thermal source has tendency to 
increase both primary and secondary skin frictions whereas thermal sink has reverse effect on it. It is found from Tables 5 and 6 
that, for both heat generating and absorbing fluids, xτ  and yτ  increase on increasing either ω  or 1K  which implies that 
oscillations and porosity of medium tend to increase primary and secondary skin frictions for both heat generating and absorbing 
fluids. It is revealed from Tables 7 and 8 that, for both heat generating and absorbing fluids, xτ  and yτ  decrease on increasing α  
which implies that, for both heat generating and absorbing fluids, wall slip tends to reduce primary and secondary skin friction. 

 
                          Table 1. Skin frictions xτ  and yτ  when 0.05α = , K2 = 3, 3ω = , 1 0.2 and 1K φ= = −  

xτ−  yτ   
2 / rM G↓ →  2 4 6 2 4 6 

2 0.1473 0.2424 0.3374 0.0700 0.1046 0.1392 
4 0.1321 0.2191 0.3061 0.0553 0.0832 0.1111 
6 0.1192 0.1994 0.2795 0.0444 0.0674 0.0903 

 
Table 2. Skin frictions xτ  and yτ  when 0.05α = , K2 = 3, 3ω = , 1 0.2 and 1K φ= =  

xτ−  yτ   
2 / rM G↓ →  2 4 6 2 4 6 

2 0.1293 0.2064 0.2835 0.0639 0.0924 0.1209 
4 0.1156 0.1860 0.2565 0.0503 0.0733 0.0962 
6 0.1040 0.1688 0.2337 0.0403 0.0592 0.0780 
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Table 3. Skin frictions xτ  and yτ  when 0.05α = , M2 = 4, Gr = 2, K1 = 0.2 and 3ω = . 

xτ−  yτ   
2/Kφ ↓ →  2 3 4 2 3 4 

-1 0.1432 0.1321 0.1186 0.0394 0.0553 0.0673 
-2 0.1547 0.1431 0.1289 0.0417 0.0585 0.0713 
-3 0.1690 0.1566 0.1416 0.0445 0.0624 0.0762 

 
Table 4. Skin frictions xτ  and yτ  when 0.05α = , M2 = 4, Gr = 2, K1 = 0.2 and 3ω = . 

xτ−  yτ   
2/Kφ ↓ →  2 3 4 2 3 4 

1 0.1258 0.1156 0.1031 0.0360 0.0503 0.0611 
2 0.1192 0.1092 0.0972 0.0346 0.0484 0.0587 
3 0.1135 0.1039 0.0922 0.0334 0.0467 0.0567 

 
Table 5. Skin frictions xτ  and yτ  when 0.05α = , M2 = 4, Gr = 2, K2 = 3 and 1φ = − . 

xτ−  yτ   
1/Kω ↓ →  0.10 0.15 0.20 0.10 0.15 0.20 

2 0.0706 0.0827 0.0901 0.0227 0.0317 0.0381 
3 0.1035 0.1212 0.1321 0.0330 0.0460 0.0553 
4 0.1340 0.1567 0.1707 0.0423 0.0587 0.0703 

 
Table 6. Skin frictions xτ  and yτ  when 0.05α = , M2 = 4, Gr = 2, K2 = 3 and 1φ = . 

xτ−  yτ   
1/Kω ↓ →  0.10 0.15 0.20 0.10 0.15 0.20 

2 0.0609 0.0717 0.0784 0.0204 0.0286 0.0345 
3 0.0898 0.1058 0.1156 0.0298 0.0418 0.0503 
4 0.1170 0.1377 0.1505 0.0385 0.0537 0.0644 

 
Table 7. Skin frictions xτ  and yτ  when K1 = 0.2, M2 = 4, Gr = 2, K2 = 3 and 1φ = − . 

xτ−  yτ   
/ω α↓ →  0.03 0.05 0.07 0.03 0.05 0.07 
2 0.0923 0.0901 0.0855 0.0419 0.0381 0.0341 
3 0.1354 0.1321 0.1252 0.0607 0.0553 0.0494 
4 0.1753 0.1707 0.1615 0.0772 0.0703 0.0630 

Table 8. Skin frictions xτ  and yτ  when K1 = 0.2, M2 = 4, Gr = 2, K2 = 3 and 1φ = . 

xτ−  yτ   
/ω α↓ →  0.03 0.05 0.07 0.03 0.05 0.07 
2 0.0812 0.0784 0.0732 0.0381 0.0345 0.0308 
3 0.1197 0.1156 0.1078 0.0555 0.0503 0.0449 
4 0.1561 0.1505 0.1401 0.0710 0.0644 0.0576 

 
   Numerical values of Nusselt number Nu , computed from analytical expression mentioned in Section 4 by MATLAB software, 
are presented in tabular form in Tables 9 and 10 for different values of rP , ω  and φ  taking / 2tω π= . It is found from Tables 9 
and 10 that, for both heat generating and absorbing fluids, Nu  increases on increasing either rP  or ω  which implies that thermal 
diffusion tends to reduce rate of heat transfer at plate 1η =  whereas oscillations have reverse effect on it for both heat generating 
and absorbing fluids. Also Nu  increases on increasing ( 0)φ <  and decreases on increasing  ( 0)φ >  which implies that thermal 
source has tendency to enhance rate of heat transfer at plate 1η =  whereas thermal sink has reverse effect on it. 
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Table 9. Nusselt number Nu when 3ω = . 
/rP φ↓ →  1 2 3 -1 -2 -3 

0.01 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 
0.5 0.4631 0.4369 0.4138 0.5273 0.5670 0.6134 

0.71 0.6341 0.5868 0.5468 0.7587 0.8424 0.9469 
 

Table 10. Nusselt number Nu when Pr = 0.71. 
/ω φ↓ →  1 2 3 -1 -2 -3 
2 0.4281 0.3955 0.3679 0.5152 0.5744 0.6491 
3 0.6341 0.5868 0.5468 0.7587 0.8424 0.9469 
4 0.8309 0.7711 0.7200 0.9868 1.0900 1.2169 

 
 
6. Conclusion 
 

Unsteady hydromagnetic convective flow of a viscous incompressible electrically conducting heat generating/absorbing fluid 
within a parallel plate rotating channel in a porous medium under slip boundary conditions is investigated. The significant findings 
are summarized below: 

a). For both heat generating and absorbing fluids: 
(i). wall slip and magnetic field have tendency to retard fluid flow in both the primary and secondary flow directions. 
(ii). rotation tends to retard fluid flow in primary flow direction whereas it has reverse effect on fluid flow in secondary 

flow direction. 
(iii). buoyancy force, porosity of medium and oscillations have tendency to accelerate fluid flow in both the primary and 

secondary flow direction. 
b). Thermal source tends to accelerate fluid flow in both the primary and secondary flow directions whereas thermal sink has 

reverse effect on it. 
c). (i). Thermal source tends to enhance fluid temperature whereas thermal sink has reverse effect on it. 

(ii).Thermal diffusion has tendency to reduce fluid temperature for both heat generating and absorbing fluids. 
(iii).Oscillations tend to induce reverse flow of heat for both heat generating and absorbing fluids in the upper half of the 

channel due to oscillating temperature of upper plate. 
d). For both heat generating and absorbing fluids: 

(i). magnetic field tends to reduce both primary and secondary skin frictions whereas thermal buoyancy force has reverse 
effect on it. 

(ii). rotation tends to reduce primary skin friction whereas it has reverse effect on secondary skin friction. 
(iii). oscillations and porosity of medium tend to increase both primary and secondary skin frictions whereas wall slip has 

reverse effect on it. 
e). Thermal source has tendency to increase both primary and secondary skin frictions whereas thermal skink has reverse effect 

on it. 
f). Thermal source has tendency to enhance rate of heat transfer at plate 1η =  whereas thermal sink has reverse effect on it. 

Thermal diffusion tends to reduce rate of heat transfer at plate 1η =  whereas oscillations have reverse effect on it for both 
heat generating and absorbing fluids. 
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